HUMAN RECOMBINANT INTERLEUKIN 4 INDUCES Fc€ RECEPTORS (CD23) ON NORMAL HUMAN B LYMPHOCYTES By T. DEFRANCE,* J. P. AUBRY,* F. ROUSSET,* B. VANBERVLIET,* J. Y. BONNEFOY,* N. ARAI,[‡] Y. TAKEBE,[‡] T. YOKOTA,[‡] F. LEE,[‡] K. ARAI,[‡] J. DE VRIES,* AND J. BANCHEREAU* From *UNICET Laboratory for Immunological Research, Dardilly 69572, France; and [‡]DNAX, Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304 We have recently reported (1) the isolation of a cDNA sequence coding for human IL-4 B cell stimulatory factor 1 (BSF₁). This lymphokine is a T cell-derived glycoprotein consisting of 129 amino acids with two potential N-glycosylation sites. Human IL-4 is able to induce the proliferation of activated B lymphocytes (Defrance, T., B. Vanbervliet, J. P. Aubry, et al., manuscript submitted for publication) and activated T lymphocytes (Spits, H., H. Yssel, Y. Takebe, et al. manuscript submitted for publication). During the course of our studies aimed at characterizing the phenotype of the B lymphocyte population proliferating in response to IL-4, we studied the expression of several activation markers. The most striking phenotypic modification mediated by IL-4 was the induction on B lymphocytes of the low-affinity receptor (R_L) for IgE (Fc ϵ R_L/CD23) (2, 3), as determined by the binding of the Fc ϵ R_L/CD23-specific mAb 25. We also show in this report that IFN- γ specifically inhibits the IL-4-mediated induction of Fc ϵ R_L/CD23. #### Materials and Methods Reagents. Insolubilized rabbit anti-human IgM (Bio-Rad Laboratories, Richmond, CA) was used at the final concentration of 5 μ g/ml. The anti Fc ϵ R_L (CD23 antigen)-specific mAb 25 was produced after immunizing mice with RPMI 8866 cells (2). The FITC-conjugated goat anti-mouse Ig used in the indirect immunofluorescence assays was purchased from Grub (Vienna, Austria). OKT mAbs were from Ortho Diagnostic Systems Inc. (Westwood, MA); Leu mAbs were from Becton Dickinson Monoclonal Center (Mountain View, CA); B1, MO2, and MO1 were from Coulter Immunology (Hialeah, FL). Éscherichia coli-derived rIFN- γ (10⁷ IU/mg) was obtained from Schering Research, Bloomfield, NJ. IL-4 was obtained as supernatants from COS-7 cells transfected with pcD vector containing the human IL-4 cDNA clone (1). 1 U of IL-4 is defined as the amount providing a half-maximal [3 H]TdR uptake in activated PHA blasts (1). Some experiments were performed with purified IL-4. Mock preparations consisting of culture supernatants of COS-7 cells transfected with a nonrelated cDNA were also used. Human rIL-2 was ¹ Abbreviations used in this paper: AET, amino ethylisothiouronium bromide; BCGF, B cell growth factor; BSF₁, B cell stimulatory factor 1; cBCGF, commercial BCGF; EBV LCL, EBV-transformed lymphoblastoid cell lines; Fc∈RL, low-affinity receptor for IgE on lymphoid cells. FLS, forward light scatter; PLS, perpendicular light scatter; PY, pyronin Y. obtained as $E.\ coli$ lysates from Dr. R. Kastelein at DNAX and as a purified protein from Amgen Biologicals (Thousand Oaks, CA). Human rIL-1 α was obtained from Dr. Zurawski at DNAX in the form of $E.\ coli$ lysates. It was purified by SDS-PAGE and the IL-1 was eluted from its migration area in the gel by reverse electrophoresis. A commercial preparation of a low-molecular-weight B cell growth factor (BCGF) purified from the culture supernatants of PHA-stimulated PBL was obtained from Cellular Products Inc. (Buffalo, NY) and is referred to in the text as commercial BCGF (cBCGF). This preparation was free from IL-2 and IFN- γ activity, as determined by measurement of the [3 H]-TdR uptake by the IL-2-dependent mouse T cell line CTLL-2 and an ELISA assay, respectively. *B Cell Preparations and Cultures.