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Abstract

Multiple mutations have been described in the human GBA1 gene, which encodes the lyso-

somal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is

pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozy-

gous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher’s disease

(GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkin-

son’s disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1

mutations in aggregate are the single greatest risk factor for development of idiopathic PD.

The importance of GCase in PD necessitates preclinical models in which to study GCase-

related mechanisms and novel therapeutic approaches, as well as to elucidate the molecu-

lar mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this

study was to develop and characterize a novel GBA1 mouse model and to facilitate wide

accessibility of the model with phenotypic data. Herein we describe the results of molecular,

biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in

(KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and

brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes

in the number of dopamine neurons in the substantia nigra were noted, subtle changes in

striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology
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and inflammation were not observed in the nigrostriatal system of this model. In summary,

the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacody-

namic assessments of potential therapies aiming to restore GCase.

Introduction

Globally, Parkinson’s disease (PD) is the second most common neurodegenerative disease

after Alzheimer’s disease and PD is the most common movement disorder. The typical motor

symptoms of PD, which present clinically as tremor, rigidity, and bradykinesia, arise from the

deficiency of the neurotransmitter dopamine (DA) in the striatum, which in turn occurs as a

result of the progressive loss of dopaminergic neuron cell bodies within the substantia nigra

pars compacta (SNpc) comprising the main histopathological characterization of PD. Addi-

tionally, PD is also characterized by non-motor symptoms (including anosmia, sleep distur-

bances, gastro-intestinal dysfunction, depression, and cognitive decline) [1] and molecularly

by accumulation of alpha-synuclein [2].

The etiology of Parkinson’s disease involves complex gene-environment interactions on the

background of aging. Mutations in the gene GBA1, which encodes the lysosomal enzyme glu-

cocerebrosidase (GCase), have been linked to PD, and are now recognized to collectively be

the greatest known genetic risk factor for development of idiopathic PD [3]. Over 300 muta-

tions in GBA1 have been identified to date; patients with GCase-associated parkinsonism

exhibit varied parkinsonian phenotypes but tend to present with slightly earlier age of onset

and higher prevalence of cognitive changes compared to PD patients without GBA1 mutations

[4, 5]. Decreased GCase activity has been reported in PD patients with and without GBA1
mutations [6]. Accumulating experimental evidence in cell-free systems, cell culture, preclini-

cal animal models, and patient biosamples suggests a correlation between decreased GCase

activity and accumulation of the PD-relevant protein alpha-synuclein (aSyn) [7–10]. Thus,

GCase has emerged as an important PD-relevant target for understanding the pathogenic

mechanisms of parkinsonism and for development of novel therapeutic approaches for disease

modifying treatment of PD.

A number of GBA1 mouse models have been developed and described in the published lit-

erature for the lysosomal storage disorder Gaucher’s disease (GD). Rodent models for GD gen-

erally feature either knockout of the GBA1 gene [11–14], chemically-induced models using the

inhibitor of GCase conduritol β-epoxide (CBE) [15], or homozygous or compound heterozy-

gous GBA1 mutations for GD [16, 17]. Similarly, rodent models for investigating the role of

the GBA1 gene or GCase protein in PD have been generated. Similar to the GD lines, these

generally feature knockout of the GBA1 gene [12, 17, 18], intraparynchymal treatment with

CBE [19, 20], or heterozygous mutations in the GBA1 gene [16–18, 21, 22]. However, some of

the genetic GBA1 transgenic mouse models do not exhibit a meaningful accumulation of

GCase substrates, particularly in brain.

The GBA1 D409V point mutation is of particular interest. Although the D409V mutation

was described in a study of hetereoallelic patients with GD via cDNA cloning and PCR ampli-

fication [23], it has not been identified as causal for human PD or GD [24]. However, this

point mutation is of interest as it has been reported to markedly decrease GCase enzymatic

activity and concomitantly increase some glycosphingolipid (GSL) substrates. Substantial

decreases in GCase activity and GSL increase are observed in peripheral organs of GBA1
D409V KI mouse models, making this attractive for studying GD [17, 25]. In research focusing

on Parkinson’s disease and other synucleinopathies like dementia with Lewy Bodies (DLB),
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GBA1 D409V mutant mice exhibit drastically reduce GCase activity, accumulation of the

GCase substrate glucosphingosine (GlcSph), accumulation of aSyn in the hippocampus, and

learning and memory impairments [17, 18, 21, 26]. These phenotypes are highly relevant for

research related to PD, PD dementia, and DLB due to their relevance to human pathology and

symptoms [6, 8, 27, 28]. Unfortunately, the previously described GBA1 D409V transgenic

models are not easily accessible to most researchers.

As part of its broader effort to provide the PD research community with crucial preclinical

tools and research models, The Michael J. Fox Foundation for Parkinson’s Research (MJFF)

sponsors the development, characterization, and distribution of a wide variety of preclinical

research tools (www.michaeljfox.org/research-tools-catalog) and has refined a strategy for pre-

clinical animal model generation and characterization [29]. The lack of field-wide access to

GBA1 D409V animal models for PD research was one factor that led to MJFF sponsoring the

generation and phenotypic characterization of a new GBA1 D409V knock-in (KI) mouse

model, which is readily available from The Jackson Laboratory repository (www.jax.org/

strain/019106), including pharmaceutical and biotechnology companies performing preclini-

cal testing.

Due to its open availability, the GBA1 D409V KI model at The Jackson Laboratory has been

utilized in preclinical studies reported in the published literature. In 2019, two studies reported

investigation of PD dementia and DLB-related pathology and phenotypes [30, 31]. Of note,

both groups reported a dose-dependent reduction in GCase activity in the hippocampus of

homozygous and heterozygous GBA1 D409V KI mice. Clarke et al (2019) went on to charac-

terize cognitive performance and hippocampal pathology in the heterozygous mice at multiple

ages, demonstrating cognitive abnormalities, alterations in hippocampal neurochemistry, and

neuroinflammation at 12 months of age [30]. Synuclein expression and pathology were not

observed in the hippocampus of heterozygous mice up to 12 months of age, but evidence of

increased hippocampal aSyn expression in homozygous mice was observed at this time point

[30]. Conversely, Burbulla et al (2019) focused on the use of this model in the development of

S-181, a small molecule modulator of GCase activity. Within this study, Burbulla and col-

leagues used the GBA1 D409V KI mouse model to demonstrate that S-181 can rescue GCase

activity deficits, decrease GCase substrate levels, and reduce levels of insoluble aSyn in the hip-

pocampus [31]. Collectively, these studies demonstrate the utility of the GBA1 D409V model

in studying pathology of the hippocampus as it relates to GCase alterations and PD/DLB-

related cognitive phenotypes.

Herein, we provide detailed information into the development and phenotypic characteri-

zation of a new GBA1 D409V KI mouse model as it relates to PD-related molecular and motor

phenotypes. Thorough characterization of this model with regards to brain and liver GCase

expression, activity, substrate accumulation, and lysosomal function are reported. In addition,

in depth analysis of nigrostriatal integrity and motor phenotypes are reported to provide inves-

tigators with critical information to consider when evaluating the use of this model in thera-

peutic studies targeting GCase activity or biological studies evaluating the role of GCase

deficiency-related phenotypes relevant to PD motor symptoms and pathology.

Materials and methods

Generation of the GBA1 D409V knock-in mouse model

The Michael J. Fox Foundation for Parkinson’s Research custom-generated the GBA1 D409V

knockin mouse model in collaboration with Taconic Biosciences for widespread distribution at

The Jackson Laboratory as an MJFF Industry Tools Consortium endeavor (www.michaeljfox.

org/news/research-tools-consortium). The targeting strategy (Fig 1) accommodated
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constitutive knockin (KI) of a GBA D427V point mutation within the locus of the murine Gba1
gene (NCBI Gene ID 14466; www.ncbi.nlm.nih.gov/gene/14466), located on chromosome 3.

The D427V mutation corresponds to the D409V mutation in the mature GCase protein, as

described by Xu et al (2003). The targeted point mutation D427V was introduced into exon 10

of the Gba1 gene using a targeting vector (Fig 1) containing a FRT site-flanked NeoR cassette

and a F3 FRT site-flanked PuroR cassette. An additional silent mutation was inserted into exon

10 to generate a Psil restriction site for analytical purposes. LoxP sites were inserted to flank

exons 6–8 (a region of approximately 2.0 kb) to facilitate Cre-dependent KO of the murine

Gba1 gene by Cre recombinase, resulting in loss of gene function by deleting part of the GCase

domain and by generating a frameshift from exon 5 to all downstream exons with a premature

Stop codon in exon 9. The targeting vector was generated using BAC clones from a C57BL/6J

RPCI-23 BAC library and were electroporated into the TaconicArtemis C57BL/6NTac embry-

onic stem (ES) cell line. Correctly targeted ES cells were injected into BALB/c blastocysts. The

resulting chimeric animals were crossed to FLP recombinase expressing females on the C57BL/

6NTac background, C57BL/6NTac-Tg(CAG-Flpe)2Arte, to remove the selection cassettes. This

Flp-mediated removal of selection markers resulted in the constitutive KI D409V allele express-

ing the mutated Gba1 D427V protein (equivalent to D409V mature protein).

Upon arrival at The Jackson Laboratory, the mice were crossed to C57BL/6NJ (005304, The

Jackson Laboratory; www.jax.org/strain/005304) for two generations before a heterozygous x

heterozygous breeding colony was established from strain C57BL/6N-Gbatm1.1Mjff/J (019106,

The Jackson Laboratory; www.jax.org/strain/019106). Genotype was confirmed from a small

genomic DNA sample isolated from a tail snip by standard PCR with the mutant gene prod-

uct = 387 bp, heterozygote = 279 bp and 387 bp, and WT = 279 bp. The forward primer

Fig 1. Schematic depiction of GBA1 targeting strategy. The GBA1 D409V KI mutation was introduced to the murine

Gba1 gene through the constitutive knockin (KI) of a Gba1 D427V point mutation as the D427V mutation

corresponds to the D409V mutation in the mature GCase protein (Xu et al, 2003). The targeting vector was designed to

introduce the D427V point mutation and an additional silent mutation to generate a Psil restriction site for analytical

purposes. Positive selection markers were flanked by FRT (NeoR) and F3 (PuroR) sites respectively. Following

homologous recombination in embryonic stem (ES) cells and selection by double positive resistance to neomycin and

puromycin, resistant clones were validated for correct integration. Validated ES cells were injected into blastocysts to

generate chimers. Chimeric male animals were crossed to FLP recombinase-expressing females to remove the selection

cassettes. The resulting animals express the GBA1 D427V point mutation corresponding to the D409V point mutation

in mature protein. An additional feature of this model is the insertion of LoxP sites flanking exons 6–8. After Cre

recombination, the murine GBA1 gene will be constitutively knocked out as a result of loss of gene function through

deletion of part of the GCase domain and introduction of a frameshift from exon 5 to all downstream exons with a

premature stop codon in exon 9.

https://doi.org/10.1371/journal.pone.0252325.g001
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sequence is CAG TTC ACA CAG TGT TGG AGC. The reverse primer sequence is AGG TGA

TCG TAT TTC AGT GGC. Additional genotyping information, protocol details (including

reaction components and thermocycle parameters) and troubleshooting guidelines can be

found by accessing the “Technical Support” tab on The Jackson Laboratory GBA1 D409V

mouse model webpage (www.jax.org/strain/019106).

Animal use overview

The GBA1 mouse colony C57BL/6N-Gbatm1.1Mjff/J (strain No. 019106) was bred and housed at

The Jackson Laboratory mouse repository in a standard barrier mouse pathogen-free vivarium

(designated as Area MP23; http://jaxmice.jax.org/health/mp23.pdf) in individually ventilated

cages with aspen bedding. The mice had ad libitum access to water and food and were fed a

standard LabDiet1 5K52 formulation with 6% fat; water was acidified. The mouse colony was

maintained under a 12 hr light/12 hr dark cycle. From the heterozygous x heterozygous breed-

ing colony, the mice were pooled at weaning based on date of birth into N = 20 males per cage.

