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ABSTRACT
Colorectal cancer (CRC) remains a major cause of cancer-related deaths worldwide, with early detection being crucial for
improving survival rates. Despite the potential of extracellular vesicles (EVs) as blood biomarkers for CRC diagnosis, their
clinical utility is limited due to complex and time-consuming isolation methods, unverified biomarkers and low diagnostic
performance. Here, we introduce the ZAHV-AI system, which combines the zeolite-amine and homobifunctional hydrazide-
based extracellular vesicle isolation (ZAHVIS) platform with AI-driven analysis for enhanced CRC diagnosis. The ZAHVIS
platform enables simple, rapid and cost-effective EV isolation and one-step extraction of EV-derived proteins and nucleic acids
(NAs), providing a streamlined approach. Using blood plasma samples from 80 CRC patients across all stages and 20 healthy
individuals, we identified four EV-derived miRNA blood biomarkers (miR-23a-3p, miR-92a-3p, miR-125a-3p and miR-150-5p)
by confirming statistical significance with relative quantification (RQ) values from real-time PCR and integrated these with
carcinoembryonic antigen (CEA) levels into an AI-driven diagnostic model. Among 31 combinations used to identify optimal sets,
optimal combination (miR-23a-3p, miR-92a-3p, miR-150-5p and CEA) for overall CRC achieved an area under the curve (AUC)
of 0.9861, outperforming individual markers and conventional CEA tests. Notably, the system achieved perfect performance in
detecting stages 0–1 (AUC: 1.0) and demonstrated high accuracy for stage 2 (AUC: 0.9722) and early-stage CRC (AUC: 0.9861),
using stage-specific optimal combinations. Therefore, the ZAHV-AI system offers a reliable and clinically relevant tool for CRC
diagnostics, significantly enhancing early detection and monitoring capabilities.

1 Introduction

Colorectal cancer (CRC) is amajor global health concern, ranking
third in new cases and second in cancer-related deaths (Bray et al.
2024; Dekker et al. 2019; Siegel et al. 2023). Its high fatality rate
is largely due to the risks of metastasis and recurrence (Ganesh
et al. 2019; Van Cutsem et al. 2016). The progression from normal

colonic epithelium to cancer can take 10–20 years, making early-
stage detection challenging (Rawla et al. 2019). However, early
detection is crucial for timely treatment and can greatly reduce
CRC mortality rates. For example, the 5-year relative survival
rate is approximately 90% for stages 1 and 2, compared to less
than 20% for stages 3 and 4 (Biller and Schrag 2021; Petrelli
et al. 2017). Colonoscopy with biopsy, the gold standard for CRC
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diagnosis, offers the advantage of direct visualization of the entire
colon and the ability to immediately detect and remove suspicious
growths or precancerous polyps (Amri et al. 2013; Bretthauer
et al. 2022). However, its invasiveness leads to patient discomfort
and anxiety, and it presents challenges related to cost and
accessibility. Only 54% of individuals with high-risk adenomas
adhere to the recommended interval for repeated colonoscopy
screenings (Murphy et al. 2016). As a less invasive alternative,
blood-based tests using conventional tumour markers, such as
carcinoembryonic antigen (CEA), have been explored primarily
for screening purposes (Hall et al. 2019). CEA, a glycoprotein in
the human digestive system, serves as a crucial prognosticmarker
for CRC, with elevated levels (> 5.0 ng mL−1) typically observed
in CRC patients compared to healthy individuals (< 2.5 ng mL−1

for non-smokers and < 5.0 ng mL−1 for smokers) (Ruibal Morell
1992; Sajid et al. 2007). Nevertheless, CEA testing can yield false
positives due to benign conditions and has limited sensitivity for
early-stage disease detection, underscoring the pressing need for
improved diagnostic methods and blood biomarkers to enhance
CRC detection.

Recent advances in liquid biopsy have highlighted the potential
of extracellular vesicles (EVs) (van Niel et al. 2018; Wei et al.
2020; Yu et al. 2022). The significance of EVs in various cancer
has grown substantially, not only for their potential in enhancing
diagnostic accuracy but also for their roles in understanding
disease progression, metastasis and therapeutic response (Pucci
et al. 2019; Wang et al. 2022; Xu et al. 2018). Present in body
fluids like plasma, serum, saliva and urine, EVs are enriched
with bioactive molecules such as proteins, nucleic acids (NAs)
and lipids reflecting the physiological state of their parent cells
(Peinado et al. 2011; Witwer et al. 2013; Xu et al. 2016). Among
these molecules, non-coding RNAs have emerged as critical
regulators in cancer biology due to their involvement in gene
expression and signalling pathways (Grillone et al. 2020; Xie
et al. 2019). Specifically, microRNAs (miRNAs) and circular
RNAs (circRNAs) have gained significant interest due to their
enhanced stability in bodily fluids, particularly when enclosed
in EVs, which protect them from enzymatic degradation, as well
as their unique expression profiles in cancer (Chen and Yang
2015; Kristensen et al. 2019; Ogata-Kawata et al. 2014; Palmero
et al. 2011; Wang et al. 2019). miRNAs are small non-coding
RNAs that regulate gene expression, while circRNAs are a type
of non-coding RNA with covalently closed loop structures that
can act asmiRNA sponges, influencing cancer progression. These
properties make EV-derived miRNAs and circRNAs promising
biomarkers for CRC diagnosis, offering the potential for more
accurate and early detection (Ferracin et al. 2010; Vakhshiteh
et al. 2021; Verduci et al. 2021). However, their reliability as
CRC biomarkers remains underexplored, necessitating further
research.

Effective isolation of EVs is crucial for obtaining reliable infor-
mation on the detection sensitivity and accuracy of EV-derived
biomarkers. Traditional methods like ultracentrifugation (UC)
and the total exosome isolation (TEI) method, while commonly
used, present significant complexities and challenges for clinical
application. UC effectively isolates EVs with high purity, but it
requires expensive equipment, is labour-intensive, and can dam-
age EVs due to intense centrifugal forces, affecting the integrity
of EV-derived biomarkers (Tang et al. 2017). Additionally, UC

is time-consuming, requiring several hours to complete multi-
ple centrifugation steps. The TEI method, using a proprietary
polymer to precipitate EVs from biological fluids and collecting
them by low-speed centrifugation, offers a simpler and faster
alternative. However, TEI has drawbacks, including potential co-
precipitation of non-EV contaminants and polymer interference
with downstream applications like proteomic and RNA analyses
(Patel et al. 2019). Size exclusion chromatography (SEC) has
recently gained attention for its simplicity, speed and clini-
cal applicability, enabling rapid processing of clinical samples
through standardized, commercially available protocols (Boing
et al. 2014; Lobb et al. 2015). However, SEC requires collecting
multiple fractions to isolate EVs, which can be cumbersome
without specialized equipment like an auto fraction collector
(Sidhom et al. 2020). When fractions are collected manually, the
process is time-consuming, introduces variability and errors, and
reduces reproducibility. Additionally, EVs are distributed across
large elution volumes (hundreds of microlitres to millilitres),
making SEC more suitable for purification than enrichment.
This extensive elution volume can decrease detection sensitivity
in downstream analyses that require high EV concentrations,
often necessitating additional enrichment steps. These inherent
limitations highlight the need for more efficient, reliable and
clinically feasible EV isolation techniques.

In this study, we developed an advanced system called ZAHV-AI,
which stands for zeolite-amine and homobifunctional hydrazide-
based extracellular vesicle isolation (ZAHVIS) and artificial intel-
ligence (AI)-driven analysis. This system integrates EV isolation
with deep learning-based AI analysis to improve CRC diagnostic
accuracy. The ZAHVIS platform uses zeolite-amine (ZA) and
malonic acid dihydrazide (MDH) for efficient EV capture via
electrostatic and covalent interactions, followed by syringe filters
to effectively filter the ZA with captured EVs. This streamlined
one-step platform is designed for speed, efficiency and cost-
effectiveness, enabling EV isolation in 15 min and the extraction
of EV-derived proteins or NAs with EV enrichment in 30–35 min,
thereby enhancing the convenience of downstream analyses.
The ZAHV-AI system leverages AI-driven analysis to enhance
CRC diagnosis by utilizing relative quantification (RQ) values
of biomarker candidates through real-time PCR. By employing
optimized deep neural networks, the system refines the process
by generating, training and testing various combinations of
cellular and clinically validated biomarkers. Our study assessed
blood-derived EVs from a cohort of 100 individuals, including 80
CRC patients (20 in each of stages 0–1, 2, 3 and 4) and 20 healthy
control (HC) individuals. To identify potential biomarkers, we
selected 15 miRNAs (miR-19a-3p (Yu et al. 2020), miR-21-5p (Du
et al. 2014), miR-23a-3p (Jahid et al. 2012; Yong et al. 2014),
miR-92a-3p (Wei et al. 2019), miR-99b-5p (Zhao et al. 2019),
miR-122-5p (Sun et al. 2020), miR-125a-3p (Wang et al. 2017),
miR-141-3p (Meltzer et al. 2019), miR-150-5p (Bakhsh et al. 2024;
Zhao et al. 2019), miR-181a-5p (Zhao et al. 2022), miR-182-5p
(Liu et al. 2013), miR-200b-3p (Zhang et al. 2018), miR-222-5p
(Li et al. 2021), miR-223-3p (Wang et al. 2023), miR-1246 (Cooks
et al. 2018)) and three circRNAs (hsa_circ_0008558, circLONP2
(Han et al. 2020); hsa_circ_0101802, circPNN (Xie et al. 2020);
hsa_circ_0087960, circLPAR1 (Zheng et al. 2022)) based on pre-
vious research. Utilizing the ZAHVIS platform, we concentrated
EVs and extracted EV-derived RNAs from the cell culture media
of HCT116 cancer cells and CCD-18co normal cells, and from
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blood plasma. Although sevenmiRNAs and three circRNAs were
significant in cell line models, only four miRNAs (miR-23a-
3p, miR-92a-3p, miR-125a-3p and miR-150-5p) were relevant in
blood plasma samples. Among these, miR-150-5p emerged as the
highest-performing marker with an area under the curve (AUC)
of 0.87, compared to 0.75 for CEA.Despite these promising values,
significant diagnostic limitations remain due to considerable
overlap between CRC and HC samples, making it difficult to use
individual biomarkers as reliable diagnostic tools. Notably, the
ZAHV-AI system analyses 31 different combinations to identify
the optimal blood biomarker set, achieving exceptional diagnostic
performance for CRC across various stages. The combination of
miR-23a-3p, miR-92a-3p, miR-150-5p and CEA yielded an AUC
of 0.9861 for overall CRC. Stage-specific outcomes demonstrated
high diagnostic performance with various optimal combinations,
particularly for early-stage CRC (AUC: 0.9861) and advanced-
stage CRC (AUC: 0.9583). In addition, the system achieved perfect
diagnostic performance (AUC: 1.0) in stages 0–1, 3 and 4, and high
performance (AUC: 0.9722) in stage 2. These findings underscore
the potential of the ZAHV-AI system to enhance CRC diagnostics
by integrating efficient EV isolation with robust AI analysis,
providing precise, accessible and reliable tools for early detection
and monitoring in the clinical applications.