* B cells were isolated either from tonsils or from blood cytapheresis residues. Mononuclear cells were separated by the standard Ficoll/Hypaque gradient method. Tonsil B cells were obtained by twice rosetting with amino ethyl isothiouronium bromide (AET)-treated SRBC, while blood B cells were submitted to a single rosetting with AET-treated SRBC followed by complement-mediated lysis of the remaining T cells with the use of anti-T3 (CD3), -T4 (CD4), -T8 (CD8), -T11 (CD2) mAbs. Depletion of blood monocytes, null cells and large granular lymphocytes was achieved by L-leucine methyl ester treatment according to the method described by Thiele et al. (4). The B cell-enriched populations obtained were typically >95% surface Igpositive, >95% B1 antigen (CD20)-positive. <1% of the cells were positively stained by the T cell markers Leu-1, OKT4, OKT8, and OKT11 or by the monocyte markers: Leu-M3, MO1 (CD11), MO2 (CD14). <1% of the cells reacted with the NK cell markers: Leu-7 and Leu-11 (CD16). Purified B cells were cultured at 10^6 cells/ml in Iscove's medium enriched with 50 μ g/ml human transferrin, 5 μ g/ml bovine insulin, 0.5% BSA, oleic, linoleic, and palmitic acids (all from Sigma Chemical Co., St. Louis, MO) as described by Yssel et al. (5). 2% FCS was added to the medium. Analysis with a FACS. Fluorescence analysis was performed with a FACS 440 (Becton Dickinson & Co., Sunnyvale, CA) equipped with a 5 W argon laser running at 488 nm, 0.5 W. Fluorescence parameters were collected using a built in logarithmic amplifier after gating on the combination of forward light scatter (FLS) and perpendicular light scatter (PLS), which was used to discriminate viable from nonviable cells. Cell Staining. 4×10^5 cells were incubated with 50 μ l of the appropriately diluted mAb in 0.2-ml microtiter plate wells. After two washes with PBS containing 1% BSA, 0.01% sodium azide, cells were incubated with fluoresceinated F(ab')₂ fragments of goat anti-mouse Ig (Grub) for 30 min at 4°C. After three washes with PBS/BSA/azide, the cells were analyzed with the FACS. Simultaneous Measurement of RNA Content and Surface Antigen Expression. The procedure used was adapted from Shapiro (6). 10^6 cells/ml in PBS/1% BSA/0.01% sodium azide were incubated at 37° C for 45 min with 5 μ M pyronin Y (PY; Aldrich Chemical Co., Milwaukee, WI). After centrifugation the cells were resuspended in cold PBS/BSA containing 4 μ M PY (PBS/PY) and the mAb was added at the appropriate dilution. After an incubation of 30 min at 4°C the cells were washed twice in cold PBS/PY then resuspended in PBS/PY containing the fluorescent-conjugated goat anti-mouse Ig. After 30 min at 4°C, the cells were washed twice with cold PBS/PY and resuspended in PBS/PY. Analyses were performed within 15 min after staining. 15,000 cells were recorded. The green fluorescence (530 nm) specific for antibody staining is recorded with logarithmic amplification; the red fluorescence (>600 nm) specific for RNA staining is recorded with linear amplification. #### Results IL-4 Specifically Induces the Expression of Fcε Receptors/CD23 on Normal Human B Cells. Highly purified tonsil B lymphocytes not stimulated or stimulated by insolubilized anti-IgM antibody were cultured with or without IL-4 (80 U/ml of a COS-7 cells transfection supernatant). After 24 or 48 h, cells were stained with