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The modeling of the chemical reactions involved in metabolism is a daunting task. Ideally,
the modeling of metabolism would use kinetic simulations, but these simulations require
knowledge of the thousands of rate constants involved in the reactions.The measurement
of rate constants is very labor intensive, and hence rate constants for most enzymatic
reactions are not available. Consequently, constraint-based flux modeling has been the
method of choice because it does not require the use of the rate constants of the law
of mass action. However, this convenience also limits the predictive power of constraint-
based approaches in that the law of mass action is used only as a constraint, making it
difficult to predict metabolite levels or energy requirements of pathways. An alternative to
both of these approaches is to model metabolism using simulations of states rather than
simulations of reactions, in which the state is defined as the set of all metabolite counts
or concentrations. While kinetic simulations model reactions based on the likelihood of
the reaction derived from the law of mass action, states are modeled based on likelihood
ratios of mass action. Both approaches provide information on the energy requirements of
metabolic reactions and pathways. However, modeling states rather than reactions has the
advantage that the parameters needed to model states (chemical potentials) are much eas-
ier to determine than the parameters needed to model reactions (rate constants). Herein,
we discuss recent results, assumptions, and issues in using simulations of state to model
metabolism.
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INTRODUCTION
Since the time of Boltzmann, it was recognized that living organ-
isms are thermodynamic entities. Lotka (1922a) paraphrased
Boltzmann’s thinking, “that the fundamental object of contention
in the life-struggle, in the evolution of the organic world, is avail-
able energy.” Lotka went on, “in accord with this observation is
the principle that, in the struggle for existence, the advantage
must go to those organisms whose energy-capturing devices are
most efficient in directing available energy into channels favorable
to the preservation of the species.” Lotka (1922b) proposed that
natural selection is at its most fundamental level a physical princi-
ple. Schrödinger (1945) famously expanded on this concept with
What is Life?, and used the concept of entropy to describe how
order, in the form of high energy compounds in the environment,
drives organization within organisms. Organisms dissipate that
energy into lower forms. The concept of life as a non-equilibrium
process has resonated with others as well, including Prigogine
who described living organisms as dissipative structures that self-
organize in response to large non-equilibrium driving forces (Pri-
gogine, 1978). Abiotic examples of dissipative structures include
tornadoes, hurricanes, and convection cells. The non-equilibrium
driving forces“pay” for the self-organization that allows the result-
ing structures to dissipate energy rapidly. In biological systems,
energy comes into the system in the form of sunlight or high
energy compounds, typically highly reduced carbon compounds,

and this energy is dissipated into the environment according to the
second law of thermodynamics. In biological systems, some of the
energy is harvested to pay for the creation of additional dissipative
structures (growth and reproduction), or to create large amounts
of stored energy in the form of lower energy byproducts.

The ecologist H. T. Odum was certainly convinced of the role
of statistical thermodynamics in systems ecology. Writing in the
American Scientist (Odum and Pinkerton, 1955), Odum sought
to understand the diverse scale of rates of natural processes, and
proposed that each biological system works at an efficiency that
allows the maximum efficiency and power, similar to Lotka’s con-
cept that the advantage goes to organisms whose metabolism is
most efficient at channeling energy for the purpose of reproduc-
tion. Odum took natural selection to mean “the persistence of
those forms, which can command the greatest useful energy per
unit time.”

Morowitz also proposed that the far from equilibrium natural
environment was responsible for self-organization of biological
systems. As a consequence, Morowitz proposed that life was not
only a consequence of energy flow in natural systems, but also that
it is highly probable. From this perspective, natural selection is a
random process, and in the words of Dewar (2005), species “are
selected because they are characteristic of each of the overwhelm-
ing majority of ways in which energy and matter could flow under
the constraints imposed by local energy and mass conservation”.
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Such concepts have led to the metabolism first hypothesis of the
emergence of life on earth (Smith and Morowitz, 2004).

While an excellent collection of discussions of entropy produc-
tion and self-organization of natural systems has been presented
in the literature (Kleidon et al., 2010), for the most part the recog-
nition by physical scientists of the role of thermodynamics as a
causal factor in the operation of biological systems stands in stark
contrast to the lack of discussion of thermodynamics in the exper-
imental life sciences literature. A major reason for this may be
because of the abstract nature of statistical thermodynamics and
the lack of tools to model and evaluate the thermodynamic aspects
of living systems. After all, since its conceptualization develop-
ments in thermodynamics have had mostly to do with equilibrium
processes, and biological systems are highly non-equilibrium.

However, in the last 20 years, statistical thermodynamics and
fluctuation theorems have allowed for significant progress in
understanding non-equilibrium systems. Fluctuation theorems
are starting to be used to model biological systems, allowing us
to begin to understand how cellular machinery operates. These
theorems tell us that there is an important difference between
thermodynamic models of macroscopic process and the statistical
thermodynamic models of the microscopic processes such as those
that make up cells. The second law of thermodynamics describes
macroscopic processes and states that the entropy of a spontaneous
process never decreases. The second law is silent, however, about
the microscopic events that make up the macroscopic process.
These microscopic events may be, for instance, sets of coupled
reactions that lead to some observable change of state – a dif-
ferent phenotype in the parlance of biology. These microscopic
events involve enzyme complexes and coupled reaction pathways
in cells, which are not just scaled down versions of beaker-sized
laboratory systems. Components of small systems can in fact run
in reverse at times. A number of excellent reviews of fluctuation
theorems exist in the literature (Harris and Schutz, 2007; Sevick
et al., 2008; Seifert, 2012) and we will only give an in-a-nutshell
perspective here.