2 Materials andMethods

2.1 Materials

The following materials were obtained from specific suppliers.
Zeolite (96096), 3-Aminopropyl(diethoxy)methylsilane (APDMS,
371890), glutaraldehyde (340855), sodium bicarbonate (S5761) and
Apolipoprotein B (ApoB) from human plasma (A5353) were
procured from Sigma–Aldrich (St. Louis, MO, USA). Malonic
acid dihydrazide (MDH, M3206) was sourced from Tokyo Chem-
ical Industry (Tokyo, Japan). Kovax 1–30 mL and BD 1 mL
syringe (309628) were obtained from Korea Vaccine (Ansan-si,
Gyeonggi-do, South Korea) and Becton, Dickinson and Company
(Franklin Lakes, NJ, USA), respectively. Polytetrafluoroethylene
(PTFE) 3 µm syringe filter (18140), PTFE 1 µm syringe filter
(16278), polyvinylidene fluoride (PVDF) 3 µm syringe filter
(18215), PVDF 1 µm syringe filter (18214) were obtained from
Tisch Scientific (Cleves, OH, USA). PVDF 0.22 µm syringe
filter (FJ25ASCCA002DL01) and PVDF 0.45 µm syringe filter
(FJ25ASCCA004FL01) were supplied by GVS Filter Technol-
ogy (Bologna, Italy). 100X antibiotic-antimycotic (15240062),
exosome-depleted foetal bovine serum (FBS, A2720803), Dul-
becco’s modified Eagle medium (DMEM, 41965039) and RPMI
1640 Medium (A1049101) were sourced from Gibco (Waltham,
MA, USA). Invitrogen (Waltham, MA, USA) supplied the Total
Exosome Isolation (TEI) Reagent (4478359), SuperScript IV
First-Strand Synthesis System (18091050), and Total Exosome
RNA & Protein Isolation Kit (4478545). The qEVoriginal col-
umn (ICO-35) for size exclusion chromatography (SEC) was
obtained from Izon Science (Christchurch, New Zealand). Pooled
Human Plasma (IPLAWBLIH50ML) was sourced from Inno-
vative Research (Novi, MI, USA). The antibodies used were
Rabbit Anti-CD9 antibody (ab236630), Mouse Anti-CD81 anti-
body (ab79559), Rabbit Anti-CD63 antibody (ab134045), Rab-
bit Anti-ARF6 antibody (ab131261), Rabbit Anti-GRP78 anti-
body (ab108615), Rabbit Anti-GM130 antibody (ab52649), Rabbit

Anti-ApoB antibody (ab139401), Rabbit Anti-Apolipoprotein E
(ApoE) antibody (ab183597), Goat Anti-Rabbit IgG/HRP antibody
(ab205718), Goat Anti-Mouse IgG/HRP antibody (ab6789) and
Donkey Anti-Rabbit IgG/Gold antibody (ab39597) from Abcam
(Cambridge, UK). Uranyl Acetate Alternative (19485) was pur-
chased from Ted Pella (Redding, CA, USA). Rabbit Anti-Calnexin
antibody (2679S) was obtained from Cell Signalling Technology
(Danvers, MA, USA), and Mouse Anti-Human Serum Albumin
(HSA) Antibody (MAB1455) was sourced from R&D Systems
(Minneapolis, MN, USA). 10X RIPA lysis buffer (20-188) was
obtained from Merck Millipore (Burlington, MA, USA). RIPA
lysis and extraction buffer (89901) and Proteinase K (EO0491)
from ThermoFisher Scientific (Waltham, MA, USA), RNase-free
DNase set (79254) from Qiagen (Hilden, Germany), and NP-40
lysis buffer (J60766) from Alfa Aesar (Haverhill, MA, USA) were
used.Mir-XmiRNAqRT-PCRTBGreenKit (638314)was obtained
from Takara Bio (Shiga, Japan) and Brilliant III SYBR Green
QPCRMasterMix (600882) was supplied by Agilent Technologies
(Santa Clara, CA, USA). The oligonucleotides used were synthe-
sized by BIONICS (Seoul, South Korea) and Macrogen (Seoul,
South Korea).

2.2 Synthesis of the ZA Particles

The synthesis of ZA particles for use in the ZAHVIS platformwas
conducted with slight modifications to a previously established
protocol (Koo, Kim, Jang, et al. 2023). Initially, 3 g of zeolite
were subjected to a dual washing process, involving agitation at
550 rpm for 10 min in deionized water (DW) and 95% ethanol.
To ensure uniform particle size, larger zeolite particles that
precipitatedwithin 1minwere removed during the firstwash. The
remaining zeolite suspension was then centrifuged at 1000 rpm
for 10 s to eliminate smaller particles, followed by the disposal of
the supernatant. The purified zeolite, with an average diameter
of approximately 3.5 µm, was subsequently functionalized with
amine groups by incubating it in a 2% (v/v) APDMS solution
in 95% ethanol under constant stirring at 450 rpm for 4 h. The
functionalized ZA particles were washed three times (5 min each
at 550 rpm) using DW and 95% ethanol to remove unreacted
residues. Finally, the ZA particles were dried in a vacuum
chamber for over 24 h to ensure complete solvent removal and
stored at room temperature until further use. These ZA particles
were then utilized in the ZAHVIS platform for optimization and
efficient EV isolation.

2.3 Workflow of the ZAHVIS Platform

The ZAHVIS platform is an integrated tool for EV isolation, EV-
derived protein extraction and EV-derivedNA extraction, all with
EV enrichment. Initially, 5 mg mL−1 of ZA and 25 mg mL−1 of
MDH were added to biological sample (10 mL of cell culture
media or 1 mL of blood plasma) and incubated for 10 min. The
mixture was then transferred to a Kovax syringe fitted with a
PVDF 0.45 µm syringe filter, and unbound waste was removed by
gently pressing the syringe. The EVs bound to ZA and MDH on
the filter surface were washed with 3 mL of PBS, followed by air
injection to eliminate residual PBS. Following this preparation,
EVs could be processed in three ways depending on the intended
analysis. For EV isolation, 300 µL of high pH elution buffer
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(10 mM sodium bicarbonate, pH 10.4) was injected into the
filter and incubated for 1 min. The detached EVs were collected
by air injection into sterile tubes and either used immediately
or stored at 4◦C for short-term use and −80◦C for long-term
storage. For protein extraction, 300 µL of RIPA lysis buffer was
injected, followed by a 20-min incubation at 4◦C. The extracted
proteins were collected by air injection and stored at −20◦C or
used directly. For RNA extraction, 300 µL of NP-40 lysis buffer
containing 7.5 mg MDH (2.5 mg per 100 µL), 3 µL of proteinase
K and 10 µL of RNase-free DNase I was injected and incubated at
room temperature for 20 min. During this step, released RNAs
bound to ZA and MDH on the filter surface, while unbound
proteins and other molecules were removed by air injection,
followed by PBS washing and air drying. Finally, RNAwas eluted
by injecting 300 µL of high pH elution buffer, incubated for
1 min, and collected by air injection. The isolated RNA was used
immediately or stored at −80◦C.

2.4 Cell Line Models

The HCT116 (ATCC CCL-247) human colorectal carcinoma cell
line and the CCD-18co (KCLB 21459) normal human colon cell
line were acquired from the American Type Culture Collection
and the Korean Cell Line Bank, respectively. Both cell lines were
cultured under standard conditions at a temperature of 37◦C and
a CO2 concentration of 5%. The DMEMmedia was supplemented
with 10% exosome-depleted FBS and 1% antibiotic-antimycotic
solution. To isolate EVs from both HCT116 and CCD-18co cells,
the cells were grown until they reached approximately 80% con-
fluence. The cell cultures were then subjected to centrifugation
at 400 g for 30 min at a temperature of 4◦C to obtain the cell-free
supernatant. After filtration using a PVDF 0.22 µm syringe filter,
these supernatants were either immediately used for EV isolation
or stored at a temperature of −20◦C for a maximum of 4 weeks.

2.5 EV Isolation Methods

For comparison with the ZAHVIS platform, conventional EV iso-
lationmethods including ultracentrifugation (UC), total exosome
isolation (TEI) and size-exclusion chromatography (SEC) were
employed. For UC, 10 mL of cell culture media was centrifuged
at 300 g for 10 min to remove cell debris, followed by 2000 g
for 20 min to eliminate apoptotic bodies. The supernatant was
transferred to a new tube and further centrifuged at 10,000 g for
30 min to remove larger vesicles and remaining debris. The final
supernatant was subjected to ultracentrifugation at 110,000 g for
90 min at 4◦C, and the resulting EV pellet was resuspended in
300 µL of PBS. Similarly, for TEI, 10 mL of cell culture media
was mixed with 5 mL of TEI reagent and incubated overnight
at 4◦C. After centrifugation at 10,000 g for 60 min at 4◦C, the
supernatant was discarded and the EV pellet was resuspended
in 300 µL of PBS. For SEC, the chromatography column was
equilibrated to room temperature and flushed with two column
volumes of PBS. A total of 500 µL of cell culture media was
loaded onto the column, and 24 fractions (500 µL each) were
sequentially eluted. The EV-containing fractions (fractions 7–
10) were pooled and used directly for downstream analysis. The
isolated EV samples were either used immediately or stored at
4◦C for short-term use and −80◦C for long-term storage. For

protein analysis, EV pellets obtained fromUC and TEI were lysed
using 1XRIPA lysis buffer, while SEC-derived EVs, due to dilution
during fractionation, were lysed using 10X RIPA lysis buffer. EV-
derived protein samples were either analysed immediately or
stored at −20◦C. For EV-derived NA analysis, RNA was extracted
from EV samples obtained using ZAHVIS, UC, TEI and SEC
methods, employing the Total Exosome RNA & Protein Isolation
Kit according to the manufacturer’s protocol. The extracted RNA
was either used immediately or stored at −80◦C.

2.6 EV Characterization

The morphology of the EVs obtained through the ZAHVIS
platform, UC, TEI and SEC was evaluated using TEM. A
formvar/carbon-coated copper grid (coated side down) was
placed onto each droplet and incubated at room temperature for
5 min. Excess liquid was removed with filter paper, and the grids
were transferred to 2.5% glutaraldehyde for 2 min for fixation.
After washing twice with DW for 30 s each, the grids were either
processed for direct TEM analysis or subjected to immunogold
labelling. For CD9 labelling, the grids were blocked with 5% BSA
for 20 min, incubated with anti-CD9 primary antibody (1:25 in
PBS) for 30 min at room temperature, and washed three times
with PBS. The grids were then incubated with gold-conjugated
secondary antibody (1:100 in PBS) for 20 min, followed by three
additional PBS washes. All grids were negatively stained with
2% uranyl acetate alternative for 20 s and air-dried for at least
30 min in a fume hood. TEM images were observed using a JEM-
ARM200F device (JEOL, Tokyo, Japan). For SEM imaging on the
ZAHVIS platform, the EVswere diluted 1:10 in PBS and deposited
as droplets on a silicon wafer, which was then incubated at 37◦C
for 30 min. The wafer was fixed with 2.5% glutaraldehyde for
10 min and subsequently immersed in different concentrations of
ethanol (30%, 50%, 70%, 80%, 90% and 100%) for 15min each. After
drying in a fume hood, a thin layer of platinum (Pt) was applied to
the wafers, and the images were captured using a JSM-7610F-Plus
device (JEOL). To determine the quantity, diameter distribution
and surface properties of the EVs, we conducted NTA and zeta
potential analysis following standard protocols. ForNTAanalysis,
EVs obtained from ZAHVIS, UC and TEI were diluted 1:50 in
PBS, while SEC-isolated EVs were analysed without dilution. The
prepared samples were injected into cuvettes andmeasured using
the NS300 instrument (Malvern Panalytical, Malvern, UK). Data
were processed with NanoSight software (Malvern Panalytical) to
assess EV concentration and intensity distribution. The surface
charge of the EVs was assessed using a Zetasizer Nano ZS90
instrument (Malvern Panalytical).

