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Background: The evaluation of brain tumor recurrence after surgery is based on the comparison 
between tumor regions on pre-operative and follow-up magnetic resonance imaging (MRI) scans in 
clinical practice. Accurate alignment of MRI scans is important in this evaluation process. However, 
existing methods often fail to yield accurate alignment due to substantial appearance and shape changes of 
tumor regions. The study aimed to improve this misalignment situation through multimodal information 
and compensation for shape changes.
Methods: In this work, a deep learning-based deformation registration method using bilateral pyramid to 
create multi-scale image features was developed. Moreover, morphology operations were employed to build 
correspondence between the surgical resection on the follow-up and pre-operative MRI scans.
Results: Compared with baseline methods, the proposed method achieved the lowest mean absolute error 
of 1.82 mm on the public BraTS-Reg 2022 dataset.
Conclusions: The results suggest that the proposed method is potentially useful for evaluating tumor 
recurrence after surgery. We effectively verified its ability to extract and integrate the information of the 
second modality, and also revealed the micro representation of tumor recurrence. This study can assist 
doctors in registering multiple sequence images of patients, observing lesions and surrounding areas, 
analyzing and processing them, and guiding doctors in their treatment plans.
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Introduction

Glioblastoma multiforme (GBM) is one of the most 
common and aggressive primary brain tumors in adults. 
It is characterized by a poor prognosis and a high degree 
of invasiveness, with over 80% of patients experiencing 
local tumor recurrence near the original resection cavity 
after surgical intervention (1). This suggests that residual 
glioblastoma cells inevitably persist in the tumor infiltration 
zone (edema) following surgery or radiation therapy. In 
this context, identifying imaging features within the tumor 
infiltration zone that contributes to recurrence is crucial 
for the treatment and prognosis of patients with diffuse 
glioblastoma. Furthermore, glioblastomas vary in size and 
shape and often cause significant deformation (mass effect) 
by compressing surrounding tissues. One approach to 
discovering these imaging features is to first register pre-
operative and post-recurrence structural brain magnetic 
resonance imaging (MRI) scans of patients and then analyze 
the imaging characteristics of the tissue that evolves into 
tumor recurrence (2,3). Therefore, accurately mapping the 
correspondence between pre-operative and post-recurrence 
brain tumor scan images is essential.

The best way to locate brain tumors is with multimodal 
imaging information (4). Initially, surgical resection of 
visible tumor regions is the most common treatment for 
brain tumors. In most cases, surgery is the sole necessary 
treatment, with the specifics of the surgical plan depending 
on the size and location of the tumor. Subsequently, 
radiation therapy is employed, using X-rays and other 
forms of radiation to destroy cancer cells in malignant 
tumors or slow the progression of benign brain tumors. 
It is recommended to combine post-surgical radiotherapy 
and chemotherapy (5). Finally, supportive care is required, 
including psychological support, antiedema therapy, and 
antiepileptic treatment. Despite employing these standard 
treatments, brain tumors still recur (6-8). Therefore, a 
method to reveal the location of brain tumor recurrence 
is of paramount importance for selecting appropriate 
treatment methods and subsequent personalized therapy.

Registration is a fundamental operation in medical 
image analysis, aiming to establish spatial correspondence 
between 2 (or more) images (9,10). In critical steps of 
various clinical tasks such as tumor monitoring and 
prognosis (11), pathological changes (e.g., tumor recurrence 
growth) or mass effect can induce alterations in intracranial 
anatomical structures. Pathological medical images 
often exhibit numerous nonlinear local deformations. 

Therefore, brain tumor image registration heavily relies on 
deformable image registration to establish dense nonlinear 
correspondences between image pairs. However, due 
to the shape and appearance variations in pathological 
tumor images, deformable image registration remains a 
challenging problem, particularly for image pairs involving 
tissue changes influenced by pathology (12). Registration 
between pre-operative and follow-up MRI scans of patients 
with diffuse gliomas still faces the following issues:

(I)	 Brain tumors often lead to substantial deformations 
of brain anatomical structures.

