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Gut microbiome and kidney disease: a bidirectional relationship
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Abstract Recent technological advances and efforts, includ-
ing powerful metagenomic and metatranscriptomic analyses,
have led to a tremendous growth in our understanding of mi-
crobial communities. Changes in microbial abundance or
composition of human microbial communities impact human
health or disease state. However, explorations into the mech-
anisms underlying host–microbe interactions in health and
disease are still in their infancy. Although changes in the gut
microbiota have been described in patients with kidney dis-
ease, the relationships between pathogenesis, mechanisms of
disease progression, and the gut microbiome are still evolving.
Here, we review changes in the host–microbiome symbiotic
relationship in an attempt to explore the bidirectional relation-
ship in which alterations in the microbiome affect kidney dis-
ease progression and how kidney disease may disrupt a bal-
anced microbiome. We also discuss potential targeted inter-
ventions that may help re-establish this symbiosis and propose
more effective ways to deploy traditional treatments in pa-
tients with kidney disease.
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Background

The human body harbors a complex community of bacteria,
archaea, viruses, and eukaryotic microbes that inhabit interac-
tive interfaces exposed or connected to the external environ-
ment [1]. This collection of microorganisms consists of about
100 trillion microbial cells called the human microbiota, and
the genes encoded by these microbes collectively form the
human microbiome [2]. The microbiome is an integral part
of the human genetic landscape; therefore, for a complete
understanding of our genetics, it is essential to study the com-
position of our microbiome [2].

Microbes have a tremendous impact on human health and
well-being, with the potential to impact our physiology both in
health and in disease [3]. They protect against invading path-
ogens, educate our immune cells, contribute to various meta-
bolic functions, and—through these basic functions—affect
directly or indirectly most of our physiologic functions [4,
5]. The breakthroughs in high-throughput techniques used to
analyze the composition of the microbiome have substantially
advanced our knowledge of the microbial communities colo-
nizing various human niches [6]. Moreover, the decrease in
cost of sequencing using those high-throughput technologies
has enabled large-scale studies of the human microbiome
[7–9]. Large-scale studies revealed that each body site, such
as the oronasopharyngeal sphere, skin, vagina, and gastroin-
testinal tract, contains ecological communities of microbial
species that exist in a mutualistic relationship with the host,
also known as symbiosis [1]. Each person’s microbiome is
thought to be unique [10]. Differences in species, abundance,
and diversity of microbial communities within the same indi-
vidual and among different individuals and various body sites
have been previously described [10, 11] and are summarized
in Fig. 1 [12]. Much of this intrapersonal diversity has been
attributed to differences in host genetics, geographical origin
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and location, age, lifestyle, eating habits, and early microbial
exposure, as well as antibiotics or probiotics intake [10]. Early
in life, the mode of birth delivery, gestational age, hospitali-
zation, diet, and the nature of feeding are among the factors
that contribute to microbiome diversity [13].

Methodologies used to study the microbiome

The study of the human microbiome has been facilitated by
technological advances in performing culture-independent
analyses and has yielded remarkable insights into the complex

diversity of the human microbiome [14]. While characterizing
the microbial phylogenetic composition from a given body
site describes only the archaeal and bacterial portion of the
microbiome, metagenomic approaches identify all genomes
existing in an environment, including bacteria, archaea, virus-
es, and eukaryotic microbes. Microbial phylogenetic and tax-
onomic applications are used to identify the microbiota com-
position using sequencing of the 16S ribosomal-RNA
(rRNA)-encoding gene, followed by comparison to known
bacterial sequence databases [15]. This method has its limita-
tions, as it only provides insights into the taxonomic