2.7 Western Blot Analysis

Proteins extracted from EVs isolated using the ZAHVIS platform,
UC, TEI and SEC methods were analysed by western blotting.
The protein concentration was determined using the Bradford
assay, with a series of BSA dilutions as the standard. Equal
amounts of protein (20 µg) were separated on a 10% SDS-PAGE
gel and transferred to a PVDF microporous membrane. The
membrane was blocked for 1 h in PBS-Tween 20 with 5% skim
milk. Primary antibodies (CD9, CD81, CD63, Calnexin, GRP78,
GM130, ApoB, ApoE and HSA) were diluted according to the
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manufacturer’s instructions and incubated overnight at 4◦C. The
membranes were then incubated with HRP-tagged secondary
antibodies diluted as per the manufacturer’s instructions for 1 h.
Marker proteins were detected using a mixture of peroxidase and
chemiluminescent substrate, and images were captured using a
ChemiDoc MP Imaging System (Bio-Rad, Hercules, CA, USA)
and Image Lab software (Bio-Rad).

2.8 Real-Time PCR and RQ Values

ThemiRNA and circRNA biomarker candidates were normalized
using small nuclear RNA U6 (U6 snRNA) and GAPDH, respec-
tively. For miRNAs, the forward primer consisted of the miRNA
sequence, and the reverse primerwas themRQ3’ Primer provided
by TAKARA. For circRNAs, primers were synthesized and used
based on the CircInteractome database and the NCBI primer
design tool. All primer sets are listed in Table S1. For the synthesis
ofmiRNA cDNA and real-time PCR analysis, we have utilized the
Mir-XmiRNA qRT-PCR TBGreen Kit. We have combined 4 µL of
EV-derived RNAs from the ZAHVIS sample with 5 µL of reaction
buffer and 1 µL of reverse transcription enzyme. This mixture was
incubated at 37◦C for 1 h and then the enzyme was inactivated
by heating at 85◦C for 5 min. Subsequently, 90 µL of RNase-free
water was added to the mixture to obtain a final volume of 100 µL
of synthesized cDNA, which was stored at −20◦C for future use.
For the real-time PCR of miRNA, 2 µL of synthesized cDNA was
combined with 0.5 µL of 10 µM miRNA-specific forward primer,
0.5 µL of 10 µM mRQ 3′ reverse primer, 12.5 µL of TB green
premix and 9.5 µL of RNase-freewater. The amplification protocol
included an initial denaturation step at 95◦C for 10 s, followed by
40 cycles of 5 s at 95◦C and 20 s at 60◦C, and concluded with
a final melt curve stage to confirm the specificity of the PCR
products. For the synthesis of cDNA fromcircRNAs,we employed
the SuperScript IV First-Strand Synthesis System. Initially, 11 µL
of EV-derived RNAs from the ZAHVIS sample were mixed with
the reaction buffer and reverse transcription enzyme, creating
a 20 µL reaction mixture. This mixture was incubated at 23◦C
for 10 min to facilitate primer annealing, followed by incubation
at 50◦C for 10 min to allow reverse transcription. The reaction
was then terminated by heating at 80◦C for 10 min to inactivate
the reverse transcriptase. To the synthesized cDNA, we added
30 µL of RNase-free water, resulting in a final volume of 50 µL.
The cDNA was subsequently stored at −20◦C until further use.
For the real-time PCR analysis of circRNA, 5 µL of synthesized
cDNA was combined with circRNA-specific primer sets and the
Brilliant III SYBR Green QPCR Master Mix in a 20 µL reaction
volume. The qPCR amplification protocol began with an initial
denaturation step at 95◦C for 2min. Thiswas followed by 50 cycles
of denaturation at 95◦C for 15 s, annealing at 60◦C for 30 s and
extension at 72◦C for 1 min. To verify the specificity of the PCR
products, a final melt curve analysis was performed.

The expression levels of miRNAs and circRNAs were quantified
using comparativeCt values. TheRQvalue of gene expressionwas
determined through the following steps. First, the ΔCt value was
calculated by subtracting the Ct value of the reference gene (U6
for miRNAs and GAPDH for circRNAs) from the Ct value of the
biomarker candidates. This was followed by calculating the ΔΔCt
value by subtracting the average ΔCt of the control group from the
ΔCt of the test samples. Finally, the RQ valuewas computed using

the equation RQ= 2−ΔΔCt. For CRC andHC, the calculations were
as follows:

ΔCt = Ct (Biomarker candidates) − Ct (U6 or GAPDH) (1)

ΔΔCt = ΔCt (CRC and HC) − ΔCt (Average of HC) (2)

Relative quantif ication (RQ) value = 2−ΔΔCt (3)

2.9 Collection of Blood Plasma Samples

The clinical validation of the ZAHVIS platform was conducted
following the approval of the Institutional Review Board of
Asan Medical Centre (IRB no. 2023-0484), with all participants
providing informed consent prior to inclusion. A total of 100
blood plasma samples and data were obtained from Asan Bio-
Resource Centre, Korea Biobank Network (2021-13(230)). These
samples were primarily focused on CEA levels and EV-derived
biomarkers, without data on other traditional CRC biomarkers
such as CA19-9 or CA125, and dietary information was not
available. Blood frompatients scheduled for surgerywas collected
in citrate tubes 1 day before the operation, typically in two
tubes (5cc each). The collected blood was centrifuged at 4◦C
and 3000 rpm (1900 g) for 10 min using a Hanil Combi-514R
Refrigerated Centrifuge (Hanil Science, Gimpo, South Korea).
Subsequently, 1.5 mL of the upper plasma layer was transferred
to a new tube and centrifuged again at 4◦C and 13,100 rpm
(16,000 g) for 10 min using a Microcentrifuge-5415R (Eppendorf,
Hamburg, Germany). Approximately 1 mL of the upper layer of
the centrifuged plasma was then transferred to a cryotube for
freezing. Blood plasma samples from healthy participants visiting
the Health Screening & Promotion Centre were also obtained
from the BRC of Asan Medical Centre. All samples were stored
in a liquid nitrogen tank (LN2 tank) at −196◦C for preservation.
The enrolled subjects included individuals with histologically or
cytologically confirmed HC (n = 20), CRC stages 0–1 (n = 20),
CRC stage 2 (n = 20), CRC stage 3 (n = 20) and CRC stage 4
(n = 20). These samples were properly classified and utilized for
subsequent analysis.

2.10 AI-Driven Analysis

We employed a deep learning-based AI-driven analysis to eval-
uate the diagnostic performance of various biomarker combi-
nations. The analysis was conducted using Python 3.11.4 with
libraries such as TensorFlow (2.14.0), Keras (2.14.0), NumPy
(1.24.3), Pandas (2.1.1), scikit-learn (1.3.0) and Matplotlib (3.7.1).
The dataset was preprocessed by converting the CRC stages
and HC columns to binary labels and normalizing the features
using Z-score standardization. To ensure representative class
distribution, samples were divided into training (70%) and test
(30%) sets using an optimized splitting method. The optimal
split for each group (HC, CRC stages 0–1, stage 2, stage 3, stage
4) was determined by evaluating the mean squared error of
feature means and standard deviations between training and
test sets over 1000 iterations, aiming to minimize the difference.
Various biomarker combinations were evaluated using a trained
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neural network model. The model architecture consisted of an
input layer, two hidden layers with dropout regularization, and
an output layer with sigmoid activation. Hyperparameters were
optimized through grid search andK-fold (K= 5) cross-validation.
The optimization process involved exploring a range of hyper-
parameters, including learning rates (0.0001, 0.001, 0.01, 0.1),
batch sizes (4, 8, 16, 32), dense units (16, 32, 64, 128) and dropout
rates (0.1, 0.2, 0.3, 0.4). The performance of each hyperparameter
combination was evaluated using the validation loss and AUC
metrics. Early stopping was implemented to prevent overfitting,
and the best-performing hyperparameters were selected based
on the highest combined metric of (1−average validation loss)
and average AUC. The selected hyperparameters included the
Adam optimizer with a learning rate of 0.1, a batch size of 16,
128 dense units for the first hidden layer, and a dropout rate
of 0.1. The second hidden layer was set to half the size of the
first hidden layer, and both hidden layers included the same
dropout rate. ROCcurveswere plotted for test datasets to visualize
diagnostic performance, and AUC values were confirmed. The
95% confidence intervals (CI) for the AUC values were calculated
using the bootstrap method with 1000 resampled datasets. To
evaluate the diagnostic performance on the test set, performance
metrics such as sensitivity, specificity, accuracy and F1 score were
calculated based on Youden’s index. This comprehensive analysis
identified the best-performing combinations. The methodology
was consistently applied to analyse overall stages, early-stage
(stages 0–2), advanced-stage (stages 3–4) and individual stages
(stages 0–1, 2, 3 and 4).

2.11 Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics
version 27.0 (IBM Corp., Armonk, NY, USA), GraphPad Prism
version 10.2.3 (GraphPad Software, La Jolla, CA, USA) and
Python. Continuous variables were compared using the Student’s
t-test for normally distributed data and theMann–WhitneyU-test
for non-normally distributed data, as determined by the Shapiro–
Wilk and Kolmogorov–Smirnov tests. For all statistical tests, p
values less than 0.05 were considered statistically significant.
Pythonwas utilized to compute theROCcurve and theAUCusing
the Scikit-learn library, with the ROC curve visualized using the
Matplotlib library. Additionally, performance metrics, including
sensitivity, specificity, accuracy and F1 score, were calculated
based on Youden’s index using the Scikit-learn library. The t-
SNE analysis was performed using five combined markers as
the input for binary classification (CRC and HC), and the t-SNE
visualization was created using the Matplotlib library.