(II)	 Lack of correspondence between tumors in pre-
operative scans and resection cavities in follow-up 
scans (13).

(III)	 Inconsistent intensity distributions between 
acquired scans, where tissue marked as edema in 
pre-operative scans is known to include infiltrative 
tumor cells, which may transform into recurrent 
tumors in follow-up scans.

To solve these issues, it is necessary to establish spatial 
correspondence between pre-operative and post-recurrence 
MRI brain scans by accurate deformable registration 
algorithms. This would enable the mapping of information 
from the follow-up recurrent scans to the pre-operative 
scans, thus elucidating subtle imaging phenotypic features 
that can be used for the detection of future occult case 
recurrences (14). Image appearance variations stem from  
2 sources: firstly, pre-scans encompass tumor and mass 
effect deformations; secondly, post-scans typically include 
the tumor resection cavity (the location where the tumor 
existed in the pre-scan) and reveal signs of tumor infiltration 
and recurrence. Additionally, consideration needs to be 
given to the subsequent scans post-tumor resection and the 
relevant relaxations of the deformations induced by these 
previous mass effects (15).

In this paper, we discuss a registration method to address 
the issue of lacking correspondence between scans and 
demonstrate that the results are significantly more accurate 
compared to traditional registration methods.

Inspired by the DIRAC framework (16), we introduce 
a novel bilateral pyramid network in the study. In the first 
stage, with information from both modalities separately, 
we extract the most relevant information from each type of 
imaging contrast. In the second stage, we make reasonable 
morphological predictions of the tumor core within the 
network through forward-backward consistency constraints, 
which allows for the expansion of the distribution of brain 
tumors while excluding pathological regions.
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We briefly review the recent methods for learning-
based medical image registration, with a particular focus on 
deep learning approaches. Traditional image registration 
methods (17-20) typically rely on multi-resolution 
strategies and iterative estimation of target transformations 
along with smooth regularization. Although traditional 
image registration methods excel in registration accuracy 
and diffeomorphism (i.e., invertibility and topology 
preservation), the runtime of the registration process 
depends on the degree of misalignment between input 
images and can be quite time-consuming, especially for 
high-resolution 3-dimensional (3D) images. This has 
spurred a trend toward faster deep registration methods 
based on deep learning (21). Recent unsupervised deep 
learning-based image registration (DLIR) methods have 
demonstrated good registration speed and quality across 
various deformable image registration tasks. De Vos  
et al. developed a patch-based end-to-end unsupervised 
deformable image registration network (DIRNet) (22), where 
a spatial transformer network (STN) was used to estimate 
the deformation field (23). However, the deformation field 
estimated by STN is unconstrained, which can lead to 
severe distortions. To overcome this limitation, VoxelMorph 
was proposed. It estimates the deformation field using an 
encoder-decoder convolutional neural networks (CNN) 
and regularizes the deformation field with a penalty. They 
treat the image registration problem as a pixel-level image 
transformation problem, attempting to learn pixel-wise 
spatial correspondences from a pair of input images (24).

To register images with significant deformations, stacking 
multiple networks and deep registration methods from 
coarse to fine have been widely used. For instance, Zhao 
et al. designed a recursive cascade network where multiple 
VoxelMorph cascades are employed to progressively deform 
images (25). Kim et al. introduced CycleMorph, consisting 
of 2 registration networks that exchange inputs in a cyclically 
consistent manner. It can be extended to a large-scale multi-
scale implementation, allowing the model to better capture 
different levels of transformation relationships (26). However, 
this comes at the cost of high complexity and computational 
burden due to the need for multiple models. Additionally, the 
sequential combination of multiple networks can result in the 
accumulation of interpolation artifacts, potentially affecting 
the quality of the deformation field. In contrast to cascade-
based approaches, pyramid-based methods have unequal 
deformation components at each level. Low-resolution levels 
have a large receptive field to handle significant deformation 
components, whereas high-resolution levels have a smaller 

receptive field to handle minor deformation components. 
Through this coarse-to-fine strategy, large deformations can 
be decomposed into multi-level components, and each level 
can be considered a refinement of the previous one, enabling 
promising registration performance. Mok et al. proposed 
a Laplacian pyramid framework (LapIRN) to leverage the 
image deformations from the previous level, mimicking the 
traditional multi-resolution strategy (27). Also, a few works 
have focusing on transformer architectures, because their 
substantially larger receptive field enables a more precise 
comprehension of the spatial correspondence between 
moving and fixed images (28,29).