Fig. 1 Diversity in the human microbiome. The human microbiome is
dominated by four phyla: Actinobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria. In the center is a phylogenetic tree of organisms abundant
in the human microbiome. Commensal microbes are indicated by circles,
and potential pathogens are indicated by stars. The middle ring
corresponds to body sites at which various taxa are abundant and is
color-coded by site [e.g., Ruminococcus (blue) is found mostly in the

gut, whereas Lactobacillus (purple) is found mostly in the vagina]. Bar
heights on the outside of the circle are proportional to taxa abundance at
the body site of greatest prevalence [e.g., Streptococcus mitis (yellow)
dominates the inside of the cheek, whereas the gut is abundant in a
variety of Bacteroides]. The intensity of external colors corresponds to
species prevalence in each body site (adapted with permission from [12])
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composition of the microbial community and fails to resolve a
substantial fraction of the diversity existing in a community
[16]. In other words, this approach allows the rapid determi-
nation of species occurrence and abundance in an efficient
way for numerous samples simultaneously; however, it ne-
glects the fact that identical species found in two different
microbiomes might vary significantly in their functional capa-
bilities [6]. To overcome these limitations, metagenomic anal-
ysis is used as an alternative approach to study the uncultured
microbiota by sequencing all microbial DNA in a complex
community [6, 16]. It has the additional advantage of
assessing the genetic information of the microbial population
and provides insights into the biological functions encoded in
the microbial genome [16]. Other methodologies have also
been designed to analyze the microbial transcriptome, prote-
ome, and metabolome; they provide additional information at
successive levels of microbial physiology [17]. Figure 2 sum-
marizes some of the methodologies used to study the
microbiome [18].

The gut microbiome

The human gut is sterile at birth [19]. Colonizationwith a wide
variety of microbes starts at birth originating from the
mother’s vaginal and fecal microbiota, as well as from other
environmental microbes encountered in the first days of life
[19]. The adult human gut harbors a complex community of
>100 trillion microbial cells, and >1000 different bacterial
species constitute the gut microbiota [20]. It is estimated that
this metabolically active endogenous Borgan^ is equivalent to
1–2 kg of body weight and is a reservoir of >1 g of endotoxin
[21]. The gut microbiota composition varies greatly between
individuals, with each individual harboring a unique collec-
tion of bacterial species, which is highly stable over time, and
with the most abundant bacterial phyla found in the healthy
human gut being the Gram-negative Bacteroidetes and the
Gram-positive low-GC Firmicutes [22]. Many nutrients in
the diet are digested by human enzymes and absorbed in the
small intestine. However, the gut microbiota has a central role
in the metabolism of dietary fibers, which are not degraded by
human enzymes. In addition to its role in food digestion, the
gut microbiota plays a role in stimulation of the immune sys-
tem, maintenance of intestinal epithelium homeostasis, syn-
thesis of vitamins (B and K), enhancement of gastrointestinal
tract motility and function, nutrient absorption, inhibition of
pathogens by creating colonization resistance, metabolism of
plant-derived compounds/drugs, and production of short-
chain fatty acids (SCFAs) and polyamines [22].

Intestinal microbial dysbiosis and disease

Changes in composition and structure of the human microbi-
ota, also known as dysbiosis, may predispose individuals to

different disease conditions and explain why some people are
more susceptible or resistant to certain diseases [23].
Alterations in the microbiota can result from exposure to var-
ious environmental factors, including diet, toxins, drugs, and
pathogens [10]. Multiple studies have described relationships
between gut microbial communities and disease states.
Although these relationships are not cause-and-effect relation-
ships, it is clear that the microbiome is an important contrib-
utor in many disease states, a factor that has been previously
overlooked. In fact, changes in the microbiome are increas-
ingly linked to the development of noncommunicable disease
(NCD). Those include obesity [24], cancer [25, 26], diabetes
[27, 28], inflammatory bowel disease (IBD) [29, 30], asthma
[31], cardiovascular disease (CVD) [32, 33], kidney disease
[21], and others. Therefore, understanding the interface be-
tween microbes and NCD may help uncover disease etiolo-
gies and pathogenesis. This may be achieved by identifying
novel microbial causes or inflammatory intermediates that
may be used as diagnostic and therapeutic targets for predic-
tion, prevention, and treatment of common diseases.
Deciphering the possible interindividual variations in micro-
bial contents of the different body regions, and identifying
changes in the human microbiota during onset or progression
of various diseases is expected to leverage the application of
microbiota-driven personalized medicine. While extensive re-
search describing the role of the microbiome in obesity, IBD,
cancer, and diabetes have been reported, only relatively re-
cently have a few studies described the role of the microbiome
in kidney disease [21, 34]. In this review, we address the role
of dysbiosis in kidney disease, with a special focus on the role
of the gut microbiome in chronic kidney disease (CKD).