In this report, we will focus on issues and challenges in ther-
modynamically modeling biological systems of coupled reactions,
such as those that occur in metabolism. We will first discuss prob-
ability density functions based on Boltzmann probabilities and the
relationship to free energy. Closely related to free energy is the con-
cept of entropy. We will discuss different formulations of entropy
and their meanings in order to provide a clear overview of entropy
production. Finally, fluctuation theorems will be briefly discussed
using this conceptual framework. While fluctuation theorems have
not yet been used to extensively simulate metabolism, they have
great promise, and have been used to examine single molecule
dynamics and the dynamics of coupled biochemical reactions on
multiple scales. Finally, the application of statistical thermody-
namics to model biological reactions that are far from equilibrium
is discussed.

THEORETICAL BACKGROUND
Understanding the foundational concepts of modeling thermo-
dynamics is essential for understanding the challenges that the
field faces. The mathematical concepts presented in the literature
are often too abstract to be readily accessible to those outside the

specialty field of statistical thermodynamics. A case in point is
that it may seem like the literature contains a zoo of seemingly
unrelated statistics all going by the name of entropy. Understand-
ing which entropy is being used is critical for understanding and
applying thermodynamic modeling and fluctuation theorems, as
will become evident below.

However, a tremendous amount of physical insight into fluc-
tuation theorems and thermodynamic modeling can be obtained
if one understands the multinomial distribution function, which
is simply a generalization of the common binomial distribu-
tion function when more than two outcomes are possible. With
regard to reaction kinetics, more than two outcomes are possible
when we have more than two interconverting species present. The
mathematical form of a multinomial distribution is,

Pr (n1, . . . , nm|Ntotal, θ1, . . . , θm) = Ntotal!

m∏
objectsj

1

nj!
θ

nj

j .

The multinomial probability density above is the probability
that nj objects of type j will be present when there are N total=Σnj

objects present. In the equation above, θj is the probability of
object j independent of the other objects. According to frequentist
statistics, this probability is simply the long term proportion of
the number of object j ’s that are present, θj= nj/N total. The prob-

ability density is not simply Pr = Πjθ
nj

j because each individual

object of type j is indistinguishable from all the other objects of
type j. Thus, the probability density has to be corrected for the
number of permutations and combinations of each object type,
which is accounted for by the factorial terms in the multinomial
distribution function.

Now consider a system consisting of three chemical species
A, B, and C in aqueous solution in a container of fixed volume.
Each of the three species can interconvert to one of the other
two species, but the total number of particles is fixed such that
nA+ nB+ nC=N total. The Boltzmann probability θi of species i
is related to the Helmholtz free energy of solvation ∆ 0

i by,

θi =
e−∆

0
i /kBT

m∑
species j

e−∆
0
j /kBT

. (1)

where kB is Boltzmann’s constant and T is the temperature. For
simplicity, we will disregard the internal degrees of freedom for

each species. In this case, the numerator e−∆
0
i /kT is referred to

as the molecular partition function, qi. The denominator is simply
a normalization function, usually denoted as q=Σqi, the log of
which is the Boltzmann average energy of the system,−〈E〉B/kBT.
Statistically, the distribution of the particles is characterized by the
multinomial Boltzmann probability density function,

Pr (n1, . . . , nm|Ntotal, θ1, . . . , θm) = Ntotal!

m∏
species j

1

nj!
θ

nj

j

where nj is the number of particles of species j, and there are
N total particles. In analogy to the macroscopic, the free energy from

Frontiers in Bioengineering and Biotechnology | Systems Biology November 2014 | Volume 2 | Article 53 | 2

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Cannon Current challenges in modeling cellular metabolism

statistical thermodynamics, an unnormalized mass density for a
microscopic state can be defined that is a function of the molecular
partition functions qi instead of the Boltzmann probabilities,

−A
(
n1, . . . , nm|NT, q1, . . . , qm

)
kBT

= log

Ntotal!

m∏
j

1

nj!
q

nj

j


(2)

For brevity, we will write A(n1, . . ., nm | N r, q1, . . ., qm) as
A(n̄|NT, q̄) or simply A. The value A in Eq. 2 is not a free energy
because it is not an average over all possible values for each of the
nj. The relationship between A and the probability density of that
microscopic state is,

−A/kBT = log Pr(n1, . . . , nm|Ntotal, θ1, . . . , θm)+Ntotal · log q

or equivalently,

log Pr (n1, . . . , nm|Ntotal, θ1, . . . , θm) = A/kBT + Ntotal · log q

Since log q=−〈E〉B/kBT, we have the relationship

−Sg = A/kBT − NT〈E〉B/kBT

Sg = − log Pr (n1, . . . , nm|NT, θ1, . . . , θm) (3)

This function on the right hand side is strictly a log likelihood,
not an entropy. However, the average log likelihood is an entropy,
and in fact is the Gibbs entropy for a system with a fixed number
of total particles,

SG =
∑

microstates J
Pr (J ) log Pr (J )

=
〈
A(n̄|NT, q̄)

〉
− Ntotal〈E〉B

(4)

where Pr(J ) is shorthand for Pr(n1= n1(J ), . . ., nm(J )|N total, θ1,
. . ., θm) and

〈
A(n̄|NT, q̄)

〉
= is the free energy of the macro-

scopic state with parameter NT. Because the Gibbs entropy is an
average over microstates, it is the entropy related to macroscopic
observations (Jaynes, 1965).