In  recent  year s ,  non- i t e ra t i ve  coar se - to- f ine 
registration methods have been proposed, which employ 
a single network in a single pass to perform coarse-
to-fine registration, even outperforming approaches 
that use multiple cascaded networks or iterations  
(30-32). Additionally, Liu et al. introduced the innovative 
deformable registration network, named im2grid, 
incorporating multiple Coordinate Translators alongside 
hierarchical features extracted from a CNN encoder. This 
network systematically produces a deformation field in a 
progressive coarse-to-fine manner (33). In a similar vein, 
Chen et al. proposed a distinct yet effective approach by 
introducing an innovative Deformer module within a 
multi-scale framework for deformable image registration. 
The Deformer module is meticulously designed to 
simplify the mapping process from image representation 
to spatial transformation, achieving this by expressing 
displacement vector predictions as a weighted summation 
of multiple bases (34). Specifically, the Dual-stream 
Pyramid Registration Network (Dual-PRNet) was designed 
to incorporate a dual-stream network that computes 
2 meaningful feature pyramids separately and directly 
estimates the sequential deformation fields in feature 
space in a single pass. Refinements of the registration field 
and convolution features are performed in a hierarchical, 
sequential, and coarse-to-fine manner, offering an effective 
way to progressively, and more accurately, align 2 volumes 
in feature space (30). However, it shares a common issue 
with previous schemes, namely, the inadequacy of single 
modal information for tumor imaging. Therefore, recent 
research has focused on fusing multi-modal images through 
variants of the Inception model (35) and extracting the most 
relevant information from each type of imaging contrast. 
Nevertheless, it coarsely combines 4 modalities of brain 
tumor images without elucidating which modality’s features 
extraction played a critical role.
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To better delineate the tumor’s location and extent, 
as well as its post-resection biologic activity, and address 
the issue of the lack of correspondence between pre-
operative and post-recurrence images, Mok and Chung 
proposed DIRAC, which jointly estimates bidirectional 
deformation fields and precisely localizes regions with 
missing correspondences (16). By excluding regions lacking 
correspondence in the similarity metrics during training, 
it improves the target registration error (TRE) of markers 
in pre-operative and post-recurrence images. However, 
the segmented tumor core within the network lacks 
corresponding post-processing to adapt to the tumor’s edge 
and edema location.

How the bilateral pyramid leverages multimodal 
information and expands the tumor core is explained in 
Methods. In Results, the results of the ablation study 
and the comparison with the other popular models are 
summarized and analyzed.

Methods

Our goal was to establish dense nonlinear correspondences 
between pre-operative and post-recurrence scans of 
the same patient, wherein regions with no effective 
correspondences are excluded from similarity metrics during 
the optimization process. Our approach was built upon the 
previous deep learning deformable registration (DLDR) 
method (36), incorporating multi-modal information to 
enhance feature extraction in tumor regions, and employs 
morphological operations to extend the boundaries of non-
corresponding voxels in the resection and recurrent regions 
in the 2 images located by forward-backward consistency 
constraints.