Chronic kidney disease

CKD is a global health issue associated with loss of kidney
function, CVD, infectious diseases, and premature death [35].
This lethal synergy between CKD and CVD and the increased
awareness of the limitations of current treatment options has
prompted the nephrology and research communities to ex-
plore alternative therapeutics to improve outcomes. Loss of
kidney function in CKD results in major alterations in the
blood concentration of numerous molecules [36]. In particu-
lar, substances that would normally be excreted or metabo-
lized by the kidney accumulate as renal function declines,
resulting in increased blood concentrations [36]. These uremic
retention molecules (URM) constitute a long and ever-
expanding list of substances that upon accumulation substan-
tially contribute to the syndrome of uremia [36]. URM are
classified according to their origin: endogenous (mammalian
metabolism), microbial, or exogenous (such as diet) [37, 38].
Although the majority of URMs originate endogenously from
mammalian metabolism—like dimethylarginines, homocyste-
ine, and oxalate—it is increasingly recognized that intestinal
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microbial metabolism also contributes to the generation of
numerous URMs.

CKD and the gut microbiome

Understanding the role of human gut microbiota in the pro-
gression of CKD requires a clear comprehension of the mi-
crobiota composition, dynamics, and stability within a patient.
Gut microbes produce compounds that are normally excreted
by the kidneys but can be considered as potential URM [39].
The principal role of the colon is to absorb salt and water and
to provide a mechanism for orderly disposal of waste products
of digestion. Moreover, the colon is responsible for salvage of
energy and possibly nitrogen from carbohydrates and proteins
that are not digested in the upper gastrointestinal tract. This is

achieved through the metabolism of anaerobic bacteria, a pro-
cess known as fermentation [39]. Fermentation of the amino
acids tyrosine (obtained usually from consuming turkey,
chicken, beef, brown rice, nuts, fish, milk, eggs, cheese, fruit,
and vegetables) and tryptophan (e.g., from beef, poultry, pork,
fish, milk, yogurt, eggs, cheese, and soy products) by intesti-
nal microbiota generates p-cresol and indole, respectively.
After absorption, these compounds are further metabolized
in the liver to generate p-cresyl sulfate and p-indoxyl sulfate.
Indoxyl sulfate and p-cresyl sulfate circulate in equilibrium
between a free solute fraction and a fraction bound to serum
proteins. The best characterized binding site is albumin, for
which indoxyl sulfate and p-cresyl sulfate are competitive
binding inhibitors [40]. These toxins are eliminated mainly
by tubular secretion in the kidneys and, therefore, are

Fig. 2 Bioinformatic methods for
functional metagenomics.
Microbial community samples
typically contain many species of
bacteria and other microorganisms,
here indicated by different colors.
After total DNA has been
extracted, the composition of the
community is determined by
amplifying and sequencing the 16S
ribosomal RNA (rRNA) gene.
Highly similar sequences are
grouped into operational
taxonomic Units (OTUs), which
are labeled by comparison with
databases of recognized organisms.
OTUs can then be analyzed in
terms of presence/absence,
abundance, or phylogenetic
diversity. In order to determine
biomolecular and metabolic
functions present in the
community, the total metagenomic
DNA may be sequenced and
compared with function-oriented
databases. Alternatively, sequenced
community DNA can be compared
with reference genomes. This
allows identification of microbial
sequence variants and
polymorphisms and provides an
alternative means of detecting the
presence and abundance of specific
organisms (adapted with
permission from [18]). KEGG
Kyoto Encyclopedia of Genes and
Genomes, BLAST Basic Local
Alignment Search Tool, SNPs
single-nucleotide polymorphism(s)
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considered to be uremic toxins, with increased levels indica-
tive of renal impairment and advancing CKD [41].