Adding confusion to the definition of entropy is the related
microstate relationship,

SB = A/kBT − Ntotal〈E/kBT 〉U (5)

where now 〈E/kBT 〉U is the average energy of the microstate under
the uniform distribution instead of the Boltzmann distribution.
The entropy term is also given by S=−Σpj log pj where again
the probabilities pj= nj/N total are from the uniform distribution
(Davidson, 1962; Cannon, 2014). The subscript indicates that
this is the Boltzmann entropy because it is derived from logW
where W is the multinomial coefficient. This entropy is also some-
times referred to as the configurational entropy (Davidson, 1962).
The difference between the Gibbs and Boltzmann entropies of
course has to do with intermolecular potentials and microscopic
vs. macroscopic perspectives (Jaynes, 1965).

When the total number of particles is not fixed, adjustments
need to be made to the equations above. Typically, the adjustment

is to remove the normalization of the Boltzmann probabilities in
Eq. 1, such that the resulting quantity e−A/kBT is an unnormal-
ized probability mass function, or an odds of e−A/kBT : 1. The
multinomial probability distribution now becomes a multinomial
odds distribution, the main difference being that a probability
mass function over all of state space sums to 1, while the new
multinomial distribution sums to a value >1.

If the total number of particles is allowed to vary due to the
system being open, then Eq. 4 gives

SG =
〈
A − Ntotal (J ) log q

〉
Notice that this definition is different from one common ther-

modynamic definition of entropy, which defines entropy as the
difference between the free energy and the average energy,

S = 〈A〉 − 〈E〉

= 〈A〉 −
〈
Ntotal (J ) log q

〉
Since we know from the triangle inequality, ||log x− log

y ||≥ ||log x||− ||log y ||, it follows that SG≥ S.
For a set of coupled reactions such as,

A � B � C

a change of the microscopic state from K to J is described by the
likelihood ratio,

−∆Sg,JK = log

(
Pr (J )

Pr (K )

)
, (6)

or equivalently,

Pr (J )

Pr (K )
= e−∆Sg,JK (7)

which has the basic mathematical form of a fluctuation theorem,
but in this case is an identity due to the definition of Sg in Eq. 3. If
we average over all states J and K and the system is at equilibrium,〈

Pr (J )

Pr (K )

〉
=
〈
e−∆Sg,JK

〉
= 1

(8)

where the angular brackets denote an equilibrium average. The
average value is unity since the log likelihood of Eq. 6 is zero, on
average. Relation 8 simply says, that on average, the system returns
to equilibrium. While Eq. 7 is exact for microscopic processes, the
challenge in employing it to model time-dependent processes is
that the core probabilities available for use in Eq. 1 are stationary
Boltzmann probabilities, yet if the individual rates of the reactions
vary enough in a system of coupled reactions, the core probabili-
ties will not be Boltzmann probabilities, which are based solely on
energy levels of the reactants and products. At equilibrium, Eq. 7
can be used for time-dependent probabilities because of detailed
balance – Eq. 8. However, away from equilibrium, Eq. 7 no longer
holds because detailed balance no longer exists. Instead, the true
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probabilities will be a function of the entire energy surface of
the system, including the reaction barriers. Fluctuation theorems
relate the ratio of these time-dependent probabilities to a func-
tion that is related to the time-dependent ∆Sg(t ), or if ensemble
averages are used, the time-dependent ∆SG(t ).

For example, at a non-equilibrium steady state the average fluc-
tuations of a system can still be characterized at times without
knowing the actual probabilities of each state. Consider the fluc-
tuation away from a steady state J to the new state K with some
transition probability. We know that the system will eventually
return to the steady state J, we just do not know specifically how.
For the most part, a fluctuation away from the steady state will be
along the direction of the non-equilibrium driving force. When
the system returns to the steady state, an amount of energy will
have been dissipated from the system. Note that if the system were
to return to the steady state along the same path, no energy would
have been dissipated; that is, the average likelihood of returning
along the same path is not 1 as in the case for equilibrium (Eq. 8).
Thus, fluctuation theorems for non-equilibrium steady state take
the form,

Ω =

〈
log

(
πKJ (t )

πKJ (t )

)〉
J,K

(9)

where πKJ is the probability of trajectory J→K, and Ω is related
to the dissipation of energy due to the non-equilibrium steady
state. For instance, the Evans–Searles fluctuation theory relates
the time-dependent probabilities to a trajectory-specific dissipa-
tion function, Ω(t ), which is a measure of how far the system is
away from detailed balance,

πKJ
(
Ω (t ) = −qD/kBT

)
πJK

(
Ω (t ) = qD/kBT

) = e−qD/kBT (10)

If qD represents the dissipated energy due to the lack of detailed
balance, then the odds of regaining that energy through a reversal
of the trajectory are exponentially small. One could even think
of the RHS of Eq. 10 as representing the energy of a hypothetical
particle (a “dissipation”) that has a Boltzmann factor of e−qD/kBT .
Recent developments in fluctuation theories (reviewed by Sevick
et al., 2008; Seifert, 2012) in the last two decades have pushed the
envelope into the far from equilibrium domain. Many biochemical
reactions are in this domain.