Model overview

The overview of our method is depicted in Figure 1. First, 
we train our approach on the 3D clinical dataset from the 
BraTS-Reg challenge (15), which consists of 160 pairs 
of pre-operative and follow-up brain MRI scans from 
patients with gliomas at different time points. Given that 
the BraTS-Reg challenge provides multi-parametric MRI 
sequences for each case at each time point, including native 
pre-contrast (T1), contrast-enhanced T1-weighted (T1ce), 
T2-weighted (T2), and fluid-attenuated inversion recovery 
(FLAIR) MRI, we leverage 2 MRI modalities to extract rich 
semantic features. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Our network is built upon the DIRAC framework, 
which parameterizes the deformable registration problem 
as a bidirectional registration problem: PO and PR denote 
the pre-operative (baseline) scan B and post-recurrence 
(follow-up) scan F defined on a 3D mutual space domain. 
We define it as ( ),bfu f B Fθ=  and ( ),fbu f F Bθ= , where θ 
represents a set of learnable parameters, bfu  represents the 
displacement field that aligns B to F, namely, ( )( )bfB x u x+ , 
and ( )F x  defines the anatomically corresponding locations 
for each voxel x∈Ω , except for non-corresponding voxels. 
To accommodate large deformations caused by tumor mass 
effects and anatomical variations, we also incorporate a 
conditional image registration module into the network 
for widespread use in smooth regularization. This module 
enables the network to undergo a single training phase to 
obtain multiple regularization parameters’ influence on 
the deformation field, allowing us to select the optimal 
regularization hyperparameters, thus saving significant 
human and computational resources compared to grid 
search.

Al though DIRAC employs  a  mul t i - reso lut ion 
optimization strategy, using bidirectional displacement 
fields and forward-backward consistency to constrain 
regions of non-correspondence between registered images, 
the standard DIRAC method does not effectively leverage 
multi-modal information. Additionally, it uses a fixed bias 
of 0.0015 for computing the weighted average deformation 
measure in each direction, which does not adapt well 
to different individuals’ characteristics. In contrast, 
our approach excludes the expanded regions of non-
correspondence from the similarity metric and effectively 
utilizes multi-modal tumor-related information.

Bilateral pyramid network

Our bilateral pyramid network is set on the cLapIRN 
architecture,  but has been enhanced through the 
introduction of bilateral design, as illustrated in Figure 2. 
Our input data consists of 2 modalities and their multi-
resolution images. Specifically, we start by creating an 
input image pyramid by downsampling the input images 
using trilinear interpolation. Here, we employ a 3-level 
Laplacian pyramid network, denoted as { }1 1 2 2 3, , , ,iF F F F F F′ ′∈
, corresponding to { }1 1 2 2 3, , , ,iM M M M M M′ ′∈ . iF  represents 
downsampled images with a scale factor of ( )3 i0.5 − , and iF ′ 
represents downsampled images of another modality with 
a scale factor of ( )3 i0.5 − . Both modalities of images start 
from the coarsest resolution images ( )1 1,F M , ( )1 1,F M′ ′  and 
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Figure 1 Overview of the proposed method. Our method jointly estimates the bidirectional de-formation field and locates regions (denoted 
as masks) where no correspondence exists. During training, regions where no correspondence exists are excluded from the similarity 
measure. In the mask area in the lower right corner, white is the initial non-corresponding area, and red is the area after morphological 
operations. The red box represents the tumor risk area. STN, spatial transformation network; PO, pre-operative; PR, post-recurrence.

Figure 2 Overview of the proposed 3-level bilateral pyramid image registration networks. The bottom-to-top process represents the multi-
scale feature extraction of one modality, while the top-to-bottom process corresponds to the feature extraction of another modality. It is 
built on the basis of LapIRN (27). For clarity and simplicity, we depict the 2D formulation of our method in the figure. CHS, conditional 
hyperparameter search module; LapIRN, Laplacian pyramid framework; 2D, 2-dimensional.
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pass through a CNN-based registration network to obtain 
the corresponding 3-channel vector fields ( )11 12,ν ν  and 
deformation fields ( )1 1,φ φ′  for the lowest resolution. For the 
second-level pyramid, we first upscale the deformation field 
from the first pyramid level by a factor of 2 to obtain ( )1 1

ˆ̂ ,φ φ′ ,  
which warps the input of the second level. Additionally, we 
upsample the 3-channel vector field from the first pyramid 
level by a factor of 2 and concatenate it with ( )( )2 2 1̂,F M φ , 

( )( )' '
2 2 1̂,F M φ′  to form a 5-channel input. The output velocity 

field ( )21 22,ν ν  of the second level is obtained by adding 
the second pyramid level’s upsampled velocity field to the 
output of the first pyramid level. The deformation field at 
the second level ( )2 2