Dysbiosis in CKD patients may contribute to increased
uremic toxin levels that in turn contribute to CKD progres-
sion. In a prospective, observational study of 268 patients with
CKD, Wu and colleagues found the baseline concentration of
indoxyl sulfate to be predictive of CKD progression [42].
Meijers and colleagues measured p-cresol levels in 499 pa-
tients with mild-to-moderate CKD and showed that p-cresol
sulfate levels increased with decreasing estimated glomerular
filtration rate (GFR) [43]. Likewise, an elevated p-cresol con-
centration was associated with increased risk of death in end-
stage renal disease (ESRD) patients treated with maintenance
hemodialysis [44]. Trimethylamine N-oxide (TMAO) is an-
other uremic toxin produced by the gut microbiome, and its
role in CKD has also been examined [45]. In a large cohort of
CKD patients, Tang and colleagues found elevated TMAO
concentrations in patients with CKD. These elevated concen-
trations were associated with a 70 % higher risk for all-cause
mortality, even after adjusting for traditional risk factors and
C-reactive protein [46].

It is worth noting that the interaction between the gut mi-
crobiota and CKD is not unidirectional. CKD also affects the
structure of the gut microbiota and contributes to dysbiosis. In
healthy individuals, gut microbiota are classified into different
enterotypes based on the abundance of specific bacterial
groups, which are dominated by Bacteroides, Prevotella, or
Ruminococcus [47]; these enterotypes are strongly associated
with long-term diets, particularly the levels of proteins and
animal fat (Bacteroides) versus carbohydrates (Prevotella)
[48]. However, the intestinal microbiota in patients with
CKD is altered, with lower numbers of Lactobacillaceae
and Prevotellaceae families (both are considered normal co-
lonic microbiota) and 100 times higher Enterobacteria and
Enterococci species (which are normally present in lower pro-
portions) [49].

Kidney disease is associated with decreased consumption
of dietary fibers [50], frequent use of antibiotics [51], slow
colonic transit, metabolic acidosis, volume overload with in-
testinal wall congestion, intestinal wall edema, and oral iron
intake [52–54]. These factors are also associated with micro-
bial dysbiosis and higher numbers of pathogenic microbes in
the gut. Many of these factors affect intestinal tight junctions
and result in increased intestinal permeability and transloca-
tion of bacterial products across the intestinal barrier that will,
in turn, trigger an immune response. The latter could explain
the systemic inflammation that is associated with and contrib-
utes to worsening CKD and CVD [55]. Another possible
mechanism of microbial dysbiosis in patients with CKD re-
sults from increased gastrointestinal urea secretion [56]. Urea
is hydrolyzed by gut microbes, resulting in the formation of
large quantities of ammonia, which affects the growth of com-
mensal bacteria and causes imbalance in the gut microbiota

[56]. Figure 3 summarizes mechanisms and pathways of
dysbiosis in patients with CKD [57].

Therefore, targeting the large intestine and understanding
the composition of the gut microbial communities might be a
promising adjuvant approach to tackle the high morbidity and
mortality in patients with CKD.

Hypertension and the gut microbiome

About 70million Americans (29%) have high blood pressure,
which accounts for one out of three adults [58]. It is estimated
that >3 % of children have hypertension [59]; this number is
much higher in obese children, since the prevalence of hyper-
tension rises progressively with increases in body mass index
(BMI) percentile from ≤5th (2 %) to ≥95th (11 %) [60]. The
relationship between kidney disease and hypertension is bidi-
rectional. The microbiota of a small cohort of hypertensive
patients was described as less rich and diverse than that of
controls [61]. Pluznick et al. reported that major components
of the olfactory signaling pathway are present in the kidney;
Olfr78 is an olfactory receptor expressed in the renal
juxtaglomerular apparatus, where it mediates renin secretion
in response to SCFAs. Those fatty acids are end products of
fermentation by the gut microbiota and are absorbed into the
circulation. Treatment with antibiotics reduced the biomass of
the gut microbiota and elevated blood pressure in Olfr78
knockout mice [62]. Another possible link between the gut
microbiota and hypertension comes from the intestinal micro-
biota metabolism of choline and phosphatidylcholine, which
produces trimethylamine (TMA), which is further metabo-
lized to a proatherogenic species: TMAO. Koeth and col-
leagues demonstrated that metabolism by intestinal microbio-
ta of dietary L-carnitine, a TMA abundant in red meat, pro-
duces TMAO and accelerates atherosclerosis in mice [63].