FIGURE 1. IL-4 induces the expression of $Fc\epsilon R_L/CD23$ on purified tonsil B cells. $Fc\epsilon R_L/CD23$ is detected by immunofluorescence flow cytometry with mAb 25, an anti- $Fc\epsilon R_L/CD23$ mAb. Purified tonsil B cells were cultured for 24 h (A and B) or 48 h (C and D) without (A and C) or with (B and D) IL-4, without or with insolubilized anti-IgM antibody (5 $\mu g/ml$). The IL-4 was a COS-7 transfection supernatant used at 80 U/ml. FIGURE 2. Highly purified IL-4 obtained from COS-7 transfection supernatants is able to induce FcεR_L/CD23 on purified tonsil B cells. Purified tonsil B lymphocytes were cultured for 48 h with insolubilized anti-IgM antibodies and increasing concentrations of IL-4. The number of cells expressing FcεR_L/CD23 was estimated by immunofluorescence flow cytometry after staining with mAb 25. mAb 25, which is specific for the $Fc\epsilon R_L/CD23$. FACS histograms (Fig. 1) show that IL-4 is able to induce the expression of $Fc\epsilon R_L/CD23$ on nonactivated B cells but that the concomitant activation with anti-IgM antibodies increases the number of cells expressing $Fc\epsilon R_L/CD23$ as well as the intensity of $Fc\epsilon R_L/CD23$ expression on these cells. The nonactivated and the anti-IgM-activated B lymphocytes cultured with a mock COS-7 transfection supernatant did not significantly express $Fc\epsilon R_L/CD23$. The IL-4-induced expression of $Fc\epsilon R_L/CD23$ was confirmed by the binding of soluble IgE as assessed by flow cytometry after successive incubations of the cells with soluble IgE, an anti-IgE-specific mAb, and a FITC-labeled goat anti-mouse Ig conjugate (data not shown). To determine the concentration that induces optimal $Fc\epsilon R_L/CD23$ induction, experiments were carried out with highly purified rIL-4 obtained from transfected COS-7 supernatants. Data in Fig. 2 show that the maximum expression of $Fc\epsilon R_L/CD23$ on anti-IgM-activated B cells is obtained with 700 pg/ml IL-4. The half-maximal induction of $Fc\epsilon R_L/CD23$ is obtained with ~176 pg/ml IL-4. It has been shown that activated B lymphocytes can proliferate in response to Table I The Induction of Fce Receptor/CD23 on Normal B Cells Is Specific for IL-4 | Cytokine added | FceRL+ cells* | | |--|---------------|-----------------------| | | No activation | Anti-IgM
activated | | | % | | | 0 | 1 ± 1 | 3 ± 2 | | Mock COS-7 (1%) | 1 ± 1 | 1 ± 1 | | IL-4 (80 U/ml) | 20 ± 2 | 48 ± 4 | | IL-1α (10 IU/ml) | 1 ± 1 | 2 ± 1 | | IL-2 (20 IU/ml) | 2 ± 1 | 1 ± 1 | | IFN-γ (50 U/ml) | 2 ± 1 | 2 ± 1 | | IFN-γ (1,000 U/ml) | 4 ± 1 | 1 ± 1 | | cBCGF (20%) | 1 ± 1 | 1 ± 1 | | UD 58 supernatant (5%)‡ | 2 ± 1 | 1 ± 1 | | RPMI 8866 supernatant (20%) [‡] | 3 ± 2 | 3 ± 1 | | HG 120 supernatant (10%)§ | 2 ± 1 | 1 ± 1 | ^{*} Purified tonsil B cells were cultured for 48 h with the different cytokines and the FcεR_L/CD23 expression was assessed by flow cytometry using mAb 25. many different lymphokines: IL-4 (Defrance, T., B. Vanbervliet, J. B. Aubrey, et al., manuscript submitted for publication), a low-molecular-weight BCGF (7), a high-molecular-weight BCGF (8), B cell-derived BCGFs (9, 10), IL-2 (11), IL-1 (12, 13), and IFN- γ (14, 15). However, IL-2, IL-1 α , IFN- γ , a low-molecular-weight BCGF (cBCGF as obtained from Cellular Products Inc.), B cell-derived BCGF (as obtained from EBV-transformed B cell line supernatants), and a T cell clone supernatant (containing IL-2, IFN- γ , and BCGF) were unable to induce FceR_L/CD23 expression (Table I). cBCGF that cooperates