ˆ̂ ,φ φ′  is then integrated from the velocity 
field ( )21 22,ν ν . In contrast, the input at the third level consists 
of an 8-channel input, formed by combining ( )( )3 3 2 2

ˆ̂, ,MF φ φ′  
and the upsampled 3-channel vector field from the second 
pyramid level. The combination of vector fields from both 
upper and lower modalities is achieved through mean 
fusion, leveraging the complementary information from 
both modalities. Finally, we obtain the ultimate deformation 
field through the third level, which is at full resolution. This 
bilateral input introduces information from both modalities, 
enhancing the extraction of tumor region features. For 
example, the inclusion of the FLAIR modality allows for 
effective consideration of features related to tumor edema 
areas, which are crucial for subsequent extraction of non-
corresponding regions.

In the CNN from low to high resolution, lower-level 
networks extract image features through decoders, and 
these features are embedded into the next-level network via 
skip connections. This significantly increases the network’s 
receptive field and nonlinearity, enabling the learning of 
complex nonlinear correspondences at finer levels. In the 
5-layer CNN-based registration network, each layer’s 
architecture remains consistent, comprising a feature 
decoder, hyperparameter search module, feature encoder, 
and skip connection from feature encoder to feature 
decoder to prevent the loss of low-level features when 
learning the target deformation field.

Post-processing of non-corresponding areas

The network extends the forward-backward consistency 
constraint to strengthen the localization of regions lacking 
correspondence between baseline and follow-up scans. 
Specifically, we performed effective post-processing on the 
binary mask bfm  created within the network based on pixel 
differences and a threshold bfτ , which is used to label voxels 

without correspondence.

( ) ( )( )( )
( ){ } 20

1
bf bf fb bf

x x F x f

u x u x u x
N

τ α
∈ >

= + + +∑
∣

[1]

( ) ( )( )1,  if A
m

0,  otherwise 
bf bf

bf

x
x

δ τ ≥= 



[2]

Here, bfτ  is a threshold to determine whether voxels have 
correspondence or the displacement field is inaccurately 
estimated, and bfδ  represents the forward–backward (inverse 
consistency) error from B to F . α  is set to 0.015, and fN  
represents the number of non-zero voxels in image F. A 
denotes an average filter of size ( )32 1p + , and  represents a 
convolution operator with zero-padding. As the estimated 
registration field may exhibit fluctuations during the learning 
process, we apply an average filter to the estimated forward 
error to stabilize the binary mask estimation and mitigate the 
impact of contour artifacts on the mask estimation.

Due to small noise, holes, and non-connectivity in the 
shape of the obtained binary mask, which are important 
factors affecting similarity assessment, we designed several 
post-processing steps for the segmentation. These post-
processing steps include various morphological operations 
or combinations thereof, as shown in Figure 3. The first is 
referred to as ‘OD’, which involves applying an opening 
operation followed by dilation to the mask. Performing 
an opening operation first effectively eliminates small 
image noise, disconnects edge fragments, and smooths 
the edges. Subsequently, dilation on the processed mask 
compensates for the eroded mask edges from the opening 
operation, preserving the original shape and approximate 
size. The second operation is called ‘CO’, which consists 
of a closing operation followed by an opening operation. 
The closing operation is used to fill holes in the mask, 
connect neighboring edges, and then an opening operation 
further removes noise and smooths the image edges. We 
use rectangular structuring elements in opening and closing 
operations with size [5,5], and cross-shaped structuring 
elements in dilation operations with size [10,10]. Alternative 
to the morphological operations, we additionally considered 
enlarging the mask region by a certain scale, referred to 
as ‘DI’. This approach roughly simulates the process of 
uniform tumor edge expansion and serves as a control group 
compared to the previous 2 groups.