Gut microbiome and other renal conditions

Recently, multiple studies have examined the relationship be-
tween different kidney disease entities and the gut
microbiome. De Angelis and colleagues examined the gut
microbiome in progressor vs nonprogressor immunoglobulin
A (IgA) nephropathy (IgAN) patients and compared them
with healthy controls [64]. They showed that some traits of
the gut microbiota and levels of urinary metabolites (free ami-
no acids and organic volatile compounds) vary significantly
between the progressor and nonprogressor groups [64]. It was
hypothesized that the increased free amino acids in the serum
due to IgAN pathology is possibly related to the decreased
absorption of gastrointestinal proteins, which allowed for in-
creased microbial proteolysis, altered microbiota, and contrib-
uted to elevated fecal p-cresol levels. Recent data indicate that
intestinal microbiota can modify acute kidney injury (AKI)
also. One possible mechanism is via the renoprotective action
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of SCFAs against ischaemia–reperfusion in animal models;
SCFAs (which have anti-inflammatory properties) are pro-
duced by the intestinal microbiota [65]. Therapy with three
main SCFAs (acetate, propionate, and butyrate) improved re-
nal dysfunction caused by injury and was associated with
reductions in the levels of reactive oxygen species, inflamma-
tion, infiltrating immune cells, and apoptotic cells in the in-
jured kidneys; an increase in proliferation of kidney epithelial
cells; and modulation of DNA methylation status. Another
possible mechanism by which the microbiota affect AKI out-
come is related to the hygiene hypothesis [66]; Jang and

colleagues reported that germ-free animals when subjected
to ischemia-induced AKI have significantly worse structural/
functional renal injuries and inflammation compared with
control mice. This may be due to a T-helper 1 type response
similar to that seen in autoimmune disease. Furthermore, the
microbiota may have a wider influence and role in autoim-
mune kidney disease through its immunomodulatory effects,
recognized by its influence on polarization of T-cell subsets
and natural killer cells [67]. Abnormalities in the immune
system can also induce kidney damage, either by provoking
an autoimmune phenomenon or induction of molecular
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Fig. 3 Dysbiosis and chronic kidney disease (CKD). CKD impairs the
balance between symbionts and pathobionts in a way that favors
pathobiont overgrowth. Consequences are as follows: a Impairment of
the intestinal barrier by disrupting the colonic epithelial tight junction
(ETJ) and decreasing epithelial survival. An increase in loss of integrity
in intestinal permeability allows translocation of bacteria and
lipopolysaccharide (LPS). b Dysregulation of immune response and
inflammation. LPS could activate innate immune cells through toll-like
receptor 4 (TLR4)-dependent and nuclear factor kappa B (NF-κB)
pathways. Pathobionts stimulate dendritic cells (DCs) that activate a