with IL-4 for the proliferation of activated B lymphocytes (Defrance, T., B. Vanbervliet, J. B. Aubrey, et al., manuscript submitted for publication) does not alter the induction of FceR_L/CD23 on B cells (data not shown). The induction of FceR_L/CD23 on normal B cells by IL-4 therefore seems to be a specific property of this lymphokine. IFN- γ Inhibits the IL-4-induced Fc ϵ R_L/CD23 Expression. Since we failed to demonstrate the presence of Fc ϵ R_L/CD23-inducing activity in many T cell clone supernatants, including clone 2F1 from which the IL-4 cDNA was isolated, we investigated whether these T cell clone supernatants would contain factors inhibiting the IL-4-induced Fc ϵ R_L/CD23 expression on normal B lymphocytes. Recombinant lymphokines (IL-1, IL-2, IFN- γ) were assayed for their potential inhibitory action on the IL-4-induced Fc ϵ R_L/CD23 on B cells. The supernatant of clone 2F1 was found to strongly inhibit the IL-4-induced expression of Fc ϵ R_L/CD23 (data not shown). Among the three recombinant lymphokines [‡] Supernatants from EBV-transformed cell lines containing BCGF activity as determined on anti-IgM-preactivated B cells but no IL-4, as determined by Northern analysis of isolated mRNA. [§] Supernatant from an allogeneic IL-2-dependent T cell clone stimulated by its specific alloantigen and containing IL-2, IFN-γ, and BCGF activities. FIGURE 3. IFN- γ strongly inhibits the IL-4-induced Fc ϵ R_L/CD23 expression on normal B lymphocytes. B cells were cultured with insolubilized anti-IgM antibody and IL-4 (COS-7 transfection supernatant 80 U/ml) for 24 h () or 48 h (). The percentage of Fc ϵ R_L/CD23-positive cells was estimated by immunofluorescence flow cytometry after staining with mAb 25. The culture point 5,000 U/ml was not tested at 24 h. tested, IFN- γ was found to be a very potent inhibitor of the IL-4-induced Fc ϵ R_L/CD23 expression, while neither IL-1 nor IL-2, nor cBCGF affected the induction of the Fc ϵ R_L/CD23 (data not shown). Data in Fig. 3 show that concentrations of IFN- γ as low as 1 U/ml can partially inhibit the Fc ϵ R_L/CD23 induction. Inhibition of IL-4-induced Fc ϵ R_L/CD23 expression by IFN- γ was observed after 24 h of culture, but optimal inhibition was obtained after a 48-h incubation period. At optimal concentrations of IL-4, IFN- γ did not totally block the induction of Fc ϵ R_L/CD23, while a complete inhibition of Fc ϵ R_L/CD23 induction could be obtained with IFN- γ when suboptimal concentrations of IL-4 were used (data not shown). These data demonstrate that IFN- γ strongly antagonizes IL-4-induced Fc ϵ R_L/CD23 expression on B cells. IL-4 Induces the Expression of $Fc\epsilon R_L/CD23$ on B Cells in the G_0 Phase of the Cycle. Although IL-4 induces $Fc\epsilon R_L/CD23$ on tonsil B cells without preactivation, it has to be taken into account that the B cells studied here were obtained from donors with tonsillitis. This implies that a significant proportion of the B cells used were preactivated in vivo. To determine whether IL-4 induced $Fc\epsilon R_L/CD23$ on nonpreactivated B cells, the RNA content of the cells expressing $Fc\epsilon R_L/CD23$ was measured simultaneously. IL-4 alone (Fig. 4A) or in combination with insolubilized anti-IgM antibody (Fig. 4B) induced $Fc\epsilon R_L/CD23$ on a fraction of nonactivated B cells with low RNA contents but on an activated B cell fraction with relatively high RNA contents. The notion that preactivation of the B cells is not required for the induction of $Fc\epsilon R_L/CD23$ by IL-4 is also