Once genotyped prior to 8 wks of age (using the standard PCR genotype procedure described

above) the mice were rehoused based on genotype at N = 10/genotype/weaning cage. As the

mice aged or signs of hair loss were observed, cage density was dropped to N = 5 per cage for

males. If signs of aggression were noted, males were separated and individually housed as

needed.

For this study 66 homozygous (hom) GBA1 D409V KI and 66 wild type (WT) littermate

male mice were allocated. The 66 mice per genotype were divided into three equal groups and

aged to different timepoints– 4, 8, and 12 months of age (n = 22 mice/genotype/age) with

dates of birth ranging no more than plus/minus 3 days for the 4 month cohort and no more

than plus/minus 1 week for the 8 and 12 month old cohorts. Within each age group, mice were

assigned to one of three groups: Group 1 for biochemistry (n = 7/genotype), Group 2 for neu-

rochemistry (n = 6/genotype), and Group 3 for neurohistology (n = 9/genotype). Assignment

to these groups was performed at random for each genotype using a computer program based

on stratification of body weights. Group sizes were selected based on previous studies pheno-

typing models with other PD-related mutations [32].

When each cohort of n = 22 mice/genotype reached the target age, the mice were shipped

live to Charles River Labs (formerly WIL Research). At Charles River Labs, viability observa-

tions for pain, moribundity, and mortality were performed twice daily and body weight was

assessed twice weekly and on the day of scheduled euthanasia. No animals were noted as

experiencing pain, significant weight loss, or measures of moribundity during the study. Fol-

lowing a brief period of acclimation (at least one week) mice were examined weekly in a func-

tional observational battery (fully described below) and underwent behavioral testing (see

details below) prior to euthanasia and necropsy for phenotyping analyses.

A separate cohort of heterozygous (het) GBA1 D409V KI mice and WT controls (n = 10/

genotype) were obtained from the het x het breeding colony at The Jackson Labs. The het and

WT mice were aged to 5 months at which point they were shipped to Amicus Therapeutics for

analyses of GCase activity and GSL levels. Finally, an independent cohort of 4 month old WT

(n = 8), het (n = 8), and hom (n = 7) mice were obtained from a het x het breeding colony at

Merck & Co, Inc (with breeders obtained from the founding Jackson Labs colony) for analysis

of GBA1 mRNA and GCase protein expression.

All animal monitoring and procedures performed at The Jackson Laboratory, WIL

Research (now Charles River Laboratory), and Merck & Co met guidelines and regulations of

federal, state, and local agencies, as well as the Association for the Assessment and Accredita-

tion of Laboratory Animal Care International (AAALAC). All work was approved by the
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Institutional Animal Care and Use Committee (IACUC) of that institution. Specifically, the

behavioral testing and sacrifice of WT and hom mice for biochemistry, neurochemistry, and

neurohistology was approved by the Charles River Ashland IACUC on December 1, 2014 as

protocol WIL-784012.

Necropsy and tissue processing

For sacrifice, animals were perfused in situ with saline and/or sodium cacodylate-based 4%

paraformaldehyde at Charles River Laboratory (formerly WIL Research) following deep anes-

thesia by an intraperitoneal injection of sodium pentobarbital (75 mg/kg).

Group 1 (biochemistry) mice were sacrificed for evaluation of GCase-related functional

biology including GCase activity levels, glucosylsphingosine levels, and glucosylceramide lev-

els. Group 1 mice were euthanized and saline-perfused for tissue blood clearance at Charles

River Laboratory (formerly WIL Research); brains, livers, and spleens were harvested, weighed

and fresh-frozen. For contemporaneous analyses, one brain hemisphere and one liver lobe

from each mouse in Group 1 (biochemistry) were shipped (along with spleens) to Amicus

Therapeutics and the other brain hemisphere and another liver lobe from the same mice were

shipped to Pfizer.

Group 2 (neurochemistry) mice were processed for quantification of dopamine and other

neurotransmitters. Group 2 mice were euthanized and saline perfused in situ. Brains were rap-

idly harvested; striatum was macrodissected, weighed, fresh frozen in individual Eppendorf

tubes, and reserved at Charles River Labs (formerly WIL Research) for later analyses by

UHPLC/MS/MS as described below.

Group 3 (neurohistology) mice were processed for brain histology and stereology. Group 3

mice were euthanized and perfusion-fixed with paraformaldehyde (PFA). Whole brains were

harvested, post-fixed, and shipped to NeuroScience Associates for total alpha-synuclein, phos-

pho-serine 129 alpha-synuclein, glial fibrillary associated protein (GFAP), ionized calcium

binding adaptor molecule 1 (Iba1), and tyrosine hydroxylase (TH) immunostaining as well as

stereology on TH-positive cells in the substantia nigra, as described below.

The 5 month old het and WT mice housed at Amicus Therapeutics for GCase activity and

GSL level analyses were euthanized and saline-perfused; tissue was fresh-frozen. The 4 month

old WT, het, and hom mice housed at Merck & Co, Inc for GBA1 mRNA and GCase protein

analyses were euthanized and saline-perfused. The frontal cortex was excised for GBA1 mRNA

analysis and the remaining forebrain (immediately behind the frontal cortex that was removed

for mRNA) back roughly to the temporal cortex was stored for GCase protein analysis.

Assessment of GBA1 mRNA levels by qPCR

mRNA was isolated from frontal cortex tissue using Qiagen RNeasy Mini Prep kit as per man-

ufacturer protocol (Qiagen) and 1 μg of total RNA was reversed transcribed using SuperScript

VILO cDNA Synthesis Kit (Invitrogen). Gene expression was determined by quantitative poly-

merase chain reaction on 7900HT Real Time PCR System (Applied Biosystems) in triplicate

wells using Taqman gene expression assays for GBA1 (Mm0048700_m1 Gba_fam, 4331182;

Applied Biosystems) and Glyceraldehyde 3-phosphate dehydrogenase (GADPH;

Mm99999915_g1, 4352932E; Applied Biosystems). Changes in gene expression were calcu-

lated using the comparative C(T) method [33]. Relative GBA1 mRNA expression was normal-

ized to the values of GAPDH mRNA expression and then normalized to the mRNA levels of

WT animals. One-Way ANOVA tests were performed for statistical analysis. Individual data

points with mean and standard error of the mean are represented on each graph as fold change

to WT levels.
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Assessment of total GCase protein expression by immunoblot

The forebrain caudal to the frontal cortex was excised and placed in a 1.5 mL Eppendorf tube

containing 250 μL of Radioimmunoprecipitation assay buffer (RIPA; Pierce) supplemented with

protease (Roche) and phosphatase inhibitors (Roche) and the samples were homogenized using

5mm stainless steel beads in the TissueLyser at 30 hz frequency for 1.5 minutes (Qiagen). The

samples were then centrifuged at 5000 x g for 10 minutes at 4 oC and the supernatant evaluated

for Western blot analysis. Protein extracts were denatured in the RIPA buffer containing 1x LDS

Sample Buffer (B0007; Invitrogen) and NuPage reducing agent (NP0009; Invitrogen) at 95˚C for

5 minutes. After denaturation, 30 μg of protein was loaded on a 4–12% Bis-Tris gel (Invitrogen)

and electrophoresed at 150 V for ~90 min. The resolved gel was transferred to PVDF membrane

(Invitrogen) using an iBlot standard 7:30 min transfer protocol (Invitrogen). The membranes

were blocked for 1 hour with Odyssey Blocking Buffer (LI-COR Biosciences) and then probed

overnight at 4 oC with the following primary antibodies in Odyssey Blocking Buffer with 0.1%

TWEEN-20: 1:1000 GCase antibody (G4171; Sigma), 1:1000 β-actin (A1978; Sigma). The mem-

branes were washed 3 x 5 minutes with phosphate buffered saline (PBS) containing 0.1%

TWEEN-20 at room temperature and then incubated with 1:10,000 IRDye goat anti-rabbit 800

CW (925–32211; LiCor) and 1:1000 IRDye goat anti-mouse 680 CW (925–68070; LiCor) for 1

hour at room temperature. After incubation, the membranes were washed 3 x 5 minutes with

PBS containing 0.1% TWEEN-20, followed by 3 x 5 minutes wash with PBS only.

The blots were visualized on LiCor Odyssey (version 3.0.30). Relative fluorescence units for

bands associated with GCase and β-actin were calculated by the LiCor Odyssey software for

statistical analysis. GCase levels were normalized to β-actin from the same tissue sample and

then normalized to the mean levels in WT animals. One-Way ANOVA tests were performed

for statistical analysis. Individual data points with mean and standard error of the mean are

represented on each graph as fold change to WT levels. Raw images at https://figshare.com/

articles/figure/Uncropped_Western_Blots_tif/14611425.

Assessment of glucocerebrosidase activity

For each of the N = 7 mice per genotype from the Group 1 (biochemistry) aged experimental

cohorts described previously, half of the tissue samples (one hemisphere of brain and one lobe

of liver) were shipped to Amicus Therapeutics and the other brain hemisphere and liver lobe

were shipped to Pfizer, Inc. for independent, contemporaneous analyses. Both brain and liver

were divided into 8 samples and frozen at Charles River Labs (formerly WIL Research) prior to

analyses. Brain and liver samples of each mouse were prepared in duplicate and assigned a

unique sample number such that the 7 mice were treated as 14 blinded samples. Brain hemi-

spheres were thoroughly minced and mixed before sampling. In duplicate, samples were ana-

lyzed for GCase activity determination by the conduritol-B epoxide (CBE)/4-Methylumbelliferyl

β-D-glucopyranoside (4-MUG) method at Amicus and the MDW941 activity probe method at

Pfizer. Moreover, two samples were used for independent lipid extractions for glucosylceramide

(GlcCer) analysis, and one sample was used for lipid extraction for GlcSph analysis.

CBE/4-MU GCase activity method. These methods apply specifically to the sample prep-

aration and analyses at Amicus for assessment of brain and liver tissue for GCase activity by

the CBE/4-MU method. Tissue samples were homogenized in GCase enzyme buffer (McIl-

vaine citrate/phosphate pH 5.2 containing 0.25% Na-taurocholate and 0.1% TX-100). GCase

activity was determined in triplicate from two independent samples of each homogenate, and

protein was determined with the BCA assay in singlet from each independent sample of

homogenate using BSA as a standard. GCase activity was measured in a 30 min reaction at

37˚C in GCase enzyme buffer supplemented to 300 μM N-(n-Butyl) deoxygalactonojirimycin

PLOS ONE Decreased glucocerebrosidase activity and substrate accumulation in a novel GBA1 mouse model

PLOS ONE | https://doi.org/10.1371/journal.pone.0252325 June 9, 2021 7 / 31

https://figshare.com/articles/figure/Uncropped_Western_Blots_tif/14611425
https://figshare.com/articles/figure/Uncropped_Western_Blots_tif/14611425
https://doi.org/10.1371/journal.pone.0252325


and with or without the covalent GCase inhibitor CBE using 4-MUG as the substrate. CBE-

inhibitable GCase activity was converted to nM 4-MU released by comparison with a 4-MU

standard curve run with each assay. These levels were normalized to protein weight and hour.

Two-Way ANOVA tests were performed for statistical analysis to understand the effect of

genotype and age with Bonferroni post hoc tests. Individual data points with mean and stan-

dard error of the mean are represented on each graph.