Th17/Th1 T-cell response and enhance production of inflammatory
cytokines. c Modification of carbohydrates, protein, and bile acid (BA)
fermentation. Proteins are fermented by intestinal pathobionts, which are
then converted preferentially into indoxyl-sulfate (IS), p-cresyl sulfate
(PCS), and trimethylamine n-oxide (TMAO). The reduction in
symbionts, specifically Bifidobacterium, induces a decrease in
short-chain fatty acids (SCFAs). Dysbiosis modifies BA levels and
composition. INF-γ interferon γ, IL-1 interleukin-1, TNF-α tumor
necrosis factor-α. (Adapted with permission from [57])
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mimicry. Staphylococcus aureusmay be a direct pathogenetic
factor in granulomatosis with polyangiitis (former Wegener’s
granulomatosis) [68]. Chronic bacterial colonization or chron-
ic infections of the upper respiratory tract have been suspected
to be a trigger of IgA vasculitis and IgAN [69]. Microbial
antigens may play a role in membranous nephropathy and
lupus nephritis, as suggested by the abundance of
Helicobacter pylori antigen deposition in renal biopsy speci-
mens and evidence of infection in blood [70]. Undergoing
kidney transplantation and the use of posttransplant medica-
tions has a major impact on the microbiota composition as
well [71]. On the other hand, differences in the gut microbiota
may affect medication bioavailability and dosing to achieve
therapeutic levels; this may help further explain interindivid-
ual differences in tacrolimus dosing [72] and how antibiotic
intake may increase the bioavailability of amlodipine and pos-
sibly change its therapeutic potency by suppressing gut mi-
crobial metabolic activities [73].

Restoring the balance: current and potential interventions

These interventions can be classified as being designed to
lower uremic toxin production by restricting intake of uremic
toxin precursors (lower protein intake), by restoring a more
balanced gut microbiome (food supplements), and by inter-
ventions aiming to enhance the disposal of these toxins (ad-
sorptive therapies).

Food supplements

Prebiotics Prebiotics is a general term to refer to nondigestible
(by the host) food ingredients that induce the growth or activ-
ity of microorganisms (e.g., bacteria and fungi) that contribute
to the well-being of their host. Inulin, fructo-oligosaccharides,
galacto-oligosaccharides, soya-oligosaccharides, xylo-oligo-
saccharides, and pyrodextrins are among known prebiotics.
There are limited studies examining their effect in CKD pa-
tients. In a randomized, controlled, single-blind clinical trial
with a crossover design, Bliss and colleagues studied the ef-
fect of gum arabic (acacia gum) fiber supplementation (50
g/day) in 16 CKD patients consuming a low-protein diet
[74]. Four weeks after receiving gum arabic fiber, patients
had increased fecal nitrogen excretion and lower serum urea
nitrogen concentration compared with the placebo group.
Only one small study of three pediatric patients with ESRD
examined the efficacy of acacia gum (1 g/kg per day in divid-
ed doses) and reported improved quality of life [75]. Another
randomized controlled trial examined the effect of increasing
dietary fiber on plasma levels of colon-derived solutes in 56
hemodialysis patients [76]. After 6 weeks, patients on increas-
ing dietary fiber had significantly reduced unbound, free plas-
ma levels of indoxyl sulfate, while the reduction of p-cresol
sulfate levels did not achieve significance. The authors

concluded that increasing dietary fiber in hemodialysis pa-
tients might reduce plasma levels of the colon-derived solutes
indoxyl sulfate and possibly p-cresol sulfate without the need
to intensify dialysis treatments.

Probiotics Probiotics are living microorganisms that, when
administered in adequate amounts, confer a health benefit on
the host. Studies examining the effects of probiotics in CKD
patients using serum tumor necrosis factor alpha (TNF-α),
interleukin (IL)-5 and -6, and endotoxin show conflicting re-
sults. In a randomized, double-blind, placebo-controlled trial
examining the effect of probiotics on serum cytokine and en-
dotoxin levels of patients on peritoneal dialysis, patients who
received probiotics had lower proinflammatory cytokines and
endotoxin levels while levels of serum IL-10 significantly
increased [77]. In a recent study, Yacoub et al. analyzed
National Health and Nutrition Survey (NHANES) data to
examine the association of yogurt/probiotic with kidney
parameters. Frequent yogurt and/or probiotics use was associ-
ated with decreased risk of proteinuric kidney disease [78].