Loss function

In the deformation fields bf bfId uφ = +  and fb fbId uφ = + , Id  
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Figure 3 The picture above is a schematic diagram of three post-processing methods for masks, they are DI, CO, and OD from left to 
right. The red regions represent the non-corresponding area output by the network, and white represents the mask after the respective post-
processing method is applied. DI, CO, and OD represent 3 post-processing methods for masks.  

is the identity transform. The objective of our proposed 
method is to compute the optimal deformation field that 

minimizes the dissimilarity metrics between ( )bfB φ  and F ,  
as well as B and ( )fbF φ  within the regions of effective 
correspondence. The objective function is as follows:

[3]( ) ( )1 reg s reg r inv inv m bf fbm mλ λ λ λ ′ ′= − + + + +   

Specifically, we employ a masked negative normalized 
cross-correlation (NCC) to measure dissimilarity, excluding 
regions without effective correspondence. The definitions 
of  s  and  inv  are as follows:

 ( ) ( )( ) ( ) ( )( ), , 1 , , 1s sim fb fb sim bf bfB F m F B mφ φ= − + −    [4]

 ( ) ( )( ) ( ) ( )( )( )inv 1 1bf fb fb b
x

f x m x x m xδ δ
∈Ω

= − + −∑

	

[5]

In this step, we utilize masked negative NCC with a 
similarity pyramid (27) as the dissimilarity function, which 
is calculated at each resolution level. To encourage smooth 
solutions and penalize unreasonable ones, we employ a 

diffusion regularizer 
2 2

2 2bf fbLr u u= ∇ + ∇  during training. 
regλ , invλ , and mλ  are hyperparameters that balance the loss 

functions. During training, we sample [ ]0,1regλ ∈  following 

the conditional registration framework. In the inference 
phase, we divide it into 20 groups with intervals of 0.5 and 
select the optimal result.

Results

Data and experiments setup

The dataset we utilized is a 3D clinical dataset from 
the BraTS-Reg challenge (15), comprising 160 pairs of 
preoperative baseline and follow-up brain MRI scans 
for adult patients with diffuse intrinsic pontine glioma 
[World Health Organization Central Nervous System 
(WHO CNS) grades 3–4]. For each patient, multiple MRI 
sequences, including T1, T1ce, T2, and FLAIR images, 
were provided. Clinical experts meticulously annotated 
landmarks within the scans, describing various anatomical 
positions within the entire region.

We applied standard preprocessing techniques, such 
as rigid registration to a common anatomical template 
(Montreal Neurological Institute, MNI), resampling to an 
isotropic resolution of 1 mm3, skull stripping, and brain 
extraction. For learning-based methods, during the training 
phase, we further resampled the scans to 160×160×80 with 
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an isotropic resolution of 1.5×1.5×1.94 mm3 and upsampled 
the solutions to 1 mm3 isotropic resolution at the evaluation 
stage using bilinear interpolation. We conducted 5-fold 
cross-validation, dividing the 140 pairs of scans equally into 
5 folds. There are 4 folds (122 pairs of scans) for training, 
an additional 20 pairs of scans for validation, and 1 fold  
(28 pairs of scans) for testing. 

We built our approach on the official implementation of 
3D DIRAC and used the default parameters provided in (16). 
We set regλ , invλ , and mλ   to 0.3, 0.5, and 0.01, respectively, 
during the validation phase. Our training takes about 
130,000 iterations. Network weights were updated using 
the Adam optimizer with a batch size of 1 and a learning 
rate value α of 1e−4. Our network was implemented using 
PyTorch 1.10 (37) and deployed on the same machine 
equipped with an Nvidia RTX 3080Ti GPU (Nvidia, Santa 
Clara, CA, USA).