3 Results

3.1 Design of the ZAHV-AI System

The ZAHV-AI system is designed to enhance the diagnosis
and monitoring of CRC by leveraging biomarkers derived from
EVs in liquid biopsy samples. This innovative system integrates
the ZAHVIS platform for efficient EV isolation with deep
learning-based AI-driven analysis to determine the optimal blood
biomarker combinations (Figure 1). The workflow begins with
the preparation of blood plasma samples from CRC patients at

various stages (early-stage: stages 0–2; advanced-stage: stages 3–
4) andHC individuals. The ZAHVIS platform initiates the process
by adding ZA and MDH to the plasma samples, followed by a 10-
min incubation period to facilitate rapid and efficient EV capture.
The mixture is then passed through a syringe filter to further
enrich the EVs (Figure 1a). The ZAHVIS platform isolates the
EVs or extracts critical components such as EV-derived proteins
and NAs to prepare for subsequent steps. This stepwise approach
ensures a comprehensive and streamlined analysis of the crucial
elements contained within the EVs, significantly enhancing the
overall efficiency of the process (Figure 1b). The ZAHV-AI system
incorporates the AI-driven analysis of EV-derived biomarker
combinations to aid in CRC diagnosis. Initially, we selected 15
miRNAs and three circRNAs as potential biomarker candidates
based on previous studies indicating their association with CRC.
Through rigorous validation using cell line models and clinical
samples, four significant miRNA markers were identified. These
validated markers, along with the conventional CEA tumour
marker, were combined into 31 different combinations for further
analysis. The AI-driven component evaluates these combinations
using receiver operating characteristic (ROC) curves and AUC
values, along with performance metrics such as sensitivity, speci-
ficity, accuracy and F1 scores. This comprehensive evaluation
identifies themost effective combinations for distinguishing CRC
from HC, as well as for differentiating among various CRC stages
(overall CRC, early-stage, advanced-stage and individual stages
[stages 0–1, 2, 3 and 4]) (Figure 1c). The ZAHV-AI system’s
ability to integrate efficient EV isolation with AI-driven analysis
represents a significant advancement in CRC diagnostics. This
integration provides a streamlined, efficient and highly sensitive
approach for the early detection and monitoring of CRC using
blood-based EV-derived biomarkers, offering a robust tool for
improving patient outcomes.

3.2 Implementation andWorking Principle of
the ZAHVIS Platform

The ZAHVIS platform is engineered to efficiently isolate EVs
from biological samples by utilizing ZA and MDH as functional
materials (Figure S1A). It’s effectiveness in EV capture and
isolation is based on a robust bonding mechanism facilitated by
these two key components. ZA, derived from zeolites, features
a naturally porous aluminosilicate (Al2O3 and SiO2) structure
with a significantly larger surface area compared to flat, uniform
surfaces, which enhances interactions with EVs and leads to
improved yield and purity (Li et al. 2017). As natural minerals,
zeolites are abundant, cost-effective and provide notable stability
and uniformity, making them well-suited for large-scale appli-
cations. The negatively charged sites within the aluminosilicate
framework allow for easy surface functionalization. Bymodifying
the surface with amine groups (NH2), ZA gains a positive surface
charge, which promotes electrostatic interactions with the nega-
tively charged EV membranes. These properties, including high
surface area and effective surface modification, lead to efficient
EV capture and stable binding, making ZA highly effective for
EV isolation. MDH, a soluble, low-toxic and thermally and
chemically stable material, functions as a crosslinking agent
that significantly enhances the efficiency and precision of EV
capture due to its enhanced binding and adsorption capacity.
MDH contains hydrazide reactive groups (C = ONHNH2) at
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FIGURE 1 Overview of the ZAHV-AI system. The ZAHV-AI system integrates the ZAHVIS platform for efficient EV enrichment, isolation,
and extraction of proteins and NAs, coupled with AI-driven analysis to identify biomarker combinations for enhanced CRC diagnosis. Created with
BioRender.com. (a) EV enrichment process. Blood plasma from CRC patients and HC individuals is incubated with zeolite-amine (ZA) and malonic
acid dihydrazide (MDH) for 10 min. This allows EVs to attach to the ZA surface via electrostatic and covalent interactions. The mixture is then filtered
to capture ZA-bound EVs. (b) EV isolation and molecular extraction for downstream analysis. Post-enrichment, the ZAHVIS platform facilitates EV
isolation and the extraction of components, specifically EV-derived proteins and NAs, providing a streamlined approach for comprehensive EV analysis.
(c) AI-driven biomarker analysis. RNA extracted from EVs undergoes analysis to identify significant miRNA and circRNA biomarkers, leading to the
selection of four miRNAs. These miRNAs, along with the conventional CEA, are evaluated across 31 combinations using AI with the dataset split into
training (70%) and test (30%) sets. Metrics such as receiver operating characteristic (ROC) curve, area under the curve (AUC), sensitivity, specificity,
accuracy, and F1 score are used to evaluate diagnostic performance and determine the optimal combinations for overall CRC and stage-specific CRC
(early-stage, advanced-stage, and specific stages 0–1, 2, 3, 4).

both ends, providing dual functionality. The positively charged
hydrazine groups (NH-NH2) facilitate electrostatic interactions
with the negatively charged EVs. Additionally, the carbonyl
components (C = O) of MDH form imine bonds (C =N) with the
amines of ZA, resulting in a stable binding mechanism. This dual
interaction—electrostatic and covalent—ensures the successful
capture and secure binding of EVs to the ZA surface within just
10 min. Following EV capture by the ZA and MDH, the mixture
undergoes syringe filtration. The ZA particles, larger than the
syringe filter’s pore size, retain the bound EVs while unbound
molecules pass through as waste. This filtration process is quick,
straightforward and cost-effective, requiringminimal equipment,
making it accessible for a wide range of laboratory settings.

The ZAHVIS platform is a one-step solution that not only
concentrates the EVs but also facilitates the isolation of EVs and
the extraction of EV-derived proteins and NAs (Figure S1B). To
begin with, EV isolation uses a high pH elution buffer, causing
the amine group of ZA and hydrazine group of MDH to lose
their positive charge, detaching the EVs concentrated on the
ZA surface. These separated EVs can then be easily filtered
through the pores for isolation. As a result, EV isolation with
the ZAHVIS platform is completed in under 15 min, result-
ing in high-concentration, high-purity EVs. For the extraction
of EV-derived proteins, the ZAHVIS platform uses the RIPA
lysis buffer to dissolve EVs. These proteins, due to their non-
reactivity with ZA and MDH, remain suspended in the RIPA
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lysis buffer. Consequently, EV-derived proteins can be readily
obtained through a simple collection of the buffer within 30 min.
To extract EV-derived NAs, the ZAHVIS platform employs a
non-chaotropic NP-40 lysis buffer instead of the typical RIPA or
generic lysis buffers, effectively lysing EVs while preventing NA
degradation caused by chaotropic reagents. Using non-chaotropic
lysis buffer, the ZAHVIS platform ensures the preservation of NA
integrity, resulting in higher quality and yield for downstream
applications. When EVs are dissolved, the released EV-derived
NAs can form bonds with ZA and MDH (Jeon et al. 2024; Koo,
Kim, Lee, et al. 2023; Koo, Kim, Jang, et al. 2023). These bonds
are facilitated by electrostatic interactions between the negatively
charged EV-derived NAs and the positively charged ZA and
MDH. Additionally, the carbonyl groups of MDH form imine
bonds with the amine groups of the nucleobases adenine (A),
guanine (G) and cytosine (C), as well as the amine groups of
the ZA. Similarly, the carbonyl groups of the nucleobases G,
C, thymine (T, in DNA) and uracil (U, in RNA) form imine
bonds with the amine groups of the ZA. Furthermore, the
hydrazide groups of MDH form hydrazone bonds (–C = N–
NH–) with the carbonyl groups of the nucleobases G, C, T and
U. These interactions result in both electrostatic and covalent
bonds, effectively trapping the EV-derivedNAs on the ZA surface.
This method ensures a more stable capture of NAs, thereby
enhancing the reliability and efficiency of the extraction process.
The bonds between the extracted NAs and both ZA andMDH can
be disrupted by the high pH elution buffer, facilitating EV-derived
NAs extraction within 35 min. The ZAHVIS platform enables the
enrichment, isolation and extraction of EV-derived components
within remarkably short timeframes. This efficiency is largely due
to the unique properties of ZA and MDH, which facilitate rapid
and effective capture and isolation of EVs and their components,
making the ZAHVIS platform a highly effective tool for cancer
diagnostics and research.

3.3 Characterization, Optimization and
Comparative Analysis of the ZAHVIS Platform

The characteristics of the ZAHVIS platform were confirmed
through a series of analytical techniques, including scanning
electron microscopy (SEM), dynamic light scattering (DLS),
Fourier-transform infrared (FTIR) spectroscopy and zeta poten-
tial analyses (Figure 2a–f). SEM images revealed the structural
characteristics and interaction dynamics of EVs with ZA and
MDH. Zeolite exhibited robust structural features even during
amine modification and maintained stability (Figure 2a). Upon
capturing EVs, the ZA displayed clear interactions with EVs,
highlighted in both standard and magnified coloured formats,
showing EV sizes ranging from 121.54 to 184.81 nm (Figure 2b).
Additional SEM analysis confirmed the successful isolation of
EVs (Figure 2c). DLS analysis provided the size distribution of
ZA particles, which averaged 3532.1 ± 471.6 nm, indicating a
relatively uniform size (Figure 2d). The FTIR spectra confirmed
the chemical modifications on the ZA surface due to function-
alization with 3-Aminopropyl(diethoxy)methylsilane (APDMS)
andMDH, as well as subsequent interactions with EVs, indicated
by characteristic peaks at specific wavelengths (Figure 2e). The
FTIR analysis of ZA revealed characteristic peaks of the zeolite
structure at 461 cm−1 (symmetric bending of tetrahedrally bonded
Si or Al), 550 cm−1 (symmetric stretching of double six-membered

rings), 665 cm−1 (symmetric stretching of Si-O-Si) and 974 cm−1

(asymmetric stretching of Si-O-Al and Si-O-Si), as well as peaks
at 1665 cm−1 (NH bending) and 3462 cm−1 (NH stretching) due
to the introduction of amine groups from APDMS. These peaks
signify the successful modification of amine functionalities onto
the zeolite surface. In the spectra for ZAmodifiedwithMDH (ZA-
MDH), additional peaks emerged at 1418 cm−1 (NH bending and
CN stretching), 1533 cm−1 (CN stretching), along with increased
intensities at 1665 cm−1 (NH bending) and a broad peak at 3462
cm−1 (NH stretching). These changes indicate that MDH reacted
with ZA, and the characteristic peaks of MDH are now present
on the ZA surface. Specifically, the enhanced intensity of the
peak at 1533 cm−1 suggests the formation of imine bonds, as
the carbonyl components of MDH form imine bonds with the
amines of ZA, resulting in a stable binding mechanism. For EVs
captured by ZA-MDH (ZA-MDH-EVs), the FTIR spectra showed
significant changes, especially in the peaks related toNHbending
and stretching. The reduced intensity of the NH peaks (1665
and 3462 cm−1) confirms the effective capture and interaction of
EVs with the ZA-MDH. This suggests that EVs have successfully
bound to the ZA-MDH surface. Zeta potential measurements
demonstrated significant surface charge changes through each
stage of modification and EV capture (Figure 2f). The initial zeta
potential of pure zeolite averaged −24.47 ± 3.17 mV, indicating
a highly negative surface charge. The presence of hydroxyl
groups (OH) on the zeolite surface enables functionalizationwith
APDMS, leading to a zeta potential change to 7.51 ± 1.02 mV as
amine groups are introduced. Further modification with MDH
shifted the zeta potential to 9.99 ± 1.29 mV, reflecting additional
surface changes. Finally, the zeta potential of ZA-MDH-EVs was
−21.23 ± 1.59 mV, demonstrating effective interactions between
ZA and negatively charged EVs through electrostatic binding
mechanisms.