supported by the finding that IL-4 induced a strong expression of $Fc\epsilon R_L/CD23$ on peripheral blood B cells that are in the G_0 phase of the cell cycle, as well as on high-density tonsillar B cells obtained after Percoll-gradient centrifugation (data not shown). Taken together these data strongly suggest that resting B cells express functional IL-4 receptors and demonstrate that not all the activated B cells express $Fc\epsilon R_L/CD23$ upon culture with IL-4. ### Discussion In the present study we have demonstrated that human rIL-4 (BSF₁) (1) is able to induce the expression of $Fc\epsilon R_L/CD23$ on human B lymphocytes. This has been demonstrated using the binding of the $Fc\epsilon R_L/CD23$ mAb 25 (2) or the binding of soluble IgE (data not shown). Concomitant B cell activation by insolubilized anti-IgM antibody resulted in enhanced FceR₁/CD23 induction by IL-4, suggesting an increased expression of IL-4 receptors on B cells. The finding that activation of the B cells enhanced IL-4-mediated FceR_L/CD23 induction suggested that IL-4 alone was inducing FcεR_L/CD23 on the in vivo-preactivated B cells that are known to represent a significant proportion of tonsillar B lymphocytes. This however turned out not to be the case since double-fluorescence analysis carried out with mAb 25 and PY demonstrated that IL-4 induced FcεR_L/CD23 on B cells containing low levels of RNA (a characteristic of cells in the G₀ phase of the cycle) and on B cells with increased levels of RNA (G₁ phase of the cycle). The induction of FceR_L/CD23 on B cells seems to be specific for IL-4. rIL-2, rIFN- γ , rIL- 1α , semipurified low-molecular-weight BCGF or the supernatant of EBV lymphoblastoid cell lines (LCL) containing BCGF activity but no IL-4 (as determined by the absence of IL-4 mRNA in the cell line) were unable to induce FcεR₁/CD23 expression on normal B cells. Human rIL-4 has a FcεR₁/CD23inducing activity comparable to the lymphokine purified from PHA-activated mononuclear cells supernatants studied by Suemura et al. (16). None of the tested lymphokines acted in concert or in synergy with IL-4, but interestingly, IFN- γ strongly inhibited the Fc ϵR_L /CD23-inducing effect of IL-4. Strong inhibitory effects were observed at IFN- γ concentrations of 1 IU/ml. Although considerable blocking effects were obtained after 24 h of incubation with IL-4, the effect was most pronounced after 48 h. The mechanism by which IFN-γ blocks IL-4-induced $Fc_{\epsilon}R_{1}/CD23$ expression is presently under investigation. This inhibitory effect of IFN- γ is in line with the described antagonizing effects of murine IFN-γ on the proliferation of anti-IgM-activated B cells (17), the increase of class II MHC antigens on B cells, the increase in cell size (18, 19), and IgE and IgG1 production by LPS blasts (20) induced by IL-4. By contrast, the IL-4-induced proliferation of preactivated human B cells was stimulated by IFN-γ (Defrance, T., B. Vanbervliet, J. P. Aubrey, et al., manuscript submitted for publication). At the present time the biological significance of the IL-4-induced FceR_L/CD23 expression is unclear. The recent suggestion by Gordon et al. (21, 22) that the CD23 antigen may be the receptor for the low-molecular-weight BCGF (7) is worth considering, since it is in line with our data that indicate that IL-4 synergizes with the low-molecular-weight BCGF in inducing the proliferation of preactivated B cells (Defrance, T., B. Vanbervliet, J. P. Aubrey, et al., manuscript submitted for publication). The