ENTROPY PRODUCTION
When the time-dependent flux of material through reactions can
be determined, the entropy production rate can be defined in sev-
eral related ways (Oster et al., 1973; Ge et al., 2006; Ge and Qian,
2010). Using Eq. 6, the microscopic entropy production can be
defined for a reaction i in the+direction as,

microscopic entropy production rate = Ji+∆Sg,i

and the net entropy production through the reaction is J i,net∆Sg,i,
where J i,net= Ji+− Ji−. Taking the ratio of the entropy production

due to the forward and the reverse reaction, the odds of entropy
being produced at reaction i are,

O
(
∆Sg,i

)
=

Ji+ ·∆Sg,i

Ji− ·∆Sg,i

=
Ji+

Ji−

(11)

Although the ratio of the forward and reverse flux gives us the
odds of thermodynamic entropy production, the ratio itself can-
not tell us the value of the thermodynamic entropy change or even
if the entropy change is positive or negative; in coupled systems the
flux through any specific reaction is not deterministically related to
the entropy or free energy change of that reaction. The second law
of thermodynamics only tells us that for macroscopic processes,
the entropy must always increase; the second law does not address
what might be happening on the microscopic level in individual
reactions. This is an important aspect of stochastic systems: even
though a reaction has a free energy change above zero or equiva-
lently an odds below one, it can still occur given enough time. For
example, if a set of coupled reactions has a large enough overall
favorable change in free energy, an individual reaction can have
a net positive flux even if the reaction free energy is unfavorable.
Flux is an emergent property of the entire system. However, as
indicated by the fluctuation theorems, the less likely the reaction,
the less likely it will have a net flux in the direction of decreasing
entropy change.

Several studies have asserted that the relationship between flux
and free energy is ∆G=−RT log(J+/J−). This relationship was
originally proposed in discussions of reversible systems and dis-
cussed in the context of deterministic kinetics (Beard and Qian,
2007). For coupled, stochastic non-equilibrium reactions, the rela-
tionship is strictly speaking an assumption. However, it is rea-
sonable to expect in the vast majority of situations that ∆G and
−RT log(J+/J−) are concordant. The relationship can be used to
gain insight if used carefully. For instance, Noor et al. (2014) have
used the assumption as a framework for evaluating flux statistics
at individual reactions. They correctly pointed out that reactions
near equilibrium act as kinetic bottlenecks in pathways that are
overall far from equilibrium. This is a valid use of the assumption
in that reactions at equilibrium in an otherwise nonequilibrium
system are those for which the relation is approximately correct
even for stochastic systems.

So far the question of how to find the steady states has been left
open. A steady state could be determined by the textbook approach
of solving the set of differential rate equations. However, for bio-
logical systems the required rate parameters are rarely available.
In principle, a steady state can be defined based on experimental
measurement of all relevant chemical species, which can be used
to define the chemical potential of each species. While this task is
much easier than determining all the appropriate rate constants, it
is still formidable. Yet, significant progress is being made (Bennett
et al., 2009).

Alternatively, one can assume that the steady state is one
that corresponds to an optimal thermodynamic process. A
thermodynamically optimal process is one in which a maximal
amount of energy can be extracted from the environment with
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a minimal amount of dissipation of heat (Sivak and Crooks,
2012). Equivalently, a thermodynamically optimal path is one that
requires the least work to maintain the steady state. In either case,
the thermodynamically optimal steady state can be found by max-
imizing a steady state version of Eq. 4 in which the Gibbs entropy
SG in a state space neighborhood Γ measures the probability den-
sity of states reachable from an initial state S due to a series of Z
reactions involving a change of state δSi (Cannon, 2014),

Sg (Γ (S)) = −

Z∑
Rxn i=1

Pr (Si−1 + δ Si) log Pr (Si−1 + δSi) (12)

In a system moving toward equilibrium through a trajectory
of Z reactions, the state entropy increases as the system stabilizes,
and reaches a maximum at equilibrium since equilibrium requires
that each respective reaction is equally likely. In a non-equilibrium
system, the neighborhood Γ is a reaction path and Eq. 12 is the
path entropy described by Dewar, from which the fluctuation the-
orem, the selection principle of maximum entropy production,
and self-organized criticality can be derived (Dewar, 2003). An
analogous Gibbs entropy can be defined by averaging Sg[Γ(S)]
over many trajectories such that SG[Γ(S)]=〈Sg[Γ(S)]〉. If the
entropy change from equilibrium is ∆SG(Γ(S))S0

G − SG(Γ(S)),
then the rate of production of thermodynamic entropy can then
be defined as,

thermodynamic entropy production rate = Jnet (Γ) ∆SG (Γ (S))

While its likely that no individual organism is at the apex of
thermodynamic optimality, it is also likely, as discussed in the
section “Introduction,” that natural selection is at some funda-
mental level based on filtering out individuals that are thermody-
namically inefficient such that too little energy is extracted from
the environment or too much of the extracted energy is simply
dissipated back to the environment; such a system would not be
able to channel sufficient energy into growth to compete against
more efficient individuals. In this scenario of natural selection,
thermodynamically optimal steady states would serve as useful
models.

Applications
Beyond atomistic simulations, the application of statistical ther-
modynamics and fluctuation theory to biological systems is truly
a frontier. To date, applications are mostly in the physics literature
and include (but are not limited to) the study of molecular motors,
mostly ATP synthase (Andrieux and Gaspard, 2006; Hayashi et al.,
2010; Zimmermann and Seifert, 2012), small metabolic networks
(Cannon, 2014), bifurcation dynamics of reaction pathways (Xiao
et al., 2009), and models of the response of bacteria to changes
in the environment (Barato et al., 2014). These examples were
chosen to represent a hierarchy of scales in which statistical ther-
modynamic simulations have been applied to biology. Because the
dynamics of each system is represented using different equations,
it is not possible to describe in detail the form of the fluctuation
theorem used other than to say that all are in some way repre-
sented by Eq. 9, except where noted. Details on the theorems

are best obtained from the original literature. Below, we briefly
summarize the findings for this representative selection from the
literature.