To determine the best conditions for efficient EV isolation using
the ZAHVIS platform, several key parameters were optimized,
including the incubation time for EV enrichment, the concentra-
tion of ZA and MDH, and the type and pore size of the syringe
filter (Figure 2g–j). First, we optimized the incubation time for EV
enrichment by testing durations of 5, 10, 15 and 20min. The results
showed a significant increase in efficiency at 10 min compared to
5 min, but the efficiency levelled off after 10 min, with similar
results at 15 and 20 min (Figure 2g). This suggests that a 10-
min incubation time is sufficient for EV enrichment. Next, the
concentration of ZA was evaluated. Efficiency increased as the
amount of ZA rose from 1 to 5 mg mL−1 but decreased when
the concentration further increased to 10 mg mL−1 (Figure 2h).
Increasing the amount of ZA to 5 mg mL−1 enhances the surface
area available for EV binding, while an excessive amount of
ZA can decrease the opportunity for contact between ZA and
EVs due to insufficient mixing. The concentration of MDH is
crucial as it affects the binding strength between ZA and EVs.
Isolation efficiency peaked at an MDH concentration of 25 mg
mL−1 but decreased with further increases (Figure 2i). Lower
MDHconcentrations provide fewer hydrazide groups for effective
binding to the EVs. However, at higher concentrations, excess
MDH can act as an inhibitor by causing steric hindrance on
the ZA surface, thereby reducing the ability of EVs to bind
efficiently. We further evaluated the efficiency by the type (PVDF
and PTFE) and pore size of the syringe filter (0.22, 0.45, 1, 3 µm)
used in the ZAHVIS platform. As shown in Figure 2j, pore
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FIGURE 2 Characterization and optimization of the ZAHVIS platform. (a–c) Scanning electron microscopy (SEM) images of ZA particles (a) and
ZA with captured EVs, shown in standard and magnified colored formats (b). The colored image highlights ZA (orange), captured EVs (pink), and the
background (green). Isolated EVs (c). (d) Dynamic light scattering (DLS) analysis showing ZA particle size distribution. (e) Fourier-transform infrared
(FTIR) spectra for ZA, ZA modified with MDH (ZA-MDH), EVs bound to ZA-MDH (ZA-MDH-EVs), and MDH. (f) Zeta potential measurements for
zeolite, ZA, ZA-MDH, and ZA-MDH-EVs. (g–j) Optimization of incubation time for EV enrichment (g), ZA concentration (h), MDH concentration (i),
and syringe filter pore size and type (j) using cycle threshold (Ct) values of miR-21-5p after EV enrichment and EV-derived RNA extraction with the
ZAHVIS platform. n = 3 or 4 biologically independent experiments per group. Bars and dots represent mean ± standard deviation (SD).

size influenced isolation efficiency more noticeably than filter
material, with smaller pore sizes generally improving efficiency,
while both PVDF and PTFE filters provided sufficient stability
for EV isolation. However, the 0.22 µm filter demonstrated lower
efficiency due to excessive pore constriction, leading to clogging
and restricted flow, which hindered the isolation process. In
contrast, the 3 µm filter exhibited lower efficiency than the
0.22, 0.45 and 1 µm filters because the small ZA particles,
with a mean particle size of 3.5 µm, passed through the filter,
reducing EV capture. The 0.45 µm PVDF filter achieved the best
balance between particle retention and flow, ensuring efficient
EV isolation. Based on these results, the optimal conditions were
identified as a 10-min incubation time, 5 mg mL−1 ZA, 25 mg
mL−1 MDH, and the use of a 0.45 µm PVDF syringe filter. These
parameters were applied in all subsequent experiments to ensure
consistent efficiency and reliability in EV isolation and analysis.

To further assess the contributions of electrostatic interaction
and covalent bonding in EV isolation, we compared EV recovery
between ZA alone, which relies solely on electrostatic interac-

tion, and ZA and MDH, which incorporates both electrostatic
interaction and covalent bonding (Figure S2). The results showed
that the addition of MDH significantly improved EV recovery,
with EV concentrations of 9.77 × 107 particles mL−1 for ZA alone
and 1.58 × 108 particles mL−1 for the combination of ZA and
MDH, compared to the initial sample at 1.80 × 108 particles mL−1.
Statistical analysis confirmed significant differences between the
initial sample and ZA alone (**, p = 0.0031) and between ZA
alone and the combination of ZA and MDH (**, p = 0.0071),
while no significant difference was observed between the initial
sample and the combination of ZA and MDH (ns, p = 0.1306).
These findings demonstrate that covalent bonding, mediated by
MDH, enhances EV retention and recovery within the optimized
10-min incubation period. MDH also functions as a cross-linker,
stabilizing EV capture and minimizing loss. This highlights the
advantage of the dual isolation mechanism, distinguishing the
ZAHVIS platform from methods based solely on electrostatic
interaction. In addition, the reproducibility of the ZAHVIS
platform in biomarker detection was evaluated by assessing the
linearity ofmiRNAquantification using serial dilutions of plasma
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FIGURE 3 Characterization of EVs isolated by the ZAHVIS platform compared to traditional methods. (a–d) Transmission electron microscopy
(TEM) images of EVs isolated using the ZAHVIS platform (a), ultracentrifugation (UC) (b), total exosome isolation (TEI) (c), and size exclusion
chromatography (SEC) (d). Each panel includes both standard TEM and CD9-gold labelling to confirm EV presence. (e–h) Nanoparticle tracking
analysis (NTA) results displaying the size distribution and concentration of EVs isolated using ZAHVIS (e), UC (f), TEI (g), and SEC (h). (i) Zeta potential
measurements of EVs isolated using the samemethods. (j–o)Western blot analysis of EV-derived proteins. EVswere concentrated and proteins extracted
in a one-step process using the ZAHVIS platform. UC, TEI and SECmethods involved first isolating EVs followed by protein extraction. The EVmarkers
include CD9 (j), CD81 (k) and CD63 (l), while the non-EV markers include Calnexin (endoplasmic reticulum (ER) marker) (m), Glucose-regulated
protein 78 (GRP78, ER stress marker) (n) and Golgi matrix protein 130 (GM130, Golgi marker) (o). Positive control (Pos.) results are shown using lysates
from the HCT116 cell line. Scale bars in TEM images represent 500 nm or 200 nm. Bars represent mean ± SD

samples (Figure S3). The results showed a linear correlation
between sample dilution and miRNA levels, with an R2 value of
0.9765. These findings demonstrate that ZAHVIS enables efficient
and reproducible EV isolation through a dual mechanism under
optimized conditions.

The performance of the ZAHVIS platformwas evaluated through
comparisons with commonly employed EV isolation techniques,
specifically UC, TEI and SEC methods (Figure 3). The mor-
phology of EVs isolated by each method was verified using
TEM images (Figure 3a–d). All methods revealed spherical EVs
within the typical size range, confirming structural integrity.
Standard TEM and CD9-gold immunolabeling images confirmed
successful EV capture across all methods. In addition, EV
size distribution and concentration were evaluated using NTA
(Figure 3e–h). The mean particle sizes were 187.1 ± 27.5 nm for
ZAHVIS, 202.4 ± 36.7 nm for UC, 200.9 ± 76.1 nm for TEI, and
141.3 ± 40.6 nm for SEC. The NTA results, measured at a 1:50

dilution, showed EV concentrations of 9.89 × 108 ± 4.34 × 107
particles mL−1 for ZAHVIS, 1.20 × 109 ± 5.90 × 107 particles mL−1

for UC, and 1.40 × 109 ± 2.25 × 107 particles mL−1 for TEI, while
SEC, measured without dilution, yielded 4.00 × 108 ± 2.53 × 107
particles mL−1. These results indicate that ZAHVIS yields slightly
fewerEVs thanUCandTEI,while SEC shows the lowest recovery.
To further evaluate the functional efficiency of ZAHVIS, we
compared EV-derived RNA recovery across the different isolation
methods (Figure S4). The one-step ZAHVIS approach, which
integrates EV enrichment and RNA extraction in a single work-
flow, was evaluated alongside conventional workflows, where
EVs were first isolated using ZAHVIS, UC, TEI or SEC, followed
by RNA extraction using a commercial kit. The results showed
that the one-step ZAHVISmethod yielded the highest RNA recov-
ery, with a Ct value of 26.06, compared to 28.99 for ZAHVIS with
the commercial kit, 28.20 for UC, 27.46 for TEI, and 34.28 for SEC.
These findings suggest that the one-step ZAHVIS approach min-
imizes sample loss and enhances RNA recovery by integrating
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EV enrichment and RNA extraction, compensating for its slightly
lower EV yield compared to UC and TEI. Additionally, zeta
potential measurements were performed to examine the surface
properties of the isolated EVs (Figure 3i). The EVs exhibited
negative surface charges, with values of −21.10 ± 3.15 mV for
ZAHVIS, −15.53 ± 1.91 mV for UC, −10.67 ± 1.12 mV for TEI,
and −12.37 ± 1.55 mV for SEC, confirming surface stability across
all methods. These findings confirm that ZAHVIS achieves EV
yields comparable to conventional methods while maintaining
consistent RNA recovery suitable for molecular applications.

To further validate the ZAHVIS platform, we performed western
blot analysis to assess the quantity and purity of EV-derived
proteins, as well as the selectivity and reproducibility of the
isolation process. The EV-specific proteins CD9, CD81 and CD63
were detected in EVs isolated by ZAHVIS, UC, TEI and SEC
(Figure 3j–l). SEC, which produced fewer EVs, was analysed sepa-
rately under the same conditions to confirm the presence of these
markers. Non-EV markers such as Calnexin, GRP78 and GM130
were consistently absent across all methods, demonstrating the
effective removal of cellular contaminants (Figure 3m–o). In addi-
tion, we examined the removal of blood-derived contaminants
such as Apolipoprotein B (ApoB), Apolipoprotein E (ApoE) and
human serum albumin (HSA) (Figure S5). The original plasma
sample exhibited detectable bands for ApoB, ApoE and HSA.
However, ApoE and HSA were not detected in EVs isolated using
ZAHVIS, UC and TEI, confirming their effective removal across
thesemethods. ApoBwas present at reduced levels, with ZAHVIS
producing weaker bands compared to TEI, while showing similar
selectivity to UC. These results suggest that ZAHVIS effectively
minimizes plasma protein contamination, contributing to higher
EV purity. To further assess the removal efficiency of lipoprotein-
associated contaminants, we conducted a controlled study by
spiking EV fractions with ApoB (Figure S6). The results showed
that SEC achieved the highest purity, with no detectable ApoB
band, while ZAHVIS, UC and TEI exhibited comparable residual
ApoB signals. These findings suggest that ZAHVIS achieves
slightly lower removal efficiency than SEC, with comparable
performance toUCandTEI,while alsomaintaining highEVyield
and providing high-purity EVs suitable for downstream molecu-
lar analyses. Therefore, the ZAHVIS platform demonstrates high
selectivity in EV isolation, effectively minimizing contamination
and ensuring reliable EV recovery for molecular applications,
making it a robust alternative to conventional methods.