GCase activity by MDW941 probe method. These methods apply specifically to sample

preparation at Pfizer for assessment of brain and liver tissue for GCase activity by the MDW941

probe method. Lysates were prepared by excision of cortex from the frozen brain hemisphere

and from tissue obtained from the frozen liver lobe. Tissues were homogenized in 10 volumes of

GCase lysis buffer containing 0.25% Triton X-100 using Qiagen Tissuelyser at 25 Hz for 4 min x

2. Samples were then sonicated with a Branson Ultrasonics 450 Digital Sonifier (Branson) for 10

seconds at 80 watts at 20 kHz and diluted to 2 mg/mL with lysis buffer. The GCase activity

probe MDW941 was added to the samples to a final concentration of 25 nM probe, 5mM citric

acid. Lysate and MDW941 probe were incubated at 37˚C for 2 hours. Samples were centrifuged

at 21,000 x g for 2 minutes to remove acid precipitates, the supernatant was retained. NuPAGE

LDS (4X) sample buffer (ThermoFisher) containing NuPAGE Sample Reducing Agent (dithio-

threitol) was added and the mixtures were incubated at 70˚C for 10 min. Protein concentration

was determined by BCA (Pierce). 30 μg of protein lysate samples were loaded onto a 4–12% gel

NuPAGE (ThermoFisher) with TAMRA labelled fluorescent ladder and probe labelled 5 ng

recombinant GCase and run at 150 V in MES buffer until the dye front reached the bottom of

the gel. A 20% methanol solution was used to wash away unbound probe.

Gels were visualized using a GE Typhoon at 532 nm excitation and 575 nM Long Pass Filter

emission, PMT 1000. Bands were quantified for relative fluorescence units by ImageQuant

software (GE). Two-Way ANOVA tests were performed for statistical analysis to understand

the effect of genotype and age. When significance was identified by the Two-Way ANOVA

test, Bonferroni post hoc tests were used to understand the significance of the individual com-

parisons. Individual data points with mean and standard error of the mean are represented on

each graph.

Glycosphingolipid analysis

The following methods were used by Amicus for glycosphingolipid analyses of GlcCer and

GlcSph. Liver and brain tissue samples were homogenized in water. Lipid extraction included

the addition of the appropriate internal standard for GlcCer and for GlcSph. Briefly, lipid

extraction was performed using solid phase extraction. An LC method was employed that sep-

arates the more predominant GalCer and GalSph epimers from GlcCer and GlcSph observed

in brain tissue. Briefly, isocratic conditions were used with HILIC silica column. Seven GlcCer

isoforms were monitored: C16:0, C18:0, C20:0, C22:0, C23:0, C24:0, C24:1. Protein was deter-

mined by the BCA assay in triplicate using BSA as a standard.

Levels of GlcCer and GlcSph were normalized to tissue weight. Two-Way ANOVA tests

were performed for statistical analysis to understand the effect of genotype and age. When sig-

nificance was identified by the Two-Way ANOVA test, Bonferroni post hoc tests were used to

understand the significance of the individual comparisons. Individual data points with mean

and standard error of the mean are represented on each graph.

Immunoblot assessment of Lamp1 levels

Tissue lysates (2mg/mL) from GBA1 D409V KI hom and WT mouse brain (right hemisphere)

and liver (one lobe) from the Group 1 (biochemistry) experimental cohort (N = 7 per genotype
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per age) described above were processed for Western blot analysis at Pfizer to determine levels

of lysosomal-associated membrane protein 1 (Lamp1). Cortex was excised from the brain

hemisphere and frozen. Tissue lysates were made in GBA lysis buffer composed of 10 mM

Tris, pH 7.5, 250 mM sucrose, 1 mM EDTA, 0.25% Triton X-100. Western blot analysis uti-

lized 4–12% Bis-Tris Midi gels (Thermo Fisher Scientific) with 30 μg protein loaded per well,

electrophoresed at 110 V for 100 min. The resolved gel was transferred to nitrocellulose mem-

brane (IB23001; Thermo Fisher Scientific) via dry transfer using iBlot21Dry Blotting System

(Thermo Fisher Scientific). The membranes were blocked for 1 hour with Rockland Blocking

Buffer (Rockland) and then probed overnight at 4 oC with the following primary antibodies in

Rockland Blocking Buffer with 0.1% TWEEN-20: rabbit monoclonal antibody against Lamp1

(54H11; Cell Signaling) used at 1:2,000 and mouse anti-β-actin monoclonal antibody (A2228;

Sigma) used at 1:20,000. The membranes were washed 3 x 5 minutes with Tris buffered saline

containing Triton-X100 (TBS-T) buffer and then incubated with 1:10,000 IRDye goat anti-rab-

bit 800 CW (925–32211; LiCor) and 1:10,000 IRDye goat anti-mouse 680LT (926–68020; LiCor)

for 1 hour at room temperature. After incubation, the membranes were washed 3 x 5 minutes

with TBS-T buffer.

The blots were visualized on LiCor Odyssey and analyzed using LiCor Odyssey software

(version 4.0). Relative fluorescence units for bands associated with Lamp1 and β-actin were

calculated by the LiCor Odyssey software for statistical analysis. Lamp1 levels were normalized

to β-actin levels from the same tissue sample. Two-Way ANOVA tests were performed to

understand the effect of genotype and age. Bonferroni post hoc tests were used to understand

the significance of the individual comparisons. Individual data points with mean and standard

error of the mean are represented on each graph.

Unbiased stereology

Perfusion and tissue processing. Mice in Group 3 (Neurohistology) described above

were perfused in situ at Charles River Laboratory (formerly WIL Research) following deep

anesthesia by an intraperitoneal injection of sodium pentobarbital (75 mg/kg). The mice were

first perfused with a sodium cacodylate wash solution (approximately 25 mL) followed by per-

fusion with a 4% PFA solution in sodium cacodylate (approximately 75 mL). The brains

remained in the cranium for approximately 24 hours at 4˚C in sodium cacodylate-based 4%

PFA. The entire brain (including olfactory bulbs) was then removed, weighed, and the size

recorded. The intact brains were placed into sodium cacodylate-based 4% PFA for approxi-

mately 24 hours at 4˚C, then were transferred into PBS for a minimum of 24 hours and main-

tained at 4˚C until transport. Intact brains were shipped under ambient conditions to

NeuroScience Associates using the subject ID without genotype identification to ensure work

was performed blinded.

Embedding and sectioning. The mouse brains were received at NeuroScience Associates.

To prevent freeze artifacts, the brains were treated overnight with 20% glycerol and 2%

dimethylsulfoxide prior to being multiply embedded in gelatin matrices using MultiBrain1

Technology. After curing, the blocks were rapidly frozen by immersion in isopentane chilled

to − 70˚C with crushed dry ice, and mounted on the freezing stage of an AO 860 sliding micro-

tome. The MultiBrain1 blocks were sectioned in the coronal plane at 40 μm. All sections were

collected sequentially into 25 cups per block that were filled with Antigen Preserve solution

(49% PBS pH 7.0, 50% ethylene glycol, 1% Polyvinyl Pyrrolidone). Brain sections that were not

immediately stained were stored at − 20˚C.

Immunohistochemistry. For immunohistochemistry, the brain sections were processed

and stained free-floating similar to previous published reports [32]. For tyrosine hydroxylase
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(TH) immunostaining, rabbit anti-TH primary antibody (P40101-0; Pelfreeze) was used at

1:6,000 dilution; secondary antibody was goat anti-rabbit IgG-biotin at 1:238 dilution (BA-

1000; Vector Laboratories). For alpha-synuclein staining, mouse anti-aSyn primary antibody

(610786; BD Pharmingen) was used at 1:5000 dilution with horse anti-mouse IgG-biotin sec-

ondary antibody at 1:238 dilution (BA-2001; Vector Laboratories). For staining of alpha-synu-

clein phosphorylated at S129, mouse anti-pS129 aSyn primary biotinylated antibody (010–

26841; Wako) was used at 1:15,000 dilution. For triple immunofluorescent glial staining, the

following primary antibodies were used: rabbit anti-TH primary antibody (P40101-0; Pel-

freeze) at 1:1,500 dilution, chicken anti-GFAP primary antibody (CPCA-GFAP, EnCor,

Gainesville, FL) at 1:1,500 dilution, and goat anti-Iba-1 primary antibody (ab5076, Abcam) at

1:1,500 dilution. All incubation solutions from the blocking serum onward used TBS-T as the

vehicle; all rinses were with TBS.

For chromogen staining, endogenous peroxidase activity was blocked by 0.9% hydrogen

peroxide treatment. Following TBS rinses, the sections were immunostained with a primary

antibody overnight at room temperature. Vehicle solution contained 0.3% Triton X-100 for

permeabilization. Sections were incubated in a biotinylated secondary antibody for two hours

at room temperature after rinses. Sections were incubated with an avidin-biotin-HRP complex

(Vectastain Elite ABC kit, Vector Laboratories) for one hour at room temperature. Following

rinses, the sections were treated with diaminobenzidine tetrahydrochloride (DAB) and

0.0015% hydrogen peroxide to create a visible reaction product, mounted on gelatinized

(subbed) glass slides, air-dried, dehydrated in alcohols, cleared in xylene, and coverslipped

with Permount. Images were acquired on a TissueScope LE120 from Huron Digital Pathology

at 10x resolution (0.8 um/pixel).

For fluorescent staining, sections were immunostained with a primary antibody overnight

at room temperature in a vehicle solution contained 0.3% Triton X-100 for permeabilization.

Sections were rinsed and incubated in a fluorophore-conjugated secondary antibody for two

hours at room temperature. The following secondary antibodies were used: donkey anti-rabbit

AlexaFluor 555 secondary antibody (A31572, ThermoScientific) at 1:500 dilution, donkey

anti-chicken AlexaFluor 488 secondary antibody (703-545-155, The Jackson Laboratory) at

1:500 dilution, and donkey anti-goat AlexaFluor 647 secondary antibody (A21447, Thermo-

Scientific) at 1:500 dilution. Sections were washed twice in 1 min increments in 50% ethanol

followed by several washes in TBS. Sections were mounted on SuperFrost Plus slides and cov-

erslipped with Vectashield mounting medium (Vector Laboratories). Images were acquired on

an Olympus VS200 WSI system (Olympus Life Science, Waltham, MA) at 20x resolution

(0.325 μm/pixel).

Stereological estimates of cell number. The unbiased stereology method and validation

is previously published and described in detail [34, 35]. Briefly, a Nikon Eclipse E800 micro-

scope, connected with a IMI Tech Color Digital Video Camera, which operated an Advanced

Scientific Instrumentation MS-2000 motorized stage input into a Dell Precision 650 Server

and a high resolution plasma monitor was used in tandem with the Stereologer software pack-

age (Stereology Resource Center, Baltimore INC) to estimate neuronal number. Using design-

based stereology, the number of TH-positive neurons was quantified in the SNpc of the mice.

For the estimation of neuronal number, every 8th section containing the SNpc (− 4.56 to − 6.60

mm from Bregma) was selected from a random initial sort, described as systemic-random

sampling. The section sampling fraction (ssf) was 1/6 [36]. In design-based stereology, the

optical disector method affords an equal probability for each neuron to be counted within the

estimated total number of neurons. The counting process was as follows: first, each mouse

brain coronal section was visualized at low magnification (4 x) and the region of interest (ROI)

was precisely outlined in reference to a stereotaxic atlas of the mouse brain. Systematic random
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grids to select counting frames within the ROI were then applied by the software. In each

counting frame, TH-positive neurons were counted at high magnification with a 100 ×/1.4

aperture oil immersion lens (yielding 3600 ×) by the optical disector principle, utilizing the dis-

ector probe [37] in combination with optical sectioning of the z-axis (or optical fractionator

method) [36]. According to the counting rule of the optical disector, a neuron was counted

only if its nucleoli could be resolved in focus within the counting frame boundaries without

touching the exclusion lines. The top and bottom of the sample tissue–designated as a guard

volume–were excluded, avoiding a blade sectioning artifact effect termed “capping”, or cutting

the neurons in half. In this present study, the guard zone, as measured by a linear encoder, was

a minimum of 3 μm. The middle 10–12 μm area of an 18–21 μm thick sample was analyzed for

counting. Section thickness was individually determined by a linear encoder and the mean

thickness of count frames measured by a 100 ×/1.4 aperture oil immersion lens. After every

sample coronal brain section was analyzed, the total number of TH-positive neurons in the

interest area (N) was estimated by multiplying the number of counted neurons (SQ) by the

reciprocals of three sample fraction, such as the section sampling fraction (ssf), the area sam-

pling fraction (asf), and the section thickness sampling fraction (stsf). The Stereologer software

package (Stereology Resource Center, Baltimore INC, Baltimore, MD) calculated the total neu-

ronal number according to the following equation:

N ¼ S Q x ð1=ssfÞ x ð1=asfÞ x ð1=stsfÞ

The average number of slides per animal varied from 5–7 and the Coefficient of Error (CE)

was capped at 0.15 with the actual mean value of 0.96.