SINGLE MOLECULE DYNAMICS OF ATPase F1 ROTARY MOTOR
The F0F1–ATP synthase complex is an example of a highly non-
equilibrium nanomotor. The rotary motor of F0F1–ATP synthase
is powered by proton flow across a gradient producing a free energy
difference of 10–20 kJ/mol of protons. This free energy difference
is significantly greater than the ambient energy at room tempera-
ture of about 2.45 kJ/mol. The motor operates over a large range
of scales; rate constants for the various processes making up the
motor vary over 12 orders of magnitude. Andrieux and Gaspard
used fluctuation theory and generating functions to evaluate statis-
tical distributions of mean rotation of the F1 rotor, the dissipated
work, and the probability flux across the system (Andrieux and
Gaspard, 2006). The analysis showed that the ATPase motor has
a highly non-linear response to chemical fuel: the mean veloc-
ity of the F1 rotor as a function of the thermodynamic driving
force is a sigmoid-like curve. Despite the microscopic nature of
the motor, the operation of the motor is highly robust in this non-
linear regime: successive rotations are statistically correlated and
remain essentially unaffected by the fluctuations. Nevertheless, it
was shown that the fluctuation theorem held even in the highly
non-linear regime.

MULTIPLE MOLECULES: PATHWAY BIFURCATION DYNAMICS OF A
CIRCADIAN CLOCK
When multiple reactions are coupled, non-intuitive behavior can
result. The Lotka–Voltera oscillator and the Brusselator are famous
early examples where feedback or feed-forward interactions con-
trol the oscillatory behavior. At the cell level, an important oscilla-
tory phenomenon is the circadian clock of organisms as diverse as
fruit flies and fungi. In the circadian clock negative feedback con-
trols, the rate of transcription and translation of specific proteins
that in turn dictate the cellular circadian oscillation cycle (Dunlap,
1999).

Using a stochastic thermodynamics approach pioneered by
Seifert and colleagues, Xiao et al. (2009) used a chemical Langevin
equation to evaluate dynamic bifurcations that occur in the circa-
dian clock. An explicit expression for the mean entropy production
in the stationary state was formulated based on available kinetic
data. On either side of the bifurcation in the circadian dynamics,
the shape of the distribution of the entropy production was similar
and highly skewed such that the probability of observing dynamics
with negative entropy production was quite small. Thus, like the
F1 motor of ATP synthase, the operation of the molecular circa-
dian clock studied by Xiao et al. is robust despite the stochastic
nature of small systems.

Although the time dependence of the entropy production in the
fluctuation theorem used in this study ultimately came from rate
constants, the approach demonstrated that statistical thermody-
namic simulations are capable of producing similar bifurcation
dynamics as stochastic kinetic simulations. Understanding the
entropy production rates of metabolism is important for quan-
titating the capacity for organisms to adapt to their changing
environment, which is discussed next.
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CELLULAR INFORMATION PROCESSING AND ADAPTATION
Philosophically, one can adopt either of two opposing perspectives
about the relationship between simple biological systems such as
bacteria and their environment. One can take the perspective that
cells make decisions based on their external environment, which
is the most discussed perspective in the literature, or one can take
the perspective that the external environment determines cellu-
lar response. While the former perspective imbues autonomy to
the cell, the latter perspective takes the view that regulation is
ultimately a function of the external environment. Who is dri-
ving – the cell or the environment? While the former perspective
is correct on short time periods such as the diurnal cycles, the latter
perspective is more correct on longer time periods over which the
cell has adapted and evolved.

Barato et al. (2014), evaluated models of how much informa-
tion cells can extract from their environment based on their ther-
modynamic efficiency. Although Barato et al. use the metaphor of
learning for the ability to extract information, one is equally justi-
fied in using the concept of self-organization. The study found
that the degree to which a cell can self-organize in response
to the environment is bounded by the thermodynamic entropy
production rate. A bacterium in a slowly changing environ-
ment dissipates much more energy than it harnesses for the
purpose of self-organization. That is, the bacterium, once orga-
nized to respond to a particular environment, has a limited abil-
ity to further harness energy from the environment for further
adaptation.

Although Barato et al. (2014) used quite simple physical mod-
els to generate hypotheses, clearly coupling this framework with
more extensive thermodynamic models of metabolism has the
potential to provide insight into how cells respond internally to
changes in environmental driving forces on both short time scales
and longer evolutionary time scales. However, modeling efforts
will require more sophisticated models of metabolism in order
to understand the multitude of paths that cell behavior can take.
Next, early efforts that have been taken to expand the application
of statistical thermodynamics to more detailed metabolic models
are discussed.

DETAILED METABOLIC MODELS
The models and systems discussed above are small systems com-
pared to the metabolism of even the smallest bacterium. Can sta-
tistical thermodynamics and fluctuation theories also be applied
to more extensive biological systems such as genome-scale mod-
els of metabolism? The issue mostly pertains to whether sufficient
parameters can be estimated. Large-scale estimates of thermo-
dynamic parameters are available from sources such as the Bio-
chemical Reactions Thermodynamics Database at University of
Michigan (Li et al., 2011), the Thermodynamics of Enzyme-
Catalyzed Reactions Database at NIST (Goldberg et al., 2004), and
the eQuilibrator web server (Flamholz et al., 2012).

We have been developing such an approach and to-date have
applied it to relatively small metabolic pathways of various bacte-
ria (Cannon, 2014). In these initial studies, the reactions rates are
assumed to be proportional to the thermodynamic driving force
of the reaction, which is quantified by a probability of a reaction
in a Markov model based on Eq. 7.