demonstration that IL-4 is able to induce (a) $Fc \in R_L$ on human B lymphocytes, (b) the proliferation of murine mast cells, and (c) IgE production by murine LPS blasts, demonstrates that IL-4 plays a major role in the IgE system at both the regulatory and the effector levels since it has been suggested that $Fc \in R_L^+$ B cells play a major role in the regulation of IgE secretion (23). This hypothesis is confirmed by the recent finding that the in vivo injection of a mAb specific for mouse IL-4 (24) into Nippostrongylus brasiliensis-infected mice abrogates the induction of IgE production mediated by this treatment (25). The biological functions of $Fc\epsilon R_L/CD23$ on B lymphocytes and the biological significance of its modulation by IL-4 and IFN- γ remain to be determined. ## Summary Human rIL-4 is able to induce the expression of low-affinity receptors for IgE (Fc ϵ R_L/CD23) on resting B lymphocytes, as determined by the binding of either the anti Fc ϵ R_L/CD23-specific mAb 25 or IgE. Stimulation of B cells with insolubilized anti-IgM antibody increases the number of cells expressing Fc ϵ R_L/CD23 upon culturing with IL-4 and enhances the level of Fc ϵ R_L/CD23 expression on these cells. Fc ϵ R_L/CD23 induction is specific for IL-4 since IL-1 α , IL-2, IFN- γ , B cell-derived B cell growth factor (BCGF), and a low-molecular-weight BCGF were ineffective. IFN- γ strongly inhibited the induction of Fc ϵ R_L/CD23 by IL-4. We thank P. Hoy, K. Yokota, E. Bower, and P. Meyerson for preparing IL-4 plasmid and transfecting COS-7 cells; Dr. A. Waitz for support and encouragement; Mrs. M. Vatan and Mr. B. Crouzet for editorial assistance; Dr. Le, Dr. Trotta, and Dr. Nagabhushan for providing us with highly purified rIL-4. Received for publication 10 December 1986 and in revised form 12 February 1987. # References - 1. Yokota, T., T. Otsuka, T. Mosmann, J. Banchereau, T. Defrance, D. Blanchard, J. de Vries, F. Lee, and K. Arai. 1986. Isolation and characterization of a human interleukin cDNA clone, homologous to mouse BSF-1, which expresses B cell and T cell stimulating activities. *Proc. Natl. Acad. Sci. USA*. 83:5894. - 2. Bonnefoy, J. Y., J. P. Aubry, C. Peronne, J. Wijdenes, and J. Banchereau. 1987. Production and characterization of a monoclonal antibody specific for the human low affinity receptor for IgE: CD23 is a low affinity receptor for IgE. *J. Immunol.* In press. - 3. Kikutani, H., S. Inui, R. Sato, E. L. Barsumian, H. Owaki, K. Yamasaki, T. Kalaho, N. Uchibayashi, R. R. Hardy, T. Hirano, S. Taunasawa, F. Sakiyama, M. Suemura, and T. Kishimoto. 1986. Molecular structure of the human lymphocyte receptor for Immunoglobulin E. Cell. 47:657. - 4. Thiele, D. L., M. Kuvosaka, and P. E. Lipsky. 1983. Phenotype of the accessory cell necessary for antigen-stimulated T and B cell responses human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J. Immunol. 131:2282. - 5. Yssel, H., J. E. de Vries, M. Koken, W. Van Blitterswijk, and H. Spits. 1984. Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. *J. Immunol. Methods*. 72:219. - 6. Shapiro, H. M. 1981. Flow cytometric of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry. 2:14. - 7. Mehta, S. R., D. Conrad, R. Sandler, J. Morgan, R. Montagna, and A. Maizel. 1985. Purification of human B cell growth factor. *J. Immunol.* 135:3298. - 8. Yoshizaki, K., T. Nakagawa, K. Fukunaga, T. Kaieda, S. Maruyama, S. Kishimoto, Y. Yamamura, and T. Kishimoto. 1983. Characterization of human B cell growth factor (BCGF) from cloned T cells or mitogen-stimulated T cells. *J. Immunol.