Two-Way ANOVA tests were performed for statistical analysis to understand the effect of

genotype and age. Individual data points with mean and standard error of the mean are repre-

sented on each graph.

Neurochemistry to measure striatal neurotransmitters

For each of the N = 6 mice per genotype from the Group 2 (neurochemistry) aged experimen-

tal cohort described previously, dopamine, its metabolites, and other relevant neurotransmit-

ters were measured by the Charles River Bioanalytical Chemistry Department (formerly WIL

Research) in a blinded fashion according to the Laboratory Method for the Analysis of Dopa-

mine (DA), Serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), Homovanillic acid

(HVA), 5-hydroxyindole-3-acetic acid (5-HIAA), and Norepinephrine (NE) in Mouse Brain

Homogenate by LC/MS/MS (Lab Method No: 784005A.MT).

Striatal tissue processing and extraction. The left hemisphere of the grossly dissected and

weighed striatal tissue was analyzed for neurochemistry; right hemispheres were reserved for

future analysis or follow up studies. Frozen samples in Eppendorf tubes were placed on wet ice but

were not allowed to fully thaw. Chilled 0.1% formic acid in Milli-Q water (FA-MQ) was added to

each tissue sample in a ratio of 9:1 (v:v, volume [FA in MQ]:mass brain tissue). Three 4-mm acid

washed silica beads (BAWG 4000-2000-18; OPS Diagnostics) were quickly added to each sample

tube, which was recapped and placed in a 15 mL tube and stored on wet ice. Samples were then

homogenized in the Geno/Grinder1 2010 (SPEX SamplePrep) automated tissue homogenizer

for 1 min at 1,3000 rpm followed by centrifugation at 4,000 rcf at 4˚C. Samples were extracted

immediately following homogenization and remaining homogenate was stored at -70˚C.

For sample extraction, a 96-well plate on wet ice was used. A volume of 0.025 mL of FA

in MQ was added to each well designated to contain a matrix blank sample; 0.025 mL of Inter-

nal Standard Working Solution (ISWS, 100 ng/mL each of DA-d4, 5-HT-d4, NE-d6 and 200

ng/mL each of DOPAC-d5, HVA-d5, 5-HIAA-d5 brought to volume with chilled FA-MQ)
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was added to each well designated to contain a calibration, quality control (QC), blank with

internal standard (IS), or experimental sample. A volume of 0.175 mL of chilled FA in MQ was

then added to each sample well. 0.025 mL of each calibration, QC, blank, and experimental

sample was transferred into its respective well of the 96 well extraction plate. The plate was

covered and vortex-mixed for 2 min at 1,500 rpm followed by centrifugation at 3,500 rpm for

5 min. To complete the dilution-filtration sample extraction, a volume of 0.200 mL of the

supernatant was then loaded into a Whatman UNIFILTER 96-well Microplate—2 mL SPE

plate (7720–7236; Whatman) using a multichannel pipette (Rainin) and was pushed through

the filter to a clean collection plate. The collection plate was then centrifuged at 3,500 rpm for

5 min at 4˚C. Processed samples were stored at 4˚C in the sample compartment of the LC

instrument or in the refrigerator until analysis.

System suitability testing and calibration standards. A system suitability test (SST) was

used, consisting of a minimum injection of sample solution three consecutive times meeting

the following criteria:� 5% variability in retention time of each system suitability injection as

compared to the mean retention time of the system suitability injections; mean analyte peak

signal:noise ratio� 3; and a relative standard deviation� 10% in the response of the analyte

peak area count or peak area ratio. Standard calibration samples were fresh-prepared on wet

ice on the day of use. Standards calibration samples were diluted in FA-MQ to a final volume

of 5.0 or 1.0 mL and ng/mL concentrations of 2,400.00, 1,200.00, 1,080.00, 600.00, 300.00,

120.00, 60.00, 12.00, for DA and 5-HT; final ng/mL concentrations of 5-HIAA, NE, DOPAC

and HVA were 2x higher. A final sample injection volume of 5–10 μL was used for UHPLC/

MS/MS analysis of experimental samples.

UHPLC/MS/MS analyses. Instrumentation/detection was UHPLC/MS/MS (API 4000,

ESI+) for DA, NE, 5-HT, and 5-HIAA and was UHPLC/MS/MS (API 4000 ESI-) for DOPAC

and HVA. Standard curve ranges were 6.00–1200 ng/mL for DA and 5-HT and 12.0–2400

ng/mL for DOPAC, HVA, 5-HIAA, and NE. For UHPLC positive ion mode analysis, a Waters

Acquity1UPLC instrument equipped with autosampler and a Restek PFP Propyl, 50 x 2.1

mm, 1.9-μm particle size column (9419252; Restek) at 60˚C was used. Positive mode sample

injection and analysis was done before negative mode analysis due to compound instability

and was done the day of sample extraction and preparation. Run time was 4 min, and the auto-

sampler temperature was 4˚C. Mobile phase A (MPA) was FA-MQ, which was also used as

weak needle wash solution. Mobile phase B (MPB) was 0.1% acetonitrile with formic acid

(ACN-FA, 1000:1 v/v), which was also used as strong needle wash solution. Seal wash solution

was 90:10 (v/v) Milli-Q water and acetonitrile (MQ-ACN). The gradient program was time in

minutes: initial = 0, 0.50, 2.60, 2.70, 3.30, 3.31, 4.00 with corresponding flow rates (mL/min) of

0.400, 0.400, 0.400, 1.000, 1.000, 1.000, 1.000, and corresponding MPA % of 100, 100, 70, 10,

10, 100, 100 and MPB % of 0, 0, 30, 90, 90, 0, 0.

Mass spectrometer parameters for positive ion mode utilized an Applied Biosystems/MDS

Sciex API 4000™ triple quadrupole instrument with a Turbo Spray, positive-ion mode interface

and a multiple reaction monitoring scan mode. Curtain gas was 20.0, gas setting 1 was 60.0,

gas setting 2 was also 60.0, ionization voltage was 5500 V, temperature was 550˚C, collision gas

setting was 8.00, entrance potential was 10.90, and interface heater was on.

For UHPLC negative ion mode analysis, a Waters Acquity1 instrument with Waters

UPLC HSS T3, 50 x 2.1 mm, 1.8 μm particle size column (176001131 or 186003538; Waters) at

60˚C was used. Run time was 4 min, and the autosampler temperature was 4˚C. MPA was

0.1% glacial acetic acid in Milli-Q water (GAA-MQ), which was also used as weak needle wash

solution. MPB, also used as strong needle wash solution, was 0.1% GAA in ACN (GAA-ACN).

Seal wash solution was the same for positive and negative ion mode analyses (90:10 (v/v)

MQ-ACN). The gradient program for negative ion mode was time in minutes: initial = 0, 2.50,
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2.60, 3.20, 3.21, 3.30, 4.00 with corresponding flow rates (mL/min) of 0.400, 0.400, 0.400,

1.000, 1.000, 1.000, 1.000, and corresponding MPA % of 100, 75, 5, 5, 5, 100, 100 and MPB %

of 0, 25, 95, 95, 95, 0, 0.

Mass spectrometer parameters for negative ion mode utilized an Applied Biosystems/MDS

Sciex API 4000™ instrument with a Turbo Spray, negative-ion mode interface and a multiple

reaction monitoring scan mode. Curtain gas was 20.0, gas setting 1 was 60.0, gas setting 2 was

also 60.0, ionization voltage was -4200 V, temperature was 550˚C, collision gas setting was

8.00, entrance potential was -10.0, and interface heater was on.

Two-Way ANOVA tests were performed for statistical analysis to understand the effect of

genotype and age. When significance was identified by the Two-Way ANOVA test, Bonferroni

post hoc tests were used to understand the significance of the individual comparisons. Individ-

ual data points with mean and standard error of the mean are represented on each graph.

Animal behavior

Behavioral analyses were performed on all mice housed at WIL Research (now Charles River

Laboratories). Each aged experimental cohort of mice (at 4, 8, and 12 mo of age) were assessed

for behavior prior to sacrifice and additional molecular/biochemical/histological analyses.

Functional observational battery. To evaluate general behavioral phenotypes in the mice,

the noninvasive Functional Observation Battery (FOB), a collection of assessments used to detect

gross functional deficits, was performed weekly on all mice. The FOB consists of a series of tests

categorized into the following domain observations: home cage (including but not limited to: pos-

ture, convulsions, tremors, and eyelid closure), handling (including but not limited to: ease of

removal from cage, lacrimation, salivation, piloerection, respiratory rate, mucous secretions, and

muscle tone) open field (including but not limited to: time to first step, rearing, mobility, groom-

ing, gait/gait score, convulsions, tremors, arousal, bizarre/stereotypic behavior) sensory (inclusive

of: approach, touch, and startle responses, tail pinch, olfactory orientation, pupil and eyeblink

response, forelimb/hindlimb extension, and air righting reflex) neuromuscular (inclusive of: hin-

dlimb extensor strength, grip strength–hindlimb and forelimb, hindlimb foots splay, rotarod per-

formance, and pole climb test) and physiological (catalepsy, body temperature, and body weight)

[38]. Neurobehavioral endpoints were conducted blinded and animals underwent further ran-

domization into study replicates using a computer program, with each group equally represented

in each replicate. Two-Way ANOVA tests were performed for statistical analysis.

Statistical analysis

In all cases, the experimental unit is a single animal and data is represented as mean ± standard

error of the mean (SEM). Statistical analyses and graphing were performed using the GraphPad

Prism Software (version 7.05). Outliers were identified using the GraphPad Prism Software

using the ROUT method. Only one outlier was identified and removed (a 4 month old hom

GBA1 D409V KI mouse in the brain GlcCer analysis). As the outlier appeared to be due to a

technical issue, the animal was not excluded from other analyses. Distribution normality was

tested using the Shapiro-Wilk test. In cases where datasets had non-normal distributions,

Mann-Whitney tests were used in place of T-tests. Raw data is available within S1 File.

Results

The GBA1 D409V KI model is viable and vital

The GBA1 D409V KI targeting strategy (Fig 1) resulted in a viable mouse model constitutively

expressing the human GBA1 point mutation D409V knocked into the mouse Gba1 locus. No
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gross differences between the GBA1 D409V KI and WT mice of the same background strain

were observed. Normal breeding behavior, litter sizes, weaning behavior, development, and

onset of sexual maturity were evident in het and hom GBA1 D409V KI mice. The GBA1 D409V

KI founders were bred into distinct experimental cohorts and evaluated at different ages for

model characterization and phenotyping. While we focused our phenotyping studies predomi-

nately on mice homozygous for the GBA1 D409V KI mutation, we also investigated effects in

mice heterozygous for the same mutation to interrogate potential gene dosing effects and

because PD patients with GBA1 mutations are typically heterozygous. Importantly, the aged

GBA1 D409V KI and WT mouse cohorts were obtained at different times and were not analyzed

longitudinally. Within a given aged cohort however (i.e. 4, 8, or 12 months of age) the GBA1
D409V KI and WT mice were contemporaneously bred, housed, and experimentally evaluated.