Synbiotics Synbiotics refer to nutritional supplements com-
bining probiotics and prebiotics in a form of synergism. In a
randomized, placebo-controlled trial, Guida and colleagues
studied the effect of a 4-week synbiotic treatment on plasma
p-cresol levels in 30 patients with stage 3–4 CKD [79]. The
authors found the group on synbiotics to have lower total
plasma p-cresol concentrations and suggested that because
high plasma concentrations of p-cresol in early phases of
CKD are predictive of progression to ESRD, synbiotics de-
serve attention as possible tools to delay CKD progression.
Others have reported similar beneficial effects of synbiotic
and low-protein treatment on CKD progression [80]. In a re-
cent randomized trial, Rossi et al. evaluated the effect of
synbiotics therapy on gut microbiota and serum concentra-
tions of indoxyl sulfate and p-cresyl sulfate in predialysis
CKD [81]. Synbiotic therapy did not significantly reduce se-
rum indoxyl sulfate levels but reduced levels of p-cresyl sul-
fate and favorably altered the stool microbiome, particularly
with enrichment of Bifidobacterium and depletion of
Ruminococcaceae [81].

Adsorbent therapies

AST-120 is an orally ingested intestinal spherical carbon ad-
sorbent consisting of porous carbon particles of 0.2–0.4 mm in
diameter and is insoluble in water and common organic sol-
vents. It adsorbs indole, the precursor of indoxyl sulfate de-
rived from the metabolism of tryptophan by bacteria within
the gastrointestinal tract and therefore is used to attenuate
indoxyl sulfate accumulation in patients with CKD [82].
AST-120 has been available in Japan since 1991. In prospec-
tive trials and retrospective analyses, AST-120 has been
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shown to prolong the time to initiation of hemodialysis [83]
and slow the decline in GFR and the increase in serum creat-
inine [84]. In an initial randomized, double-blind, placebo-
controlled trial in the United States, AST-120 was associated
with a significant dose-dependent reduction in serum indoxyl
sulfate levels and a decrease in uremia-related malaise [85].
The Evaluating Prevention of Progression in CKD (EPPIC)
trials, two double-blind, placebo-controlled trials undertaken
in North America/Latin America and Europe, evaluated the
efficacy of AST-120 for preventing progression of CKD in
2035 adults with moderate to severe disease. Patients we ran-
domized to receive either placebo or AST-120 (9 g/d). The
study found the time to primary end point (a composite of
dialysis initiation, kidney transplantation, and serum creati-
nine doubling) to be similar between the AST-120 and place-
bo groups in both trials. The authors concluded that the benefit
of adding AST-120 to standard therapy in patients with mod-
erate to severe CKD is not supported by their study data [86].

Fecal microbiota transplantation (FMT)

FMT is becoming increasingly accepted as an effective and
safe intervention in patients with recurrent Clostridium
difficile infection, aiming at the restoration of a disrupted
microbiome [87]. While no large studies examining the effect
of fecal transplantation on restoring the gut microbiome in
patients with CKD are available, a case showing successful
eradication of a pathogenic organism in a patient with ESRD
has been reported [88]. Whether healthy microbial transfer Bin
a pill^ will be part of our future management of patients with
CKD and dysbiosis remains to be seen. Until then, further
studies are needed to describe what a healthy microbiome is
in a patient with CKD and what hard clinical outcomes can be
achieved from manipulating the microbiome.

Conclusion

The relationship between the human microbiome and kidney
disease is bidirectional. Recent studies have described how
kidney disease contributes to dysbiosis and how dysbiosis
contributes to progression of kidney disease. Clinicians must
be aware of the potential, unintended effects of treatments that
may alter the gut microbiome, exercise self-discipline, and
weigh risks and benefits when prescribing prophylactic anti-
biotics to patients with recurrent urinary tract infections,
vesicourethral reflux, and other infections. There is a pressing
need for more studies that characterize the microbiome profile
in children with CKD and explore the relationship between
different pediatric kidney disease parameters and the
microbiome of the growing child. This is not only needed to
establish relationships by association but to examine the inter-
action between certain early-life microbial and antibiotic

exposure on the pathogenesis of kidney disease. Multiple
promising interventions have been described to restore a more
balanced microbiome and possibly slow the progression of
CKD; such interventions need to be further examined in large
controlled trials before they can become part of our main-
stream management.
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