3.4 Assessment of EV-Derived Biomarker
Candidates Using Cell Line Models

To validate potential biomarker candidates for CRC diagnosis,
we employed cell line models in conjunction with the ZAHVIS
platform (Figure 4). The experimental approach is schematically
represented in Figure 4a. EV-derived RNAs were extracted from
the cell culture media of HCT116 (cancer cells) and CCD-
18co (normal cells) using the ZAHVIS platform. These RNAs
were analysed using real-time PCR to quantify both biomarker
candidates and control genes (Table S1). This quantification
allowed for the determination of RQ values, followed by statistical
analysis to evaluate the significance of these markers. Figure 4b
illustrates the EV-derivedmiRNAs. Among the 15 miRNAs inves-

tigated, seven miRNAs were identified as statistically significant,
includingmiR-19a-3p, miR-21a-5p, miR-23a-3p, miR-92a-3p, miR-
125a-3p, miR-150-5p and miR-1246 (Figure 4c–i). The RQ values
for these miRNAs demonstrated distinct expression patterns
between the HCT116 and the CCD-18co cell line, indicating their
potential as biomarkers for CRC. In addition to miRNAs, we
also analysed circRNAs derived from EVs (Figure 4j). Among
the three circRNAs examined, three were found to be statisti-
cally significant including circLONP2, circPNN and circLPAR1
(Figure 4k–m). The RQ values for these circRNAs also exhibited
significant differences between the cancer and normal cell lines,
further supporting their potential as CRC biomarkers. Further-
more, the statistically non-significant biomarkerswere identified,
which included miR-99b-5p, miR-122-5p, miR-141-3p, miR-181a-
5p,miR-182-5p,miR-200b-3p,miR-222-5p andmiR-223-3p (Figure
S7). These findings demonstrate the ZAHVIS platform’s effective-
ness in isolating and analysing EV-derived NAs, confirming the
identified miRNAs and circRNAs as promising CRC biomarkers.
By validating these biomarkers in cell line models, we have
established a solid foundation for their potential use in clinical
settings.

3.5 Clinical Validation of Selected EV-Derived
Biomarkers in Blood Plasma

To confirm the clinical relevance of biomarkers identified
through cell line models, we analysed blood plasma samples
from CRC patients (n = 80) and HC individuals (n = 20)
using the ZAHVIS platform (Figure 5 and Table 1). The clinical
characteristics of CRC patients were analysed to determine their
disease-free survival probabilities over 100 months (Figure S8).
Survival rates were observed to be 95% for early-stage CRC, 75%
for advanced-stage CRC, 100% for CRC stages 0–1, 90% for CRC
stage 2, 80% for CRC stage 3 and 70% for CRC stage 4. The
experimental approach is schematically represented in Figure 5a.
This process involved the extraction of EV-derivedRNAs from the
blood plasma samples, followed by real-time PCR quantification
of the sevenmiRNAs and three circRNAs identified from cell line
models, as well as control genes. The data were then subjected
to statistical analysis to determine the RQ values and their
significance. The results showed significant differences in the
expression levels of miR-23a-3p, miR-92a-3p, miR-125a-3p and
miR-150-5p between CRC patients andHC individuals, indicating
their potential as diagnostic biomarkers for CRC (Figure 5b–
e). Several biomarkers did not show statistically significant
differences in clinical samples, including miR-19a-3p, miR-21-5p,
miR-1246, circLONP2, circPNN and circLPAR1 (Figure S9). We
also measured CEA levels and found them to be significantly
higher in CRC patients compared to HC individuals, confirming
CEA’s established role as a diagnosticmarker for CRC (Figure 5f).

The additional clinical validation of biomarkers for early-stage
and advanced-stage CRC, compared to HC individuals, further
emphasized the diagnostic potential of specific miRNAs and
CEA. In Figure S10, for early-stage CRC,miR-23a-3p,miR-92a-3p,
miR-150-5p and CEA also demonstrated significant differences
when compared to HC. For advanced-stage CRC, miR-23a-3p,
miR-92a-3p, miR-125a-3p, miR-150-5p and CEA showed signif-
icant differences compared to HC. Statistically non-significant
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FIGURE 4 Validation of biomarker candidates using cell line models with the ZAHVIS platform. (a) Schematic overview of using cell line models
to validate biomarker candidates. The ZAHVIS platform extracts EV-derived RNAs from the cell culture media of HCT116 (cancer cells, n= 6) and CCD-
18co (normal cells, n= 6). These RNAs are then analysed using real-time PCR to quantify biomarker candidates and control genes, followed by statistical
analysis to determine relative quantification (RQ) values and significance. Created with BioRender.com. (b) Illustration of EV-derivedmiRNAs. Created
with BioRender.com. (c–i) RQ values of statistically significant miRNAs identified in cell line models including miR-19a-3p (c), miR-21-5p (d), miR-23a-
3p (e), miR-92a-3p (f), miR-125a-3p (g), miR-150-5p (h) and miR-1246 (i). (j) Illustration of EV-derived circRNAs. Created with BioRender.com. (k–m)
RQ values of statistically significant circRNAs identified in cell linemodels including circLONP2 (k), circPNN (l) and circLPAR1 (m). Box plots represent
themedian, interquartile range (IQR) and whiskers indicating theminimum andmaximum values. Each dot represents an individual sample. Statistical
significance indicated by *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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FIGURE 5 Clinical validation of biomarkers identified in cell line models using blood plasma samples with the ZAHVIS platform. (a) Schematic
overview of using clinical samples to validate biomarkers identified in cell line models. The ZAHVIS platform extracts EV-derived RNAs from blood
plasma samples of CRC patients and HC individuals. These RNAs are analysed using real-time PCR to quantify biomarkers and control genes, followed
by statistical analysis to determine RQ values and significance. Created with BioRender.com. (b–e) RQ values of clinically validated miRNAs in CRC
patients (n= 80) andHC individuals (n= 20) includingmiR-23a-3p (b),miR-92a-3p (c), miR-125a-3p (d) andmiR-150-5p (e). ThesemiRNAswere selected
from a pool of seven miRNAs and three circRNAs based on their statistical significance in both cell line and clinical experiments. (f) CEA levels in CRC
patients and HC individuals. (g) t-Distributed stochastic neighbour embedding (t-SNE) visualization of combined biomarkers discriminating between
CRC patients and HC individuals. (h) ROC curves for single biomarkers illustrating their diagnostic performance with corresponding AUC values. (i)
Performance evaluation of single biomarkers using Youden’s index, including sensitivity, specificity, accuracy and F1 score. Dot plots represent individual
samples, with a line at the median and IQR. Statistical significance indicated by *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

miRNAs and circRNAs in both stages included miR-19a-3p, miR-
21-5p, miR-1246, circLONP2, circPNN and circLPAR1 (Figures
S11 and S12). Further analysis of individual CRC stages revealed
significantmiRNAs andCEA in stages 0–1, 2, 3 and 4 compared to
HC (Figure S13). Among the five markers, miR-23a-3p, miR-92a-
3p and miR-150-5p were statistically significant across all stages.
However, miR-125a-3p and CEA were not significant in stages
0–1 and 3. Statistically non-significant markers across individual
stages included miR-19a-3p, miR-21-5p, miR-1246, circLONP2,
circPNN and circLPAR1 (Figures S14 and S15). Overall, these
results indicate that miR-23a-3p, miR-92a-3p and miR-150-5p can

be considered more promising biomarker candidates compared
to miR-125a-3p and CEA.

To visualize the separation between CRC patients and HC
individuals based on combined biomarker profiles, we performed
t-SNE analysis (Figure 5g). The t-SNE plot shows partial clus-
tering but reveals considerable overlap between CRC and HC
samples, suggesting that using these five biomarkers individually
may not provide sufficient accuracy. To evaluate the diagnostic
performance of each biomarker, we generated ROC curves and
calculated the AUC values. Although all biomarkers showed
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statistical significance, their AUC values reflected inherent lim-
itations as single diagnostic markers. The ROC curves showed
AUC values of 0.71 (fair) for miR-23a-3p, 0.77 (fair) for miR-92a-
3p, 0.66 (poor) for miR-125a-3p, 0.87 (good) for miR-150-5p and
0.75 (fair) for CEA (Figure 5h). Notably, miR-150-5p exhibited the
highest AUC, though none exceeded 0.9 (excellent classification).
Performance metrics, including sensitivity, specificity, accuracy
and F1 score, were also calculated based on Youden’s index
(Figure 5i). Among the biomarkers, miR-150-5p demonstrated
the highest performance with a sensitivity of 76.25%, specificity
of 90%, accuracy of 79% and an F1 score of 85.31%. However,
even this marker shows limitations, underscoring the need
for combinatorial approaches to enhance diagnostic precision.
Nevertheless, the results confirm the effectiveness of the ZAHVIS
platform in isolating and analysing EV-derived NAs, validating
the identified miRNAs as potential CRC biomarkers. Although
clinical validation establishes a basis for their diagnostic poten-
tial, further refinement is required to improve overall diagnostic
accuracy.

3.6 AI-Driven Comprehensive Evaluation of
Blood Biomarker Combinations for Enhanced CRC
Diagnosis

The comprehensive AI-driven analysis workflow for evaluating
blood biomarker combinations for CRC diagnosis using the
ZAHV-AI system is illustrated in Figure 6a. Using EV-derived
RNAs extracted from 100 blood plasma samples (80 CRC patients
and 20 HC individuals) through the ZAHVIS platform, four
miRNAs (miR-23a-3p, miR-92a-3p, miR-125a-3p and miR-150-5p)
along with the CEA marker were quantified. For each miRNA,
RQvalueswere calculated fromCt values of three PCR repetitions
for the target markers and control gene, averaged over nine RQ
values per miRNA. The CEA levels were used directly, leading to
31 different biomarker combinations for AI-driven analysis. The
dataset was divided into training (70%, n = 70) and test (30%,
n = 30) sets using an optimized splitting method (Figure S16 and
Table S2). Hyperparameter optimization was performed using
K-fold (K = 5) cross-validation. Final model parameters were
selected based on the highest combined metric of (1 − average
validation loss) and average AUC, resulting in a learning rate
of 0.1, batch size of 16, dense layer size of 128 and dropout rate
of 0.1. This setup achieved the lowest average validation loss
of 0.2383 and a high average AUC of 0.9432 among all tested
parameter combinations (Figure S17). The final deep learning
model comprised Z-score normalization, one input layer, two
hidden layers (the first with 128 neurons and a dropout rate of
0.1, and the second with 64 neurons and a dropout rate of 0.1),
and one output layer. Following model training (Figures S18, S19
and S20), the performance of test set was evaluated usingmultiple
metrics (ROC curve, AUC value, sensitivity, specificity, accuracy
and F1 score), and the optimal combinations for CRC diagnosis
were identified.