Baseline GBA1 mRNA expression levels in GBA1 D409V KI mice are unchanged

We first wanted to assess the effect of the GBA1 KI mutation on GBA1 mRNA. For this analy-

sis, frontal cortex tissue was selected given the high levels of expression of GBA1, the impor-

tance of this region in patients and models with GBA1 mutations [12, 27], and reports of the

interplay of GCase and aSyn in this region [21, 28]. The comparative C(T) method of qPCR

evaluation was used to assess GBA1 mRNA levels at baseline in brain tissue from WT, het, and

hom mice at 4 months of age. Interestingly, no significant difference in GBA1 mRNA expres-

sion was observed in mice heterozygous and homozygous for the D409V KI mutation com-

pared to GBA1 mRNA levels WT mice at the same age (F(2,20) = 2.115, p = 0.1468; Fig 2A).

Baseline GCase protein expression levels in GBA1 D409V KI mice are

unchanged

To evaluate the effects of knocked in GBA1 D409V mutation on baseline expression of GCase pro-

tein, we assessed total GCase protein levels by immunoblot in the same mice that were analyzed

Fig 2. Introduction of the D409V point mutation to the GBA1 gene does not affect GBA1 mRNA transcription or GCase protein translation. (A) GBA1 mRNA

levels assessed by qPCR in frontal cortex tissue from 4 month old C57Bl/6 wild type (WT) mice, GBA1 D409V KI heterozygous (HET) mice, and GBA1 D409V KI

homozygous (HOM) mice. GBA1 mRNA levels are normalized to GAPDH as the housekeeping gene, with graphs depicting fold changes relative to WT expression

levels. GBA1 mRNA levels are consistent between groups with no significant differences observed (n = 8/group; p> 0.05). WT levels measure 1.016±0.068, HET levels

measure 1.185±0.140, HOM levels measure 0.9066±0.037. (B-C) GCase protein levels assessed by Western blot in forebrain tissue (caudal to frontal cortex) from the

same mice used for mRNA analysis. (B) GCase protein levels are normalized to β-actin as the housekeeping protein, with graphs depicting fold changes relative to WT

GCase protein expression levels. GCase protein is unchanged in the HET and HOM GBA1 D409V KI mice as compared to WT (n = 7-8/group; p> 0.05). WT levels

measure 1.000±0.052, HET levels measure 1.091±0.120, HOM levels measure 1.114±0.057. (C) Representative image of Western blot results for alternating samples of

WT, HET, and HOM GBA1 D409V KI mice. Abbreviations: SEM, standard error of the mean; WT, wild type; GBA1, gene encoding human glucocerebrosidase;

GCase, glucocerebrosidase; KI, knockin; HET, heterozygous; HOM, homozygous; mo, month.

https://doi.org/10.1371/journal.pone.0252325.g002
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for GBA1 mRNA levels (Fig 2A). Forebrain tissue homogenate from 4 month old cohorts of het

and hom GBA1 D409V KI and WT mice had equivalent GCase protein levels across all genotypes

(F(2,19) = 0.5870, p = 0.5657; Fig 2B and 2C) similar to results for GBA1 mRNA (Fig 2A).

GCase enzyme activity is decreased in brain and liver from GBA1 D409V

KI mice

The functional role of GCase is lysosomal hydrolysis of the glucosphingolipids GlcCer and

GlcSph. In addition to the observed decrease in GCase activity in PD patients with mutations

in GBA1 [6], several publications have independently reported decreased GCase activity in ani-

mal models harboring GBA1 mutations [10, 17, 18, 21, 39], including the GBA1 D409V muta-

tion. All together, these data demonstrate the importance of evaluating GCase enzymatic

function beyond baseline GBA1 mRNA and GCase protein levels.

Our rigorous determination of GCase activity in the GBA1 D409V KI mouse model utilized

brain and liver tissue samples harvested from the same contemporaneous cohorts of mice

homozygous for the GBA1 D409V mutation and evaluated independently by teams at Amicus

Therapeutics and Pfizer. At Amicus, lysosomal GCase activity was measured by the CBE-inhi-

bitable release of 4-MU from 4-MUG in buffer (reported as GCase 4MU; Fig 3A and 3B). At

all ages examined (4, 8, and 12 months) hom GBA1 D409V KI mice had dramatically reduced

GCase activity in brain (main effect of genotype: F(1,36) = 4357, p< 0.0001; Fig 3A) and

nearly negligible GCase activity in liver compared to WT littermates (main effect of genotype:

F(1,36) = 561.9, p< 0.0001; Fig 3B), demonstrating a significant effect of genotype on GCase

activity at all ages in all tissues (p< 0.0001).

A similarly robust reduction in levels of active GCase in brain and liver of hom GBA1 D409V

KI mice relative to WT controls was observed at Pfizer using the MDW941 activity-based probe

method in tissue homogenates from brain and liver samples obtained from the same mice ana-

lyzed by Amicus utilizing the CBE/4-MUG method (Fig 3C and 3D). MDW941 is an irreversible

inhibitor of GCase, 8-deoxy-8-azidocyclophellitol (KY170), bound to a fluorescent molecule

(BODIPY). This cell-permeable probe binds with a high degree of selectivity to enzymatically-

active GCase molecules in the lysosomal compartment of cells [40, 41] and reflects properly traf-

ficked, localized, and enzymatically-active GCase. Similar to observations using the CBE/4-MUG

analytic method at Amicus, GCase activity as measured by the MDW941 probe method was dra-

matically reduced in brain in hom GBA1 D409V KI mice at all ages relative to WT controls (main

effect of genotype: F(1,35) = 15015, p< 0.0001; Fig 3C) and was almost completely ablated in

liver (main effect of genotype: F(1,36) = 2303, p< 0.0001; Fig 3D).

Interestingly, in addition to a strong genotype effect, we observed a mild but statistically sig-

nificant age effect on GCase activity in the MDW941 probe data set. In brain, GCase activity as

measured by the MDW941 probe assay was statistically higher in the 12 month old cohort rela-

tive to cohorts at both 4 and 8 months old (main effect of age: F(2,35) = 113.0, p< 0.0001; WT

and GBA1 D409V KI 4 and 8 vs 12 month comparisons: p< 0.0001 for WT, p< 0.001 for GBA1
D409V KI; Fig 3C). This apparent age effect of increased GCase activity in brain is seemingly

independent of genotype as it applied to both WT and GBA1 D409V KI cohorts at 12 months of

age. In liver samples however, increased GCase activity by higher MDW941 probe readout was

evident only in WT mice and was significantly different across all 3 age groups (main effect of

age: F(2,36) = 15.76, p< 0.0001; WT individual age post hoc comparisons: 4 vs 8 and 8 vs 12

months p< 0.01, 4 vs 12 months: p< 0.001; GBA1 D409V KI individual age post hoc compari-

sons: p> 0.05), demonstrating an apparent correlation between increased GCase activity (deter-

mined by higher MDW941 probe signal) with advanced age in WT mice or an inability to detect

differences in the different age groups in hom GBA1 D409V KI mice (Fig 3D).

PLOS ONE Decreased glucocerebrosidase activity and substrate accumulation in a novel GBA1 mouse model

PLOS ONE | https://doi.org/10.1371/journal.pone.0252325 June 9, 2021 15 / 31

https://doi.org/10.1371/journal.pone.0252325


Fig 3. GCase activity is significantly decreased in the brain and liver of the homozygous GBA1 D409V KI mouse model at 4, 8, and 12 months of age. Two

independent groups evaluated GCase activity in whole brain homogenate (A,C) and liver homogenate (B,D) using different methods—The CBE/4-MU method

(A,B) and the MDW941 method (C,D). In whole brain homogenate (A,C) and liver homogenate (B,D), GCase activity is significantly decreased in the GBA1
D409V KI homozygous (HOM) mice as compared to C57Bl/6 wild type (WT) mice (n = 7/group). GCase activity measured by 4-MU in brain (A) measured as

follows: WT 4mo 27.63±0.68, HOM 4mo 2.53±0.07, WT 8mo 27.65±0.69, HOM 8mo 3.01±0.20, WT 12 mo 27.49±0.46, HOM 12mo 3.15±0.26. GCase activity

measured by 4-MU in liver (B) measured as follows: WT 4mo 93.69±7.16, HOM 4mo 3.90±0.21, WT 8mo 112.40±6.84, HOM 8mo 1.50±0.19, WT 12 mo 96.79

±7.44, HOM 12mo 3.50±0.58. GCase activity measured by MDW941 in brain (C) measured as follows: WT 4mo 15.54±0.13, HOM 4mo 1.33±0.04, WT 8mo

15.99±0.23, HOM 8mo 1.36±0.02, WT 12 mo 18.61±0.24, HOM 12mo 2.37±0.02. GCase activity measured by MDW941 in liver (D) measured as follows: WT

4mo 59.48±3.14, HOM 4mo 2.15±0.10, WT 8mo 69.27±2.36, HOM 8mo 2.03±0.13, WT 12 mo 79.14±1.48, HOM 12mo 1.79±0.29. Significant differences are

indicated as follows: ����p< 0.0001. Abbreviations: SEM, standard error of the mean; RFU, relative fluorescence units; GBA1, gene encoding human

glucocerebrosidase; GCase, glucocerebrosidase; WT, wild type; HOM, homozygous; KI, knockin; mo, month.

https://doi.org/10.1371/journal.pone.0252325.g003
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Glycosphingolipid substrates of GCase are increased in brain and liver

from GBA1 D409V KI mice

GCase is an important enzyme in lysosomal glycolipid metabolism. Deficiency in GCase activity

leads to accumulation of specific GSL substrates that have been pathologically attributed to GD

[42]. Dysregulated GCase activity and elevated GSLs, such as GlcCer and GlcSph, have been

reported in aged humans and PD patients [43] as well as in another GBA1 D409V mouse model

[17, 18, 25] and in non-mutant aged mice [44]. Previous data using a different GBA1 D409V

mouse model shows GCase activity and substrate accumulation to be divergent between periph-

eral tissues compared to brain [17, 25]. In these studies, GCase activity reduction was more pro-

nounced in the peripheral tissues than in the brain, with a similar pattern observed with regards

to substrate accumulation being more pronounced in the periphery as compared to the brain.

To assess the functional consequences of decreased GCase activity in our GBA1 D409V KI

mouse model, GSLs downstream of GCase were evaluated by the teams at Amicus and Pfizer in

the same brain and liver samples from hom GBA1 D409V KI mice that were used to measure

GCase activity. In liver, GlcCer was significantly higher in hom GBA1 D409V KI mice compared

to GlcCer levels in WT mice at all three ages examined (main effect of genotype: F(1,36) = 86.88,

p< 0.0001; 4 month WT vs GBA1 D409V KI: p< 0.01; 8 and 12 month WT vs GBA1 D409V KI:

p< 0.0001; Fig 4B). The effects of decreased GCase activity on GlcCer levels in brain were also

significant (main effect of genotype: F(1,36) = 10.33, p< 0.01) but more subtle as only the 12

month old cohort of hom GBA1 D409V KI mice exhibited significantly elevated levels of GlcCer

compared to WT controls (p< 0.05; Fig 4A). Trends toward increased GlcCer in brain tissue

from hom GBA1 D409V KI mice at 4 and 8 months of age relative to WT did not reach statistical

significance (p> 0.05; Fig 4A). Relatedly, levels of GlcSph, another important GSL substrate of

GCase enzymatic activity, were dramatically increased in liver (main effect of genotype: F(1,36) =

537.6, p< 0.0001; Fig 4D) and brain (main effect of genotype: F(1,36) = 940.7, p< 0.0001; Fig

4C) in hom GBA1 D409V KI mice compared to matched WT controls at all ages (p< 0.0001).