* 139:1241. - 9. Gordon, J., S. C. Ley, M. D. Melamed, L. S. English, and N. C. Hughes-Jones. 1984. Immortalized B lymphocytes produce B-cell growth factor. *Nature (Lond.)*. 310:145. - 10. Ambrus, J. L., and A. S. Fauci. 1985. Human B lymphoma cell line producing B cell growth factor. J. Clin. Invest. 75:732. - 11. Zubler, R. H., J. W. Lowenthal, F. Erard, N. Hashimoto, R. Devos, and H. R. Macdonald. 1984. Activated B cells express receptors for and proliferate in response to pure interleukin 2. *J. Exp. Med.* 160:1170. - 12. Howard, M. S., B. Mizel, L. Lachman, J. Ansel, B. Johnson, and W. E. Paul. 1983. Role of IL-1 in anti-immunoglobulin-induced B cell proliferation. *J. Exp. Med.* 157:1529. - 13. Falkoff, R. J. M., J. L. Butler, C. A. Dinarello, and A. S. Fauci. 1984. Direct effects of a monoclonal B cell differentiation factor and of purified interleukin 1 on B cell differentiation. *J. Immunol.* 133:692. - 14. Defrance, T., J. P. Aubry, B. Vanbervliet, and J. Banchereau. 1986. Human interferon-γ acts as a B cell growth factor in the anti-IgM antibody costimulatory assay but has no direct B cell differentiation activity. *J. Immunol.* 137:3861. - Romagnani, S., M. G. Givoizi, R. Biagiotti, F. Almerigogna, C. Mingari, E. Maggi, C. Liang, and L. Moretta. 1986. B cell growth factor activity of interferon γ. - Recombinant human interferon γ promotes proliferation of anti- μ activated human B lymphocytes. *J. Immunol.* 136:3513. - Suemura, M., H. Kikutani, E. L. Barsumian, Y. Hattori, S. Kishimoto, R. Sato, A. Maeda, H. Nakamura, H. Owaki, R. R. Hardy, and T. Kishimoto. 1986. Monoclonal anti-Fcε receptor antibodies with different specificities and studies on the expression of Fcε receptors on human B and T cells. J. Immunol. 137:1214. - 17. Mond, J. J., F. D. Finkelman, C. Sarma, J. Ohara, and S. Serrate. 1985. Recombinant interferon γ inhibits the B cell proliferative response stimulated by soluble but not by Sepharose-bound anti-immunoglobulin antibody. *J. Immunol.* 135:2513. - 18. Mond, J. J., J. Carman, C. Sarma, J. Ohara, and F. D. Finkelman. 1986. Interferon- γ suppresses B cell stimulation factor (BSF-1) induction of class II MHC determinants on B cells. J. Immunol. 137:3534. - 19. Rabin, E. M., J. J. Mond, J. Ohara, and W. E. Paul. 1986. Interferon-γ inhibits the action of B cell stimulatory factor (BSF)-1 on resting B cells. J. Immunol. 137:1573. - 20. Coffman, R. L., and J. Carty. 1986. A T cell activity that enhances polyclonal IgE production and its inhibition by interferon γ. J. Immunol. 136:949. - 21. Gordon, J., M. Rowe, L. Walker, and G. Guy. 1986. Ligation of the CD23, p.45 (BLAST-2, EBVCS) antigen triggers the cell-cycle progression of activated B lymphocytes. *Eur. J. Immunol.* 16:1075. - 22. Gordon, J., A. J. Webb, L. Walker, G. R. Guy, and M. Rowe. 1986. Evidence for an association between CD23 and the receptor for a low molecular weight B cell growth factor. Eur. J. Immunol. 16:1627. - 23. Katz, D. H. 1984. Regulation of the IgE system: experimental and clinical aspects. Allergy (Copenh.). 39:81. - 24. Ohara, J., and W. E. Paul. 1985. Production of a monoclonal antibody to and molecular characterization of B cell stimulatory factor-1. *Nature (Lond.)*. 315:333. - 25. Finkelman, F. D., I. M. Katona, J. F. Urban, Jr., C. M. Snapper, J. Ohara, and W. E. Paul. 1986. Suppression of *in vivo* polyclonal IgE responses by monoclonal antibody to the lymphokine B cell stimulatory factor 1. *Proc. Natl. Acad. Sci. USA.* 83:9675.