The AI-driven evaluation provided critical insights across various
stages of the disease. In overall CRC, single markers showed
varied effectiveness, with miR-150-5p achieving the highest AUC
of 0.9167. However, combinations significantly improved per-
formance, particularly with miR-23a-3p and miR-150-5p (AUC:
0.9444), miR-125a-3p, miR-150-5p and CEA (AUC: 0.9653), and

miR-23a-3p, miR-92a-3p, miR-150-5p and CEA (AUC: 0.9861),
demonstrating the highest diagnostic accuracy. The combina-
tion of miR-23a-3p, miR-92a-3p, miR-150-5p and CEA achieved
sensitivity of 95.83%, specificity of 100%, accuracy of 96.67%
and an F1 score of 97.87% (Figure 6b–m and Table 2). For
subgroup analysis, early-stage and advanced-stage samples from
the dataset were further analysed, resulting in training (70%,
n = 42) and test (30%, n = 18) sets. In early-stage and advanced-
stage CRC, the highest single-marker AUC values were observed
with miR-150-5p, with values of 0.9028 for early-stage and 0.9444
for advanced-stage. For early-stage CRC, combinations such as
miR-92a-3p and miR-150-5p (AUC: 0.9722) showed improved
diagnostic performance, with six combinations achieving the
highest AUC of 0.9861 and high-performance metrics (Figure
S21 and Table S3). For advanced-stage CRC, the combination of
miR-150-5p and CEA achieved the highest AUC of 0.9583 and
high-performance metrics. (Figure S22 and Table S4). In stage-
specific analysis, individual stage samples from the dataset were
further analysed, resulting in training (70%, n= 28) and test (30%,
n = 12) sets. Stage-specific analysis identified several optimal
combinations for each stage of CRC. For stages 0–1, three optimal
combinations were identified, all achieving an AUC of 1.0 and
perfect performance metrics (Figure S23 and Table S5). For stage
2, four optimal combinations were identified, all achieving an
AUC of 0.9722 and high-performance metrics (Figure S24 and
Table S6). For stage 3, the optimal combination of miR-150-5p
and CEA was identified, achieving an AUC of 1.0 and perfect
performance metrics (Figure S25 and Table S7). For stage 4,
eleven optimal combinations were identified, all achieving an
AUCof 1.0 and perfect performancemetrics (Figure S26 andTable
S8). These results show the enhanced diagnostic performance
achieved through AI-driven analysis of biomarker combinations.
By leveraging multiple biomarkers, the ZAHV-AI system demon-
strated significantly improved sensitivity, specificity, accuracy
and F1 scores across various stages of CRC compared to single
markers. This approach enhances the diagnostic accuracy for
overall CRC and shows remarkable strength in early detection,
which is crucial for effective clinical management.

3.7 Diagnostic Performance of Optimal Blood
Biomarker Combinations for Early Detection of CRC
in the ZAHV-AI System

The ZAHV-AI system demonstrates remarkable diagnostic capa-
bilities for CRC through optimal blood biomarker combinations.
For overall CRC detection, the system identified an optimal
biomarker combination consisting of miR-23a-3p + miR-92a-
3p +miR-150-5p + CEA, as illustrated in the schematic overview
(Figure 7a). Using this combination, the system achieved out-
standing diagnostic performance (AUC 0.9861, sensitivity 95.83%,
specificity 100%, accuracy 96.67%, F1 score 97.87%) as summarized
in the confusion matrix and performance metrics (Figure 7b,c).
Subgroup analyses of early-stage, advanced-stage and individual
CRC stages, including their optimal biomarker combinations and
diagnostic performance metrics, are summarized in Figure S27.
In early-stage CRC, six combinations were identified, including
miR-23a-3p + miR-150-5p + CEA; miR-92a-3p + miR-125a-
3p + miR-150-5p; miR-92a-3p + miR-150-5p + CEA; miR-125a-
3p + miR-150-5p + CEA; miR-23a-3p + miR-92a-3p + miR-150-
5p + CEA; and miR-23a-3p +miR-125a-3p +miR-150-5p + CEA.
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FIGURE 6 AI-driven analysis of blood biomarker combinations for CRC in the ZAHV-AI system. (a) Schematic of the ZAHV-AI systemworkflow
for evaluating biomarker combinations. EV-derived RNAs were extracted from 100 blood plasma samples (80 CRC patients and 20 HC individuals)
using the ZAHVIS platform. Four miRNAs (miR-23a-3p, miR-92a-3p, miR-125a-3p and miR-150-5p) and CEA were quantified. For each miRNA, RQ
values were calculated using Ct values from three target markers and control genes, averaged into a single RQ value. These markers were combined
into 31 different combinations for AI analysis. The dataset was split into training (70%, n = 70) and test (30%, n = 30) sets to train a deep learning model
to evaluate diagnostic performance. Performance evaluation included metrics such as ROC curves, AUC values, sensitivity, specificity, accuracy and
F1 score to determine the most effective biomarker combinations. Created with BioRender.com. (b–f) ROC curves showing diagnostic performance of
singlemarkers (b), 2-marker combinations (c), 3-marker combinations (d), 4-marker combinations (e) and a 5-marker combination (f). (g–k) AUC values
for biomarker combinations, ranked by performance, including single markers (g), 2-marker combinations (h), 3-marker combinations (i), 4-marker
combinations (j) and a 5-marker combination (k). (l) Performance evaluation of all biomarker combinations using Youden’s index, including sensitivity,
specificity, accuracy and F1 score. (m) Bar chart showing performance metrics for the optimal combination (miR-23a-3p, miR-92a-3p, miR-150-5p and
CEA). The EV-derived miRNA markers are labelled simply as 23a, 92a, 125a and 150 in (b–m).

These combinations yielded an AUC of 0.9861, sensitivity of
91.67%, specificity of 100%, accuracy of 94.44% and F1 score of
95.65%. For advanced-stage CRC, the combination of miR-150-
5p + CEA achieved an AUC of 0.9583, sensitivity of 91.67%,
specificity of 100%, accuracy of 94.44% and F1 score of 95.65%,

highlighting the system’s effectiveness in detecting both early
and advanced stages of the disease. For stages 0–1, perfect diag-
nostic performance (AUC 1.0, sensitivity 100%, specificity 100%,
accuracy 100%, F1 score 100%) was achieved with three com-
binations, namely, miR-150-5p; miR-92a-3p + miR-150-5p; and
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TABLE 2 Diagnostic performance of 31 blood biomarker combinations by ZAHV-AI system for overall CRC.

Test set (n = 30)

Biomarker combinationsa
(Total of 31 combinations)

AUC
(95% CI)c

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

Single markers 23a 0.6250
(0.3791–0.8801)

79.17 50.00 73.33 82.61

92a 0.7778
(0.5280–0.9808)

62.50 83.33 66.67 75.00

125a 0.7083
(0.5238–0.8750)

41.67 100 53.33 58.82

150 0.9167
(0.7913–1.0)

79.17 100 83.33 88.37

CEA 0.7812
(0.5919–0.9208)

62.50 100 70.00 76.92

2-marker
combinations

23a + 92a 0.7500
(0.5381–0.9280)

50.00 100 60.00 66.67

23a + 125a 0.8229
(0.6488–0.9628)

58.33 100 66.67 73.68

23a + 150 0.9444
(0.8240–1.0)

75.00 100 80.00 85.71

23a + CEA 0.8403
(0.6760–0.9680)

83.33 83.33 83.33 88.89

92a + 125a 0.6771
(0.5026–0.8200)

41.67 100 53.33 58.82

92a + 150 0.8819
(0.7389–1.0)

79.17 100 83.33 88.37

92a + CEA 0.8472
(0.6597–1.0)

75.00 83.33 76.67 83.72

125a + 150 0.8958
(0.6932–1.0)

91.67 83.33 90.00 93.62

125a + CEA 0.8576
(0.7215–0.9712)

70.83 100 76.67 82.93

150 + CEA 0.9306
(0.8000–1.0)

83.33 100 86.67 90.91

3-marker
combinations

23a + 92a + 125a 0.8333
(0.6561–0.9547)

79.17 83.33 80.00 86.36

23a + 92a + 150 0.9236
(0.7901–1.0)

70.83 100 76.67 82.93

23a + 92a + CEA 0.8611
(0.6816–1.0)

70.83 100 76.67 82.93

23a + 125a + 150 0.9618
(0.8783–1.0)

95.83 83.33 93.33 95.83

23a + 125a + CEA 0.9028
(0.7677–1.0)

79.17 100 83.33 88.37

23a + 150 + CEA 0.9583
(0.8718–1.0)

87.50 100 90.00 93.33

92a + 125a + 150 0.9514
(0.8634–1.0)

87.50 100 90.00 93.33

92a + 125a + CEA 0.9236
(0.7438–1.0)

95.83 83.33 93.33 95.83

(Continues)
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TABLE 2 (Continued)

Test set (n = 30)

Biomarker combinationsa
(Total of 31 combinations)

AUC
(95% CI)c

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

92a + 150 + CEA 0.9514
(0.8459–1.0)

95.83 83.33 93.33 95.83

125a + 150 + CEA 0.9653
(0.8976–1.0)

87.50 100 90.00 93.33

4-marker
combinations

23a + 92a + 125a + 150 0.8542
(0.6630–0.9843)

79.17 83.33 80.00 86.36

23a + 92a + 125a + CEA 0.8819
(0.7497–0.9887)

75.00 100 80.00 85.71

23a + 92a + 150 + CEAb 0.9861
(0.9360–1.0)

95.83 100 96.67 97.87

23a + 125a + 150 + CEA 0.9375
(0.7917–1.0)

95.83 83.33 93.33 95.83

92a + 125a + 150 + CEA 0.9236
(0.7452–1.0)

95.83 83.33 93.33 95.83

5-marker
combinations 23a+ 92a+ 125a+ 150+CEA

0.9583
(0.8653–1.0)

83.33 100 86.67 90.91

aThe EV-derived miRNAs are labelled simply as 23a, 92a, 125a and 150.
bOptimal combination.
c95% CI, 95% confidence interval.

FIGURE 7 Optimal biomarker combination and diagnostic performance for overall CRC in the ZAHV-AI system. (a) Schematic overview of the
optimal blood biomarker combination for overall CRC, comparingHC andCRC groups. Createdwith BioRender.com. (b) Confusionmatrix of diagnostic
predictions. (c) Diagnostic performance metrics (AUC, sensitivity, specificity, accuracy, F1 score).

miR-92a-3p + miR-150-5p + CEA. Stage 2 exhibited high per-
formance with four combinations, including miR-23a-3p +miR-
92a-3p;miR-92a-3p+miR-150-5p;miR-125a-3p+miR-150-5p; and
miR-92a-3p + miR-125a-3p + CEA, achieving an AUC of 0.9722,
sensitivity of 83.33%, specificity of 100%, accuracy of 91.67% and
F1 score of 90.91%. For stage 3, perfect diagnostic metrics were
observed with the combination of miR-150-5p + CEA. Stage 4
also demonstrated perfect diagnostic performance with eleven
combinations, including miR-150-5p; miR-23a-3p + miR-150-5p;

miR-125a-3p + CEA; miR-150-5p + CEA; miR-23a-3p + miR-
125a-3p + miR-150-5p; miR-92a-3p + miR-150-5p + CEA; miR-
125a-3p + miR-150-5p + CEA; miR-23a-3p + miR-92a-3p + miR-
125a-3p + miR-150-5p; miR-23a-3p + miR-125a-3p + miR-150-
5p + CEA; miR-92a-3p +miR-125a-3p +miR-150-5p + CEA; and
miR-23a-3p + miR-92a-3p + miR-125a-3p + miR-150-5p + CEA.
These comprehensive analyses the ZAHV-AI system effectively
identifies optimal blood biomarker combinations, improving
diagnostic accuracy for CRC, particularly at early stages. By
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integrating efficient EV isolation through the ZAHVIS platform
with AI-driven analysis, the ZAHV-AI system offers a stream-
lined, highly sensitive and accurate approach to CRC diagnostics.
Overall, the ZAHV-AI system provides a useful tool for ongoing
monitoring and personalized treatment, demonstrating its poten-
tial for clinical application and contributing to improvements in
cancer diagnostics and patient care.