Moreover, a potential age effect for GlcCer in brain (main effect of age: F(2,36) = 51.04,

p< 0.0001; Fig 4A) but not liver (main effect of age: F(2,36) = 1.794, p = 0.1808; Fig 4B) was

observed. In brain, GlcCer levels appear to vary with age in both WT (4 versus 8 months:

p< 0.0001; 8 versus 12 months: p< 0.01; 4 versus 12 months: p< 0.05) and hom GBA1
D409V KI mice (4 versus 8 months: p< 0.0001; 4 versus 12 months: p< 0.01; 8 versus 12

months: p> 0.05). Age-related changes in GlcSph levels in brain and liver were also assessed.

There were significant differences in GlcSph levels in brain (main effect of age: F(2,36) = 17.15,

p< 0.0001; Fig 4C) and liver (main effect of age: F(2,36) = 14.70, p< 0.0001; Fig 4D). In both

regions, however, the age-related changes appear to be restricted to the GBA1 D409V KI mice

and early age (4 versus 8 months: p< 0.0001; 4 versus 12 months: p< 0.0001; 8 versus 12

months: p> 0.05). Importantly, the aged mouse cohorts of hom GBA1 D409V KI and WT

mice were not longitudinally assessed, so reported age-related differences refer to distinctions

between the means of individual age-matched cohorts of WT and hom GBA1 D409V KI mice

compared to other genetic cohorts at different ages.

Intermediate decrease of GCase enzyme activity and increased

glycosphingolipid substrates in brain and liver from heterozygous GBA1
D409V KI mice

To investigate potential gene dosing effects of GBA1 D409V KI and because PD patients with

mutations in the GBA1 gene tend to be heterozygous, we also examined GCase activity and

GSL levels in mice heterozygous for the GBA1 D409V KI mutation compared to WT mice,

using the same methodology deployed at Amicus for analyses of hom GBA1 D409V KI mice.
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Fig 4. GCase substrate levels are altered in the brain and liver of homozygous GBA1 D409V KI mice. (A-B) Glucosylceramide (GlcCer) and (C-D)

glucosylsphingosine (GlcSph) levels measured by LC-MS/MS in C57Bl/6 wild type (WT) and GBA1 D409V KI homozygous (HOM) mice at 4, 8, and 12 months of age

(n = 7/group). (A) GlcCer levels in the brain are increased in GBA1 D409V KI mice at 12, but not 4 and 8, months of age. (B) GlcCer levels in the liver are increased in

GBA1 D409V KI mice at all ages as compared to WT mice. (C) GlcSph levels in the brain are significantly increased in GBA1 D409V KI mice as compared to WT mice

at all ages. (D) GlcSph levels in the liver are significantly increased in GBA1 D409V KI mice at all ages as compared to WT mice. Brain GlcCer (A) measured as follows:

WT 4mo 11.20±0.72, HOM 4mo 13.20±1.06, WT 8mo 20.30±0.34, HOM 8mo 21.60±0.95, WT 12 mo 15.17±0.84, HOM 12mo 18.64±1.09. Liver GlcCer (B) measured

as follows: WT 4mo 73.56±9.39, HOM 4mo 183.60±12.09, WT 8mo 84.40±5.22, HOM 8mo 228.10±25.32, WT 12 mo 70.30±5.72, HOM 12mo 255.40±35.80. Brain

GlcSph(C) measured as follows: WT 4mo 78.98±1.31, HOM 4mo 1032.00±52.91, WT 8mo 66.64±1.38, HOM 8mo 710.30±29.01, WT 12 mo 57.24±2.73, HOM 12mo

770.70±44.97. Liver GlcSph (D) measured as follows: WT 4mo 23.41±2.07, HOM 4mo 3446.00±232.40, WT 8mo 24.47±0.72, HOM 8mo 2071.00±122.30, WT 12 mo

14.73±0.78, HOM 12mo 2291.00±206.50. Significant differences are indicated as follows: �p< 0.05, ���p< 0.001; ����p< 0.0001. Abbreviations: GlcCer,

glucosylceramide; GlcSph, glucosylsphingosine; SEM, standard error of the mean; GBA1, gene encoding human glucocerebrosidase; GCase, glucocerebrosidase; WT,

wild type; HOM, homozygous; KI, knockin; mo, month; ns, non-significant (p> 0.05).

https://doi.org/10.1371/journal.pone.0252325.g004
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GCase activity (using the CBE/4-MUG method) was found to be decreased in 5 month old het

GBA1 D409V KI mice compared to age-matched WT controls but to an intermediate extent

relative to mice homozygous for the GBA1 D409V KI mutation. Specifically, GCase activity

was decreased in both brain (p< 0.0001; Fig 5A) and liver (p< 0.0001; Fig 5B) in 5 month

old het GBA1 D409V KI mice compared to WT control mice at the same age, but not to the

same extent as the observed decrease in GCase activity in brain and liver of hom GBA1 D409V

KI mice at 4, 8, and 12 months of age (compare Fig 5A and 5B to Fig 3). Levels of GlcCer and

GlcSph were also examined in the 5 month old het GBA1 D409V KI mice. No statistically sig-

nificant genotype-related differences in GlcCer were observed in het GBA1 D409V KI mice

relative to WT in either brain (p = 0.0658; Fig 5C) or liver (p> 0.9999; Fig 5D). However, a

significant increase in GlcSph in brain in 5 month old het GBA1 D409V KI mice compared to

age-matched WT control mice was noted (p< 0.0001; Fig 5E), while levels of GlcSph in liver

were not significantly different in het GBA1 D409V KI mice compared to WT controls

(p = 0.1967; Fig 5F).

Lysosomal Lamp1 protein levels in brain and liver are unchanged in the

GBA1 D409V KI mouse

Deficiency in GCase activity in GD leads to stereotyped physiological effects, including hepa-

tosplenomegaly due to lysosomal engorgement because of accumulated GSL substrates and

heightened inflammation from activation of tissue-resident macrophages, referred to as

Gaucher cells [45]. In addition to dysregulation of the autophagic-lysosomal pathway in GD,

alterations in this system have also been reported in PD [46]. Lysosome-associated protein 1

(Lamp1), is highly enriched in the lysosomal membrane and is integral for lysosomal biogene-

sis and autophagy [47]. Thus, Lamp1 protein expression can provide a proxy measurement of

general lysosomal integrity. Previously, knocked-down GCase was associated with increased

Lamp1 expression and diminished clearance of alpha-synuclein in neurons [9].

Thus, we next sought to determine if lysosomal function was globally affected as a result of

KI of GBA1 D409V in our mouse model. Lysosomal levels of Lamp1 were analyzed at Pfizer in

brain and liver tissue homogenate from the same cohorts of age-matched hom GBA1 D409V

KI and WT mice that were evaluated for GCase activity (Fig 3C and 3D) and GSL levels. No

significantly different changes in levels of Lamp1 were observed comparing GBA1 D409V KI

mice to WT controls at any age examined in either brain (main effect of genotype: F(1,36) =

1.419, p = 0.2414; S1A Fig) or liver tissue (main effect of genotype: F(1,36) = 0.5758,

p = 0.4529; S1B Fig). However, age-related changes in Lamp1 protein were observed in brain

(main effect of age: F(2,36) = 19.22, p< 0.0001; S1A Fig) and liver (main effect of age: F(2,36)

= 94.62, p< 0.0001; S1B Fig). In brains of GBA1 D409V KI mice, levels of lysosomal Lamp1

by immunoblot were higher in 12 month old as compared to 4 month (p< 0.01) and 8 month

(p< 0.01) mice, but not for 8 month old compared to 4 month old (p> 0.05) (S1A Fig). Brain

levels of Lamp1 in WT mice were lower in 4 month old WT mice compared to 12 month old

WT mice (p< 0.01), but no statistically significant differences in Lamp1 levels were observed

between any other WT aged mice (p> 0.05; S1A Fig).

In liver, Lamp1 levels were greater in 12 month old hom GBA1 D409V KI mice compared

to both the 4 month (p< 0.0001) and 8 month old (p< 0.0001) hom cohorts; no apparent

age-related differences were observed comparing the 4 and 8 month old hom GBA1 D409V KI

groups (p> 0.05; S1B Fig). Similar to the GBA1 D409V KI mice, WT mice demonstrated ele-

vated Lamp1 levels at 12 months of age as compared to 4 months (p< 0.0001) and 8 months

(p< 0.001), with no apparent age-related differences between 4 and 8 months (p> 0.05;

S1B Fig).
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Dopamine neurons in the substantia nigra remain intact in GBA1 D409V

KI mice

The histopathological hallmark of PD is the death of dopaminergic neurons in the substantia

nigra of the ventral midbrain. However, overt loss of nigral DA neurons is not often observed

in genetic mouse models of parkinsonism. We deployed the unbiased stereological method of

cell number estimation to quantify the number of DA neurons in the SNpc of our hom GBA1
D409V KI mice at 4, 8, and 12 months of age compared to age-matched WT controls. No sta-

tistically significant effects on number of dopamine neurons were noted for either genotype or

age (main effect of genotype: F(1,46) = 0.3200, p = 0.5743; main effect of age: F(2,46) = 1.692,

p = 0.1954; Fig 6A).

Dopamine turnover is increased in aged GBA1 D409V KI mice

Dysregulated DA neuron cellular function results in the loss of DA tone in the striatum, caus-

ing the stereotypical motor deficits observed in PD. Thus, changes in DA neurotransmitter lev-

els as well as DA metabolites and other neurotransmitters occurs in PD patients and in some

preclinical disease models. Increased DA turnover is reported to be an early occurrence in PD

and relates to disease-compensatory mechanisms [48].

Using a published HPLC/MS/MS technique, we quantified DA, its metabolites, and its

turnover in the striatum of WT and hom GBA1 D409V KI genotyped mice at 4, 8, and 12

months of age. No statistically significant effects for either genotype or age were observed for

DA levels (main effect of genotype: F(1,30) = 0.3700, p = 0.5476; main effect of age: F(2,30) =

0.0384, p = 0.9624; Fig 6B). Notably though, we did observe a genotype effect for DA turnover

(main effect of genotype: F(1,30) = 14.72, p< 0.001); at 12 months of age, hom GBA1 D409V

KI mice had significantly increased DA turnover relative to WT mice at the same age

(p< 0.01; Fig 6C). Trends toward increased DA turnover in hom GBA1 D409V KI mice at 4

and 8 mo relative to WT controls at the same ages did not reach significance. Moreover, age

did not appear to impact DA turnover as it was equivalent within the respective genotypes

across all ages examined (main effect of age: F(2,30) = 1.011, p = 0.3760; Fig 6C).

GBA1 D409V KI mice lack alpha-synuclein pathology and

neuroinflammation in the striatum and midbrain

Alpha-synuclein has been genetically and pathologically linked to PD [2]. In addition, GCase

has been shown to be important in regulating the turnover of aSyn—presumably via the autop-

hagy-lysosome system—with mutant GBA1 implicated in exacerbating synucleinopathy in

some, but not all, models [18, 19, 21, 49–51]. We therefore sought to assess levels of total aSyn

and its phosphorylated form, pS129 (as a marker of pathologic aSyn) by immunohistochemistry

Fig 5. Brain and liver GCase activity are significantly decreased in heterozygous GBA1 D409V KI mice, with varying differences in

glucosphingolipid lipids in brain and liver. (A-B) GCase, (C-D) gluocosylceramide (GlcCer), and (E-F) glucosylsphingosine (GlcSph)

levels measured in whole brain homogenate and liver homogenate of C57Bl/6 wild type (WT) and GBA1 D409V KI heterozygous (HET)

mice at 5 months of age (n = 10/age). (A-B) GCase levels as assessed by the CBE/4-MU method are significantly decreased in the het GBA1
D409V KI mice at 5 months of age in both brain (A) and liver (B). (C-D) GlcCer levels in the brain (C) and liver (D) are unchanged in het

GBA1 D409V KI mice as compared to WT mice at 5 months of age. (E-F) GlcSph levels are significantly increased in het GBA1 D409V KI

mice as compared to WT mice in brain (E) but not liver (F). GCase activity measured by 4-MU in brain (A) measured as follows: WT

30.82±1.11, HET 17.65±0.32. GCase activity measured by 4-MU in liver (B) measured as follows: WT 136.20±8.82, HET 61.20±2.69. Brain

GlcCer (C) measured as follows: WT 16.39±1.18, HET 13.31±1.59. Liver GlcCer (D) measured as follows: WT 65.80±3.90, HET 71.88

±7.37. Brain GlcSph (E) measured as follows: WT 37.96±0.68, HET 44.13±0.80. Liver GlcSph (F) measured as follows: WT 12.64±0.47,

HET 13.65±0.59. Significant differences are indicated as follows: ����p< 0.0001. Abbreviations: GlcCer, glucosylceramide; GlcSph,

glucosylsphingosine; GBA1, gene encoding human glucocerebrosidase; GCase, glucocerebrosidase; WT, wild type; HET, heterozygous; KI,

knockin; SEM, standard error of the mean; mo, month; ns, non-significant (p> 0.05).

https://doi.org/10.1371/journal.pone.0252325.g005
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(IHC) in the brains of GBA1 D409V KI mice. We did not observe obvious differences in either

total or pS129 aSyn by IHC at the level of striatum or SN in the brains of hom GBA1 D409V KI

mice relative to WT controls at 12 months of age (S2 Fig).