Initial studies have focused on the tricarboxylic acid (TCA)
cycles of bacteria. These cycles are central to the metabolism of
most organisms and may be as close to a universal pathway as
there is (Smith and Morowitz, 2004). TCA cycles are capable of
consuming acetyl-CoA to either produce high energy compounds
necessary for cell function (e.g., ATP, NADPH) or carbon back-
bones that serve as synthetic precursors for many reactions of
secondary metabolism and amino acid and nucleic acid synthesis.

Shown in Figure 1 is the TCA cycle of E. coli and in Figure 2 is
the free energy, energy, and entropy profiles under metabolic con-
ditions observed for exponential growth on glucose (Bennett et al.,
2009). The cycle was simulated using statistical thermodynam-
ics formulation of a Markov model based on a local equilibrium
assumption (Cannon, 2014). As one proceeds from acetyl-CoA
clockwise around the cycle to oxaloacetic acid, the free energy
change across the reactions (Figure 2) varies smoothly, as one
would expect from a maximum entropy perspective (Eq. 12).
However, the change for the conversion of oxaloacetate and acetyl-
CoA to citrate catalyzed by citrate synthase and the change for
the conversion of 2-oxoglutarate to succinyl CoA catalyzed by 2-
oxoglutarate dehydrogenase are somewhat abrupt compared to
changes at the other reactions of the cycle. The reason for this is
that the cofactor concentrations, which serve as boundary condi-
tions, are held fixed at values that prevent the system from relaxing
further. As a result, the system is not quite thermodynamically
optimal – the entropy defined by Eq. 12 is not quite maximal
compared to the value that would be obtained if each reaction was
equally likely.

Clearly, information about the thermodynamics of biosynthetic
pathways is important for engineering metabolism to overproduce

FIGURE 1 |The tricarboxylic acid cycle (TCA) from E. coli. The enzymes
catalyzing the reactions are shown in italics, the co-factors are shown
tangentially to each respective reaction, and the reaction intermediates are
shown in line with the cyclic reaction arrows indicating direction of the
cycle for E. coli. Q and QH2 are electron acceptor/donator pairs and are
entry points to the electron transfer chain.
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FIGURE 2 |Thermodynamic profile of theTCA cycle from E. coli
(Cannon, 2014). Eq. 4 was used to calculate the change in entropy ∆S,
energy ∆E, and the log of the (unnormalized) mass density ∆ . Because
the probability mass density consists of a combinatorial coefficient that is
represented by the entropy term and an energy-based (Boltzmann)
probability, there is energy–entropy compensation throughout the cycle.
∆ changes smoothly across the reaction pathway indicating that the
concentrations of the metabolites are close to optimal, likely because the
concentrations were taken from an experimental measurement of E. coli
metabolite levels.

target compounds such as reduced carbon compounds for biofu-
els. While much attention has been directed at redirecting carbon
flow by knocking out pathways competing for precursors, less
attention has been directed at engineering redox pairs such as
NADH:NAD+ levels that would thermodynamically drive these
reactions. Likewise, much attention has focused on the use of
riboswitches to up-regulate the production of enzymes involved in
the biosynthesis of target compounds (Wittmann and Suess,2012),
but switching on the catalytic machinery to synthesize a com-
pound is not useful unless the thermodynamics of the pathway are
favorable. Modeling metabolic systems thermodynamically would
be of enormous value for metabolic engineering.

As an example of the potential use of statistical thermodynam-
ics for both engineering and understand organisms in the context
of their natural habitats, we compared three different versions of
the TCA cycle used in three very different ecological niches: a typ-
ical heterotrophic TCA cycle from E. coli involved in extracting
energy and biosynthetic precursors from glucose; the cyanobacte-
rial TCA cycle of Synechococcus sp. PCC 7002, which is required to
produce biosynthetic precursors despite already high levels of ATP
from photosynthesis; and the TCA cycle of Chlorobium tepidum,
a green sulfur bacteria that also must produce biosynthetic pre-
cursors in the presence of photosynthesis and simultaneously fix
CO2, which it does by running the TCA cycle in the reductive
direction. As above, each TCA cycle was simulated using a Markov
model based on a local equilibrium assumption. The free energy
profiles for these organisms are shown in Figure 3. Clearly, each
pathway is very different thermodynamically. The cycles for E. coli

FIGURE 3 | Comparison of the thermodynamic profiles of theTCA
cycles of E. coli, Synechococcus sp. PCC 7002 and Chlorobium
tepidum. The free energy profile of the TCA cycle for each organism
reflects its environmental niche (see Discussion).

and Synechococcus have similar profiles except for the conversion
of 2-oxoglutarate to succinate. In the E. coli TCA cycle, this reac-
tion has ATP as a product. Synechococcus and other cyanobacteria
cannot use the same reaction for converting 2-oxoglutarate to suc-
cinate cycle because their cycles must operate in an environment
in which ATP concentrations are quite high due to concomitant
photosynthesis. Instead, the cyanobacteria use a TCA cycle that
employs a ferredoxin coenzyme for this conversion, and thus high
levels of ATP do not retard the production of succinate and other
carbon compounds that are necessary for growth. The free energy
profile of the TCA cycle for Chlorobium is very different from
both the E. coli and Synechococcus cycles. Instead of having a
highly favorable free energy profile for operation in the oxida-
tive direction (citrate→ oxaloacetate), the free energy changes are
highly unfavorable. The TCA cycle of Chlorobium and other green
sulfur bacteria, in fact, runs in the opposite direction (oxaloacte-
tate→ citrate), and these organisms use the cycle to fix CO2 and
produce acetyl-CoA. Not only does a thermodynamic model allow
us to understand each organism in its environment, but clearly
designing an optimal pathway for metabolic engineering using
statistical thermodynamics would be very useful.