4 Discussion

The ZAHV-AI system, which combines the ZAHVIS platform
for EV isolation with AI-driven biomarker analysis, shows sig-
nificant promise for enhancing CRC diagnostics. Traditional EV
isolation methods, such as UC and commercial precipitation
kits like the TEI, are often limited by their time-consuming,
labour-intensive processes and heightened contamination risks.
Even more recent techniques, such as SEC, while faster and
more straightforward, face challenges with reproducibility and
detection sensitivity, as they require collecting multiple fractions.
This disperses EVs across large volumes,making SECmore suited
for purification than enrichment, which limits its sensitivity in
achieving accurate diagnostics. In contrast, the ZAHVIS platform
utilizes the unique properties of ZA and MDH crosslinkers
to offer a more efficient and advanced solution compared to
simpler electrostatic methods, such as cation-charged polymer
filters (Chen et al. 2010; Yasui et al. 2017). Although simpler
methods are easier to produce, they often suffer from non-
specific binding and contamination, reducing EV purity. The
ZAHVIS platform, however, enhances traditional electrostatic
interactions by incorporating covalent bonding, leveraging both
mechanisms in a single-step process. This combination provides
stronger and more selective binding forces, offering significant
advantages in the enrichment and separation of EVs and EV-
derived molecules during downstream analysis. The high surface
area and porous structure of ZA enhance EV capture, whileMDH
crosslinkers ensure stable, contamination-free isolation, leading
to more concentrated and purified samples critical for accurate
diagnostics. Furthermore, compared to advanced ultrafiltration
systems such as the exosome detection method via the ultrafast-
isolation system (EXODUS), which are known for their high
speed and purity in EV isolation, the system still faces potential
concerns regarding EV clogging and the need for specialized
equipment, which can limit its scalability in clinical applications
(Chen et al. 2021). In contrast, the ZAHVIS platform effectively
overcomes these limitations by capturing EVs on the ZA surface,
which prevents EV clogging and ensures reliable performance
without the need for complex equipment. This make the ZAHVIS
platform more scalable and suitable for high-throughput clinical
settings where efficiency and ease of use are crucial. A key
advantage of the ZAHVIS platform is its ability to streamline
the entire EV isolation process. Traditional methods typically
require separate steps for isolating EVs and extracting EV-derived
biomolecules, extending processing time. The ZAHVIS platform
simplifies this by isolating EVs and extracting proteins orNAs in a
single step, thereby shortening the overall process and preserving
the integrity of EV-derived biomolecules. As summarized in
Table 3, the ZAHVIS platform offers several technical benefits.
With 10 min for EV enrichment, the platform completes EV
isolation in a total of 15 min, EV-derived protein extraction in
30 min and EV-derived NA extraction in 35 min. Additionally,

the ZAHVIS platform is highly cost-effective, priced at less than
$2 per sample, making it accessible for use in various laboratory
and clinical settings. Its flexibility in handling different sample
volumes supports scalability, making it a practical choice for
EV-based diagnostics. The AI-driven analysis component of the
ZAHV-AI system further enhances its diagnostic capabilities by
overcoming the limitations associated with single biomarkers.
Building on previously established methodologies that applied
machine learning to cancer diagnostics (Kim et al. 2021; Liu
et al. 2021), we further refine these approaches by incorporating
an optimized data-splitting method along with K-fold cross-
validation to reduce overfitting and enhance model reliability.
By leveraging advanced deep learning algorithms, the ZAHV-AI
system evaluates combinations of biomarkers validated through
cell lines and clinical studies, identifying and proposing optimal
combinations for improvedCRCdiagnosis. This integration of the
ZAHVIS platform andAI-driven analysis offers a comprehensive,
efficient and highly sensitive diagnostic approach. The stream-
lined workflow, coupled with the high sensitivity and specificity
afforded by AI-driven blood biomarker combination analysis,
represents a significant advancement in CRC diagnostics, par-
ticularly for early detection. This system has the potential to
provide earlier and more accurate diagnoses, which is critical for
improving patient outcomes in CRC.

Blood-based testing using conventional CEAmarkers has demon-
strated significant limitations in the early diagnosis of CRC, often
failing to detect early-stage cancers due to its lower sensitivity
and specificity. In our study, CEA as a single marker showed low
diagnostic performance for early diagnosis, with AUC values of
0.7361 (fair) for early-stage CRC and 0.6944 (poor) for stages 0–
1 and stage 2, indicating its insufficient accuracy. Although CEA
is an established diagnostic marker for CRC, its effectiveness is
significantly reduced in early-stage detection. For advanced-stage
CRC, however, CEAdemonstrated better performance, withAUC
values of 0.8333 (good) for advanced stages, 0.9722 (excellent) for
stage 3 and stage 4. These results underscore the limitations of
CEAwhen used as a single marker for early-stage CRC detection.
Screening and early diagnosis of CRC remain challenging with
new liquid-based markers due to their low detection rates and
lower sensitivity in early-stage CRC compared to advanced
stages. For example, a multi-analyte blood test showed a median
sensitivity of 43% for stage 1 cancers, compared to 73% and 78% for
stages 2 and 3 (Cohen et al. 2018). Another study found circulating
tumour DNA alterations in 50% of stage 1 CRC patients, while the
detection rates were much higher in stages 2, 3 and 4 (89%, 90%
and 93%, respectively) (Phallen et al. 2017). These findings suggest
that early-stage CRC tends to have smaller tumour sizes, which
release minimal quantities of DNA into the bloodstream, making
early detectionmore challenging. Nevertheless, ZAHV-AI system
provides reliable early detection by combining multiple EV-
derived miRNA markers with CEA, thus enhancing diagnostic
performance. For early-stage CRC, six optimal combinations
were identified, with an AUC of 0.9861. Notably, CEA was
included in five of these six combinations. For stages 0–1, the
combination ofmiR-92a-3p+miR-150-5p+CEAachieved perfect
diagnostic performance with an AUC of 1.0. Additionally, the
combination of miR-92a-3p + miR-125a-3p + CEA for stage 2
was identified as optimal, with an AUC of 0.9722. By combining
CEA with other EV-derived blood biomarkers, the ZAHV-AI
system effectively enhances the diagnostic accuracy for early-
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stage CRC, thereby addressing the inherent limitations of CEA
as a diagnostic marker and offering a more robust tool for early
detection.

The ZAHV-AI system shows remarkable potential for the early
detection of CRC by identifying optimal biomarker combinations
using EVs derived from blood plasma. Using traditional statistical
methods in our study, miR-23a-3p, miR-92a-3p and miR-150-
5p emerged as significant diagnostic markers. However, even
though some individual markers like miR-125a-3p and CEA
did not show significance in certain stages, the evaluation of
biomarker combinations by the ZAHV-AI system highlighted the
importance of using a panel of markers for enhanced diagnostic
performance. For instance, in early-stage CRC, combinations
such asmiR-125a-3p+miR-150-5p+CEA andmiR-23a-3p+miR-
125a-3p + miR-150-5p + CEA demonstrated robust diagnostic
capability. Additionally, in stages 0–1, the combination of miR-
92a-3p +miR-150-5p + CEA was most effective, while for stage 2,
miR-92a-3p+miR-125a-3p+CEAprovided thehighest diagnostic
accuracy. These findings suggest that traditional methods of
assessing diagnosticmarkers based solely on individual statistical
significance may be limiting. The AI-driven analysis of the
ZAHV-AI system reveals that a combinatorial approach, lever-
aging multiple markers, can significantly enhance diagnostic
performance. This indicates that potential biomarkers might be
overlooked if we rely only on their individual statistical signif-
icance. The ZAHV-AI system’s AI-driven approach highlights
that markers previously considered less useful can meaningfully
contribute to cancer diagnosis when evaluated as part of amarker
panel or in combination with other markers. These findings
suggest that a combinatorial approach, leveragingmultiplemark-
ers, can provide superior diagnostic performance, especially in
early-stage CRC detection.

In our study, we identified optimal blood biomarker combina-
tions for CRC, including one for overall CRC, six for early-stage
CRC, one for advanced-stage CRC, three for stages 0–1, four
for stage 2, one for stage 3 and eleven for stage 4. Despite
applying these optimal combinations, the ZAHV-AI system failed
to correctly classify one sample each in the overall CRC, early-
stage, advanced-stage and stage 2 analyses (Figures 7b and S28).
These results suggest that while the ZAHV-AI system shows
promising diagnostic performance, further refinement is needed
to improve accuracy. In particular, the relatively small control
group and subdivision of CRC cases may limit the statistical
power of subgroup analyses, contributing to variability in clas-
sification outcomes. Expanding the cohort to include a larger
and more diverse population, especially with more early-stage
cases, will be essential to strengthen the system’s robustness and
validate biomarker performance more reliably. Additionally, the
integration of a simple deep learning algorithm with real-time
PCR enables quick training and easy implementation without
requiring specialized computational expertise. However, this
simplicity may limit the ability to capture complex interactions
between biomarkers, potentially affecting diagnostic accuracy.
Moreover, clinical miRNA diagnostics often face challenges due
to variability introduced during EV isolation, which can impact
biomarker detection and reproducibility. Although the ZAHVIS
platform demonstrated consistent detection in this study, further
validation is needed to address factors such as batch-to-batch
consistency and sample handling conditions. Standardizing these

parameters will be essential to minimize variability and facilitate
clinical translation. Future studies could also explore advanced
EV detection systems, such as magneto-electrochemical devices
(Park et al. 2021) or dual-surface-protein orthogonal barcoding
(Lei et al. 2023), in combination with the ZAHVIS platform to
further enhance diagnostic sensitivity and specificity. Addressing
these limitations and expanding the study could establish the
ZAHV-AI system as a practical tool for CRC staging, treatment
monitoring and prognosis. Furthermore, the ZAHV-AI system
is versatile and applicable to other biological samples, such as
urine, saliva and oral swab, as well as various cancer types,
including prostate, breast and lung cancer. Future studies will
further enhance the capabilities of the ZAHV-AI system, broad-
ening its impact on cancer diagnostics and improving patient
outcomes.
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