CNS inflammation is a hallmark of GD and has also been observed in the context of hetero-

zygous mutations in GBA1 [52, 53]. Moreover, neuroinflammation is also a pathologic feature

of PD [54] and has been reported in the hippocampus of one study utilizing this GBA1 D409V

model [30] but not in another GBA1 D409V mouse model [18]. Thus, we examined microglio-

sis and astrogliosis in the striatum and substantia nigra of our GBA1 D409V KI mouse model.

Although an age-related increase in microglial reactivity and astrogliosis was observed in the

striatum and substantia nigra, no differences between WT and GBA1 D409V KI mice were

apparent at any age (S3 Fig).

Discussion

While there are numerous genetic and environmental factors associated with the complex eti-

ology of PD, the exact cause of most cases of PD is unknown. It is presumed, however, that

many of the causes of PD converge on conserved mechanistic pathways that contribute to

pathology and manifestation of the disease. One such example of distinct factors converging

on common pathways and leading to conserved pathology is that of aSyn and GCase. Dysregu-

lation of aSyn downstream of aberrant GCase activity contributes fundamentally to the pro-

posed hypothesis of aSyn accumulation, aggregation, and possibly prion-like cell-to-cell

transmission of pathology, which together contribute to PD initiation and progression [24, 55,

56]. In PD patients harboring GBA1 mutations, aSyn pathology is present and more pro-

nounced in neocortical regions [28]. Conversely, sporadic PD patients demonstrate reduced

GCase in brain tissues [6, 8, 27], indicating a potential therapeutic strategy of augmenting

GCase to treat idiopathic PD. To better understand the role of decreased GCase activity and

Fig 6. Dopamine turnover, but not total dopamine levels or nigral dopamine neuron numbers, are altered in aged homozygous GBA1 D409V KI mice as compared

to controls. (A) Stereological estimates of dopaminergic neurons in the substantia nigra pars compacta (SNpc) as denoted by tyrosine hydroxylase immunoreactivity (TH

+) reveal no differences between the GBA1 D409V KI homozygous (HOM) mice and C57Bl/6 wild type (WT) mice at any age (n = 9/group). (B) Dopamine levels as

assessed by UHPLC/MS/MS in striatal tissue are unaltered in HOM GBA1 D409V KI mice at all ages (n = 6/group). (C) Dopamine turnover is significantly increased in 12

month old HOM GBA1 D409V KI mice as compared to WT controls (n = 6/group). TH neurons (A) measured as follows: WT 4mo 7402±306.7, HOM 4mo 7263±181.9,

WT 8mo 7102±503.5, HOM 8mo 7319±412.9, WT 12 mo 8169±429.1, HOM 12mo 7566±294.9. Dopamine levels (B) measured as follows: WT 4mo 9.13±0.62, HOM 4mo

10.05±0.58, WT 8mo 9.84±1.31, HOM 8mo 9.89±1.33, WT 12 mo 9.50±1.70, HOM 12mo 10.18±0.45. Dopamine turnover (C) measured as follows: WT 4mo 0.43±0.03,

HOM 4mo 0.52±0.04, WT 8mo 0.38±0.05, HOM 8mo 0.46±0.05, WT 12 mo 0.29±0.03, HOM 12mo 0.55±0.06. Significant differences are indicated as follows:
���p< 0.001. Abbreviations: TH+, tyrosine hydroxylase immunoreactive; SNpc, substantia nigra pars compacta; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA,

homovanillic acid; DA, dopamine; GBA1, gene encoding human glucocerebrosidase; WT, wild type; HOM, homozygous; KI, knockin; SEM, standard error of the mean;

mo, month; ns, non-significant (p> 0.05).

https://doi.org/10.1371/journal.pone.0252325.g006
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develop a model for testing potential therapeutic candidates targeting GCase in genetic and

idiopathic PD cases, we set out to develop and evaluate a novel preclinical GBA1 D409V KI

mouse model. The GBA1 D409V KI mice are viable and exhibit no overt developmental or

neurological deficits. Upon deeper molecular, neurochemical, histological, and behavioral

analyses, the GBA1 D409V KI model displays relevant outcomes useful for modeling GCase

deficiency and is consistent with features reported in other GCase-deficient models (Table 1)

[30, 31].

Specifically, hom GBA1 D409V KI mice have dramatically decreased GCase activity as mea-

sured in multiple target organs and by multiple methods (Fig 3). These results are consistent

with another study reporting substantial loss in GCase activity in other brain regions of this

model (Table 1) [30]. Modest loss of GCase activity was also reported in another GBA1
D409V KI mouse model (Table 2) [17]; differences in the magnitude of the loss are most likely

attributed to differences in genetic background of the mouse models [57]. This effect was not

Table 1. Characterization summary the GBA1 D409V KI mouse (JAX Strain 019106).

GCase Activity

GBA1 mRNA GCase Protein GCase Activity GlcCer Levels GlcSph Levels Lysosome Function

Reported

Herein

HOM Brain

(4mo): Unchanged

HOM Brain (4mo):

Unchanged

HOM Brain (4,8,12mo):

~90% Decrease

HOM Brain

(4,8,12mo):Unchanged

HOM Brain

(4,8,12mo): 10.5–13.5x

Increase

HOM Brain

(4,8,12mo):

Unchanged

HET Brain (5mo): ~45%

Decrease

HET Brain (5mo): 1.2x

Increase

HET Brain (5mo):

Unchanged

HOM Liver (4,8,12mo):

85-155x Increase

HOM Liver (4,8,12mo):

2.5–3.5x Increase

HOM Liver (4,8,12mo):

~95% Decrease

HET Brain (4mo):

Unchanged

HET Liver (5mo):

Unchanged

HET Liver (5mo):

Unchanged

HOM Liver

(4,8,12mo):

Unchanged

HET Brain (4mo):

Unchanged

HET Liver (5mo): ~55%

Decrease

[30] Not Assessed Not Assessed GBA1 HOM HPC/CTX

(12mo): ~95% Decrease

Not Assessed Not Assessed Not Assessed

GBA1 HET HPC/CTX

(12mo): ~70% Decrease

GBA2 HOM HPC

(12mo): ~90% Decrease

GBA2 HET HPC

(12mo): ~65% Decrease

GBA2 HOM/HET CTX

(12mo): Unchanged

[31] Not Assessed Not Assessed HET HPC (13-15mo):

~20% Decrease

HET HPC (13-15mo):

Unchanged

HET HPC (13-15mo):

Unchanged

Not Assessed

PD-Related Motor Phenotypes and Pathology

Motor Behavior STR Neurochemistry SN DA Neurons

Numbers

STR/SN Inflammation STR/SN aSyn

Expression

STR/SN aSyn

Pathology

Reported

Herein

HOM (4,8,12 mo):

Absent

HOM (4,8 mo):

Unchanged

HOM (4,8,12 mo):

Unchanged

Astrocytes in HOM (12

mo): Unchanged

HOM (4,8,12 mo):

Unchanged

HOM (4,8,12 mo):

Absent

HOM (12 mo): 2x DA

Turnover Increase

Microglia in HOM (12

mo): Unchanged

[30] HET (12 mo):

Absent

Not Assessed Not Assessed Not Assessed Not Assessed Not Assessed

[31] Not Assessed Not Assessed HET (13-15mo):

Unchanged

Not Assessed Not Assessed Not Assessed

Abbreviations: HOM, homozygous; HET, heterozygous; mo, month; GlcCer, glucosylceramide; GlcSph, glucosylsphingosine; HPC, hippocampus; CTX, cortex; STR,

striatum; SN, substantia nigra; DA, dopamine; aSyn, alpha-synuclein

https://doi.org/10.1371/journal.pone.0252325.t001
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the result of changes in transcription/translation as the GBA1 D409V KI mutation did not

appear to affect total GBA1 mRNA or GCase protein levels was compared to WT mice (Fig 2).

The decrease in GCase activity in liver in hom GBA1 D409V KI mice correlated with elevated

total GlcCer and GlcSph in hom GBA1 D409V KI mice compared to WT controls (Fig 4). In

brain specimens, deficits in GCase activity correlated with robust elevations across all age

groups of GlcSph, but not GlcCer. These findings are consistent with brain GlcCer and GlcSph

levels reported across multiple GBA mutant mouse models [58]. Deacylation of GlcCer to

GlcSph by lysosomal acid ceramidase has been suggested to occur as a metabolic adaptation to

reduced GCase activity [59], and as such, GlcSph had emerged as a sensitive and selective bio-

marker of GBA-related disorders [60].

Notably, we also found that mice heterozygous for the GBA1 D409V KI mutation exhibited

a significant decrease in GCase activity in both liver and brain, albeit not at the same magni-

tude as hom GBA1 D409V KI mice (Figs 3 and 5). Effects of the het GBA1 D409V KI were

also more subtle on GSL levels as compared to hom GBA1 D409V KI mice (Figs 4 and 5). In

contrast to the consistent elevation in GlcSph levels in hom GBA1 KI mice across ages and tis-

sues, GlcSph was increased only in brain tissue in het GBA1 D409V KI mice. The levels of

GlcCer in het GBA1 D409V KI mice were unchanged in both brain and liver as compared to

WT mice. These results are largely consistent with another report of this model by Burbulla

et al (2019) who found hippocampal levels of GlcCer unchanged and only a slight trend

towards increased GlcSph in het mice at 13–15 months of age (Table 1) [31].

Additionally, the biological significance of an apparent age effect of increased GCase activ-

ity in the MDW941 data set warrants further investigation. A biologically meaningful age-

related increase in GCase activity is not certain, as it was observed by only one method

(MDW941 activity probe and not by the CBE/4-MU method) and diverged between organs

(brain versus liver) and genotype (WT versus GBA1 D409V KI) (Fig 3C and 3D). One possible

Table 2. Phenotype comparisons between different homozygous GBA1 D409V KI mouse models.