In comparing the free energy profiles for E. coli in Figures 2 and
3, it is clear that they differ significantly. In Figure 2, the free energy
profile changes relatively smoothly as one traverses the cycle, while
in Figure 3 the free energy profile changes abruptly at times. The
reason for these differences has to do with the conditions used
in the respective simulations. In Figure 2, the simulations used
the published experimentally measured values for E. coli (Bennett
et al., 2009). In the latter case, the count of each intermediate in the
cycle was initially set to ~20 µm each instead of using the exper-
imental published values for E. coli (Bennett et al., 2009), which
otherwise might bias the comparison between the three organisms.
Although each cycle is materially open in that two carbons come in
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as acetyl-CoA and carbons leave as CO2, the total of the number of
intermediates is fixed by the stoichiometry of the overall reaction
for completion of the cycle. For E. coli, the overall stoichiometry is,

Acetyl − CoA+ ADP+ 3NAD+ + Pi +Q+ 2H2O


 CoA+ ATP+ 3NADH+ 2CO2 +QH2,

where Q and QH2 represent an oxidized and reduced electron car-
riers, respectively. Although the cycles are open, the sum of the
count of all intermediates will only vary by±1.

The free energy profiles of the E. coli TCA cycle as a function of
the total concentration of the intermediates are shown at the top
of Figure 4. The total concentration values are 1.0-fold, 0.1-fold,
0.01-fold, and 0.001-fold of the values reported by Bennett et al.
(2009). If there are only a few total intermediates, then these will be
transformed into the metabolites with lowest chemical potentials,
which in the case of the E. coli TCA cycle are citrate and succinyl
CoA. At very low levels of intermediates, the cycle will not operate
and citrate and succinyl CoA will simply pool. For the lowest level
of intermediates, there will be flux through the entire cycle only
over relatively long time periods.

As the total number of metabolic intermediates is raised, the
number of citrate and succinyl CoA molecules increase, as shown
in Figure 4 (bottom). Eventually, product builds up as well with
a concomitant increase in the free energies of reactions produc-
ing citrate and succinyl CoA. Meanwhile, the increase in citrate
decreases the free energy for the citrate to isocitrate reaction, and
likewise, the increase in succinyl CoA decreases the free energy for
the succinyl CoA to succinate reaction.

Eventually, metabolite levels build up to the point where all
reactions become equally likely in agreement with Eq. 12. This
is thermodynamically the most optimal since the state entropy
(Eq. 12) has been maximized with respect to the non-equilibrium
boundary conditions.

However, for the cell there is also a thermodynamic penalty to
obtain this configuration. In order to handle a greater number of
reactants, the enzymatic load on the cell must likewise increase.
The self-organized structures needed to dissipate energy rapidly
(or store the harvested energy for growth) must be paid for by the
non-equilibrium driving forces.

Enzymes catalyzing reactions far from equilibrium will need
to increase the least since material flow is unidirectional. This is
clearly the case for the enzyme-catalyzed reactions for transfor-
mation of oxaloacetate to citrate and 2-oxoglutarate to succinate:
as the total metabolite pool increases, the concentrations of the
reactants oxaloacetate and 2-oxoglutarate do not change markedly.

If enzymes near equilibrium are expressed at a level just suf-
ficient to catalyze its current load, then increasing the total pool
of metabolites may require increased expression of these enzymes.
However, these reactions are not likely to remain at equilibrium.
This is apparent in Figure 4 (top) in which the last four enzyme-
catalyzed reactions of the TCA cycle transforming succinyl CoA
to oxaloacetate, are close to equilibrium when the total pool of
metabolites is 0.001-fold of the values reported by Bennett et al.
(2009). As the total metabolite pool grows, the reactions do not
remain at equilibrium.

FIGURE 4 | (Top)The cumulative free energy profile of the E. coli TCA
cycle as a function of the total concentration of the reaction
intermediates. Although carbon can enter the cycle as acetyl-coa and leave
as CO2, the total number of intermediates is constrained by the overall
reaction (see text). The concentrations used are 1-fold, 0.1-fold, 0.01-fold,
and 0.001-fold of those reported by Bennett et al. (2009) for exponential
growth on glucose. (Bottom) The distribution of reaction intermediates as a
function of total concentration.

When metabolite levels are greater than the respective Michaelis
constant (K M), then enzyme levels need to increase in order to
maintain a steady state. This is the situation described by Flamholz
et al. (2013). That enzymes catalyzing reactions far from equi-
librium do not increase significantly has been experimentally
observed; the degree to which enzyme expression will need to
increase for reactions near equilibrium will be situation dependent
but generally will need to increase with increased flux (Hochachka
et al., 1998).

Moreover, if the turnover rates for the enzymes in the pathway
differ dramatically, then there must also be a differential level of
expression of the enzymes in the pathways. It would make sense
for the organism to have high intrinsic enzyme turnover rates for
costly enzymes, either those that have many amino acids or require
high energy co-factors, such that the thermodynamic cost to the
cell can be minimized (Flamholz et al., 2013).

Considering Figure 4 (top), the data reported by Bennett et al.
(2009), implies that the TCA cycle of the laboratory strain of E. coli
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is operating near optimal efficiency with regard to Eq. 12 during
exponential growth on glucose. In Lotka’s words, “the struggle for
existence, the advantage must go to those organisms whose energy-
capturing devices are most efficient in directing available energy
into channels favorable to the preservation of the species.”