MJFF GBA1 D409V KI Mouse (Reported

Herein)

Grabowski GBA1 D409V KI Mouse

Background Strain C57Bl/6 Mixed C57Bl/6 and 129/SvEvBrd [17]

Lifespan Unaffected by mutation Unaffected by mutation [17]

GBA1 mRNA 100% of WT 50–100% of WT [17]

GCase Activity in

Brain

~10% of WT 22.5–25% of WT [17, 18]

GCase Activity in

Liver

~5% of WT ~2.5% of WT [17]

GlcCer in Brain 100% of WT 100% of WT [17]

GlcCer in Liver 2.5–3.5 fold increase vs WT 2–4 fold increase vs WT [17, 18]

GlcSph in Brain 10.5–13.5 fold increase vs WT 3–5 fold increase vs WT [18]

SNpc Cell Loss Unaffected by mutation Unaffected by mutation [18]

Lysosomal

Function

Unaffected by mutation Unaffected by mutation [18]

aSyn Pathology Unaffected by mutation in STR/SN and

increased in HPC [30]

Unaffected by mutation [21, 49] or increased by

mutation in HPC [18, 51]

Inflammation Unaffected by mutation in STR/SN and

increased in HPC [30]

Unaffected by mutation in HPC [18]

Motor Phenotypes Unaffected by mutation Unaffected by mutation [18]

Abbreviations: KI, knockin; GlcCer, glucosylceramide; GlcSph, glucosylsphingosine; HPC, hippocampus; STR,

striatum; SNpc, substantia nigra pars compacta

https://doi.org/10.1371/journal.pone.0252325.t002
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explanation for the divergent results of increased GCase activity in GBA1 D409V KI brain but

not liver samples could be due to a floor effect in the GBA1 D409V KI liver samples, whereby

GCase activity in liver was already negligible at 4 months of age and could not measurably or

functionally decrease any further. It is also possible that assessment of GCase activity by the

MDW941 probe method is more sensitive than the CBE/4-MU method, as an age-related

increase in GCase activity was not detected by both methods using the same tissue samples.

Global age-related decreases in GCase and accumulation in GSLs—specifically GlcCer and

GlcSph—has been reported in other published studies as a consequence of normal aging [44].

While this diverges with our observation that GCase activity was unchanged with age in WT

mice using the CBE/4-MU method and increased in brain using the MDW941 probe method,

these differing observations could be attributable to fundamental distinctions between the

studies for experimental design/analyses, mouse strains examined, and different ages of the

mice assessed. Additional research into age-related changes in GCase activity and GSL accu-

mulation in different inbred mouse strains using a variety of methods would be warranted to

determine if different genetic backgrounds impact basal GCase activity or GSL accumulation

across the lifespan and how this may relate to any resulting pathology like that of the aSyn pro-

tein [44, 60].

While we observed multiple GCase-specific phenotypic effects as a consequence of the

GBA1 D409V KI mutation at the biochemical level in both the periphery and the CNS, we did

not observe Gaucher cells in any of the tissues examined histologically (including brain, liver

and spleen). Moreover, other CNS-related PD-relevant readouts likewise showed no genotype

effect (Fig 6). Specifically, stereological quantification of DA neurons in the SNpc yielded simi-

lar cell number estimates between hom GBA1 D409V KI mice and WT controls at all ages

examined. This finding was also reported in studies of other GBA1 D409V mouse models

(Table 2) [18]. Consistent with the lack of overt nigral neuron loss, the hom GBA1 D409V KI

mice did not exhibit changes in striatal DA levels as compared to WT mice. The hom GBA1
D409V KI mice did, however, display a slight decrease in DA turnover at 12 months of age.

This finding is intriguing given that striatal DA turnover is regarded as an early, more subtle

perturbation of the nigrostriatal system [48]. The extent to which the nigrostriatal system is

impaired in this model, at least up to 12 months of age, is minimal and does not lead to overt

motor behavior deficits in the hom GBA1 D409V KI mice as assessed in this study by open

field, accelerating rotarod, fore- and hindlimb grip strength, and posture/gait and in het GBA1
D409V KI mice as assessed by rotarod and open field testing [30]. This finding is consistent

with another GBA1 D409V mouse model [18] and the existing body of literature indicating

that motor deficits are typically not observed in preclinical animal models of parkinsonism

unless there is significant nigrostriatal degeneration [61, 62].

Although we did not assess behavioral outcomes associated with learning or spatial mem-

ory, these phenotypes have been reported in this and other GBA1 D409V KI mouse models

previously [18, 30]. Deficits in Y-maze performance and the Morris water maze were present

in this GBA1 D409V KI mouse model at 12 months of age in heterozygous mutation carriers.

Importantly, these functional deficits corresponded to alterations in hippocampal neurochem-

istry and inflammation, but not synuclein pathology in the hippocampus [30]. As pathogenic

GBA1 mutations are associated with early and more advanced cognitive decline in PD patients

[63], the demonstration of this phenotype in this and other GBA1 D409V KI mouse models

[18, 30] is of interest.

Somewhat surprisingly given the global, early, and profound decreased GCase activity, we

did not observe alterations in aSyn expression in the midbrain or striatum of the hom GBA1
D409V KI mice (S2 Fig) as measured by IHC at the ages studied. Although Clarke et al (2019)

did report an increase in aSyn expression in the hippocampus of 12 month old hom GBA1

PLOS ONE Decreased glucocerebrosidase activity and substrate accumulation in a novel GBA1 mouse model

PLOS ONE | https://doi.org/10.1371/journal.pone.0252325 June 9, 2021 25 / 31

https://doi.org/10.1371/journal.pone.0252325


D409V KI mice [30], the immunoassay employed in that study was more sensitive and quantita-

tive than the IHC method used in this study. As greater pathology was observed in the hippocam-

pus of this model [30] than the nigrostriatal system, these differences could also be due to

structure-related differences in the ability to process/clear accumulation of aSyn. Further evidence

for this possibility can be found in the lack of changes in lysosomal Lamp1 expression in brain

measured by immunoblot (S1 Fig). Notably, other groups have reported that loss of GCase activ-

ity does not affect lysosomal function in neuronal cells [64], another GBA1 D409V mouse model

(Table 2) [18], and in aSyn A53T-overexpressing mice after GCase inhibition with CBE [10].

In addition to lack of aSyn accumulation, we also do not report any increases in aSyn phos-

phorylation or aggregation in the striatum or SN of the hom GBA1 D409V KI mice (S2 Fig) as

measured by IHC up to 12 months of age. Reports of synuclein pathology in GBA1 D409V

mouse models have been inconsistent in the past. In another hom GBA1 D409V mouse model,

two studies failed to show aSyn pathology as assessed by IHC and immunoblot for insoluble

aSyn up to 12 months of age [21, 49] while Sardi et al (2011, 2013) report an increase in insoluble

aSyn aggregates at 6 and 12 months of age as assessed by IHC in this same model [18, 51]. Even

in this specific GBA1 D409V mouse model results have not been consistent. Clarke et al (2019)

reported an absence of aSyn pathology in the hippocampus of this GBA1 D409V mouse line at

12 month old in heterozygous mice using pS129 and PK-resistant aSyn IHC while Burbulla et al
(2019) did report the presence of triton-insoluble aSyn in the hippocampus of 13–15 month old

het GBA1 D409V KI mice as assessed by immunoblot [30, 31]. The difference in reports of synu-

clein pathology may be due to the methods used for assessing synuclein pathology and isolation

of specific brain regions for synuclein pathology analysis. Thus, a more detailed study of aggre-

gated aSyn—oligomeric or fibrillar—in the hom GBA1 D409V KI could be informative. Further-

more, as Parkinson’s disease is a highly complex, age-dependent disease spanning many

physiological functions, additional environmental factors and/or extended aging may be needed

to trigger aSyn pathology and overt PD-like phenotypes in the GBA1 D409V KI.

Finally, we investigated neuroinflammation in the midbrain and striatum of GBA1 D409V

KI mice due to associations with GBA and neuroinflammation in GD and PD patients and

reports of increased microgliosis and astrogliosis in the hippocampus of the GBA1 D409V KI

model at 12 months of age (Table 1) [30]. In the striatum and substantia nigra of the GBA1
D409V KI mouse there were no signs of an increase in microgliosis or astrogliosis as compared

to the WT controls at any age (S3 Fig). The lack of neuroinflammation we observe here is not

unique. Sardi et al (2011) also reported absence of inflammation in the hippocampus of

another homozygous GBA1 D409V KI mouse (Table 2) [18].

Collectively, the GBA1 D409V KI model described herein demonstrates early, sustained

decreases in GCase activity in the brain and periphery with concomitant increases in GSL sub-

strates of GCase, as well as early manifestations of nigrostriatal dysfunction as demonstrated

by decreased DA turnover at 12 months of age (Table 1). This model will serve as an important

tool for groups looking to test therapeutic interventions aimed at increasing GCase levels or

activity, or combating the increased GSL levels resulting from GCase deficiencies. Studies

using the GBA1 D409V KI mouse will hopefully lead to new avenues of research into the role

of GCase in DLB or PD and the development of new therapies aimed at the pathology resulting

from dysregulation of this protein and its enzymatic function.

Supporting information

S1 Fig. Lysosome function, as assessed by Lamp1 levels, are unchanged in the GBA1
D409V KI mouse model. (A-B) Lamp1 levels were measured by Western blot in brain and

liver homogenate from C57Bl/6 wild type (WT) mice and GBA1 D409V KI homozygous
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(HOM) mice at 4, 8, and 12 months of age (n = 7/group). Levels of Lamp1 were not significantly

different between WT and GBA1 D409V KI mice at any age in brain (A) or liver (B) tissue. There

is an age-related increase in Lamp1 appearing at 12 months of age, with statistically significant dif-

ferences in the brain and liver of GBA1 D409V KI mice and the liver of WT mice. Lamp1 protein

levels are normalized to β-actin as the housekeeping protein. Brain LAMP1 (A) measured as fol-

lows: WT 4mo 103.6±3.35, HOM 4mo 98.95±4.40, WT 8mo 124.8±3.11, HOM 8mo 130.7±3.40,

WT 12 mo 93.27±2.14, HOM 12mo 121.80±1.98. Liver LAMP1 (B) measured as follows: WT

4mo 0.35±0.02, HOM 4mo 0.37±0.02, WT 8mo 0.30±0.02, HOM 8mo 0.32±0.02, WT 12 mo 0.33

±0.01, HOM 12mo 0.48±0.04. Abbreviations: LAMP1, lysosomal associated membrane protein 1;

GBA1, gene encoding glucocerebrosidase; WT, wild type; HOM, homozygous; KI, knockin; SEM,

standard error of the mean; mo, month; ns, non-significant (p> 0.05).

(TIF)

S2 Fig. Total and phosphorylated alpha-synuclein levels are unchanged in the homozygous

GBA1 D409V KI mouse brain at 12 months of age. Representative images of immunohisto-

chemical staining for total alpha-synuclein (aSyn; A-B, E-F) and phosphorylated S129 aSyn

(pS129 aSyn; C-D, G-H) in C57Bl/6 wild type (WT; A, C, E, G) and GBA1 D409V KI homozy-

gous (HOM; B, D, F, H) mice reveal no overt differences in total aSyn or pS129 aSyn levels

between genotypes in either the striatum (A-D) or substantia nigra (SN; E-H). Primed images

(A’-H’) are higher magnification images taken using the 10x objective lens at the region of

interest denoted with an inset box (A-H). Abbreviations: aSyn, alpha-synuclein; pS129, phos-

phorylated serine 129; SN, substantia nigra; GBA1, gene encoding human glucocerebrosidase;

WT, wild type; HOM, homozygous; KI, knockin.

(TIF)

S3 Fig. Microgliosis and astrogliosis are not exacerbated by homozygous GBA1 D409V muta-

tion in the striatum and substantia nigra. Representative images of immunohistochemical stain-

ing for astrocytes using GFAP (green), microglia using Iba-1 (red), dopaminergic neurons using

tyrosine hydroxylase (TH; orange), and nuclei using DAPI (blue) in C57Bl/6 wild type (A-B, E-F,

I-J) and GBA1 D409V KI homozygous (C-D, G-H, K-L) mice reveal no overt differences in neu-

roinflammation between genotypes in either the striatum (A, C, E, G, I, K) or substantia nigra (B,

D, F, H, J, L). Inset panels are higher magnification images taken using the 40x objective lens.

Abbreviations: GBA1, gene encoding human glucocerebrosidase; WT, wild type; KI, knockin.

(TIF)

S1 File. Raw data.

(DOCX)
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