How close are biological systems to optimal efficiency? There
appear to be situations when this ideal is not achieved. For
example, if glycolysis were left unchecked such that each reac-
tion were equally likely thermodynamically, then the large free
energy change for conversion of fructose 6-phosphate to fructose
1,6-bisphosphate would result in cellular concentrations of fruc-
tose 1,6-bisphosphate several orders of magnitude higher than is
observed, which would most likely have detrimental affects on the
cell. In fact, the enzyme catalyzing this step is highly regulated to
prevent overproduction of fructose 1,6-bisphosphate. The regu-
lation can be regarded as a self-organized and emergent property
of the pathway, and one that is necessary for the organism to
remain viable. Considering the framework for adaption laid out
by Barato et al. (2014), this would imply that for E. coli species
that are adapted to growth on high levels of glucose, there are very
little opportunities for learning alternative ways of regulating this
enzyme, or conversely, that the regulatory circuit is evolutionarily
stable in this regard.

Future Directions
Determining a rate constant for an enzyme of interest is a straight-
forward task if the reactant or product has a distinct spectroscopic
signature. However, scaling the process up to obtain all of the rate
constants necessary for large-scale simulations of metabolism of
any specific organism is simply not feasible. Mixing and matching
rate constants from orthologous enzymes from different species
can result in incorrect energetics, unless one constrains the rate
constants to match the equilibrium constant for the same reac-
tion. Moreover, ad hoc adjustment of a rate constant to obtain
the correct equilibrium constant is likely not better than assum-
ing rates are proportional to the thermodynamic driving force. As
a result of the difficulty in obtaining rate constants, constraint-
based flux models have been the method of choice for large-scale
modeling of biological processes such as metabolism. However,
constraint-based methods at best use the thermodynamic con-
straints to narrow down the solution space. Unfortunately, this
limits the predictive power of these approaches.

Several promising and fundamentally sound approaches that
include proper thermodynamics have been proposed to move
beyond constraint-based flux modeling. One approach is to model
systems using mass action kinetics for those reactions for which
rate parameters are available, and to use constraint-based flux
modeling of other reactions (Chowdhury et al., 2014). In this
case, the fluxes modeled using mass action kinetics limit the
range of fluxes that are possible for those reactions modeled with
constraint-based flux modeling.

A second approach is to use available kinetic parameters where
one can, and then infer the remaining parameters based on prior
knowledge, including balancing rate parameters to ensure that the
correct thermodynamics are obtained (Stanford et al., 2013). An
alternative is to reduce the kinetic complexity of the rate equa-
tion of each reaction-based analysis of the reaction likelihood as a

function of the net flux of the reaction (Canelas et al., 2011). For
some reactions, the rate parameters can be eliminated altogether
and replaced by the thermodynamic likelihood of the reaction
without compromising the fidelity of the model.

Finally, if one knows the reaction directionality, such as from an
experimentally based metabolic flux analysis, then a set of feasible
metabolite concentrations and reaction free energies can be deter-
mined using optimization methods (De Martino et al., 2012). The
ability to map out the energy landscape of metabolism could be
very powerful and could inform us on whether the conjectures by
Lotka, Odum, and others about natural selection discussed in the
section “Introduction” are correct. The criteria used by De Mar-
tino et al. may actually be too stringent in that the optimization
constraints required that the entropy production for each reaction
be positive. As indicated in the section “Discussion” around Eq.
11, the second law only requires that the entropy production for
the overall macroscopic process be positive. An individual reaction
may have a positive flux and also a positive free energy change, but
the chance of such an event decreases exponentially with increases
in the free energy (Evans and Searles, 1994). The analysis requires
the input of flux configurations or reaction directionality. How-
ever, this is where fluctuation theories can play a role if they can
provide flux values as well.

The use of detailed fluctuation theorems will depend on
whether theorems can be developed for non-equilibrium steady
states that do not use rate constants and are instead based on chem-
ical potentials and thermodynamic driving forces. If so, then one
can set the chemical potentials based (ideally) on metabolomics
measurements and carry out large-scale simulations of metabo-
lism that would be identical to kinetic simulations based on rate
constants. Experimentally measuring metabolite concentrations
is an emerging area of great interest. Key to making the mea-
surements useful for interpretation and modeling is reducing the
uncertainty that the measured values reflect in vivo concentrations
(Noack and Wiechert, 2014).

An alternative statistical thermodynamic approach is to model
the process as thermodynamically optimal in which the rates are
proportional to the thermodynamic driving force. In a thermo-
dynamically optimal process, the maximum amount of energy is
extracted from the environment with a minimal amount of dissi-
pation of heat (Sivak and Crooks, 2012). A model based on this
assumption would be roughly consistent with the historical per-
spectives of the physical basis of biological systems. An analogous
approach has been used to analyze metabolomics data, in which
the free energies of reactions are minimized with respect to avail-
able metabolomics data in order to infer sites of enzyme regulation
(Kummel et al., 2006).

As mentioned above, a challenge to using simulations based on
statistical thermodynamics is determining accurate standard free
energies of reaction or formation of each metabolite. Standard
free energies based on group contribution methods are available
en masse (Jankowski et al., 2008; Noor et al., 2013), but group con-
tribution methods can be inaccurate at times. One must be careful
when estimating a standard reaction free energy from group con-
tribution estimates of standard formation free energies in that the
errors in estimates are additive; one must ensure when taking the
difference between two chemical species that any approximations
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used for group energies cancel out. The use of electronic structure
calculations with an appropriate solvent model is an attractive
alternative for determining standard free energies and chemical
potentials. Such calculations have been done on a large scale for
chlorinated hydrocarbons (Bylaska, 2006) and it is feasible to carry
these out for many metabolites. Larger molecules from secondary
metabolism, such as those from plants, may present a challenge in
that they may have multiple minima that contribute to their free
energy of solvation.
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