Measurement

The registration accuracy was assessed in terms of median 
absolute error (MAE) and robustness based on manually 
annotated landmarks. MAE is calculated between landmark 
coordinates in the preoperative and deformed follow-up 
scans, where lower MAE typically indicates more accurate 
registration. We registered each pre-operative scan to 
its corresponding follow-up scan of the same patient, 
propagated the landmarks using the obtained deformation 
field from the follow-up scan, and measured the average 
TRE of paired landmarks in millimeters. The definitions of 
MAE are as follows:

( )ˆB B
l L l lMAE Median x x∈= − 	 [6]

B
lx  represents the -l th estimated anatomical landmark in 

the baseline scan, and ˆ B
lx  represents the -l th true landmark 

in the baseline scan.
Robustness is a success rate metric within the (0, 1) 

range, describing the percentage of landmarks whose MAE 
improved after registration. Robustness (15) is defined as 
follows:

( )
,

,
B F

B F
F

K
R p

L
= [7]

( )
( )

,

,

1 B F

B F P
R R p

P ∈

= ∑ [8]

Where ,B F FK L⊆  is the set of successfully registered 
landmarks, p is a pair of images to be registered, and P is 

the set of all pairs of images to be registered.
Additionally, the smoothness of the displacement 

field was evaluated by the number of negative Jacobian 
determinants. Voxel p is considered smooth and invertible if 
the Jacobian determinant is positive ( )( )p 0Jφ >  and a lower 
percentage of negative Jacobian determinants indicates a 
smoother displacement field (38).

Comparative experiment of different methods

We compared our method with several top-ranking 
registration methods in the 2022 BraTS-Reg Challenge, 
including DIRAC, NICE-Net (39), and 3D Inception-
Based TransMorph (35). Additionally, we compared our 
method with 2 traditional methods, Elastix (40), and  
2 classic deep learning methods, HyperMorph (41) and 
cLapIRN (36). Given the adoption of cost function masking 
strategy, our experiments were based on the cost functions 
of tumor core segmentation maps for both methods. 
To ensure an objective and effective comparison, the 
experimental parameters were kept consistent with those of 
the original methods.

Figure 4 is an example of registration results achieved by 
the 3 different methods.

Quantitative comparison results are presented in Table 1. 
Our network differs from 3D Inception-Based TransMorph 
in that it fuses the information of the 4 modalities at the 
input end through the Inception module when leveraging 
multimodal information. However, this introduces 
unnecessary modal information, but also indirectly 
highlights the necessity of incorporating multimodal image 
information. NICE-Net effectively addressed substantial 
deformations between preoperative and follow-up scans 
through a coarse-to-fine registration network, emphasizing 
the importance of feature extraction at multiple scales.

In terms of TRE and robustness, our method achieved 
the best performance among all baseline models, especially 
with an improvement of 3.3% in terms of average target 
error compared to other methods. Paired t-tests indicated 
that the decrease of TRE and the increases of robustness in 
our method were statistically significant (P<0.05) compared 
to the other 6 deep learning-based methods. This is 
attributed to the superiority of the bilateral pyramid input 
in extracting features from multimodal image data and 
the effectiveness of handling errors in non-corresponding 
regions constrained by the network. Furthermore, this 
also reveals that the underlying causes leading to non-
corresponding regions are more related to tumor edema.
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However, in terms of Jacobian determinant, our method 
is relatively poor among the tested models. Paired t-tests 
indicated that the difference of Jacobian determinant 
between our method and the other 6 deep learning-
based methods were statistically significant (P<0.05). Our 
proposed method is deficient in terms of deformation field 
smoothness, which is attributed to not considering voxels 
at the boundaries when extending the non-corresponding 
regions. When the region is extended, some voxels in the 
extended region will be excluded from the loss function, 
resulting in an unsmooth deformation field in this region.

Discussion

To demonstrate the superiority and effectiveness of our 
designed network, we conducted ablation experiments on 
the multimodal inputs and post-processing of masks in 
the bilateral pyramid network. We present the evaluation 
performance of the backbone network in Table 2, where 
the D suffix indicates the introduction of the T2 modality 
through single-sided fusion input, the TT suffix indicates 
bimodal inputs with T1ce and T2, and the TF suffix 
indicates bimodal inputs with T1ce and FLAIR. DI, CO, 

FLAIR

Baseline Follow-up Elastix

DIRAC

Hypermorph

DIRAC-D

cLapIRN

Ours

T1ce

BA

Figure 4 An example of registration resulted by 3 different methods. The left part (A) is a pair of images to be registered for 2 modalities, 
with the aim of registering the baseline image onto the follow-up image. The tumor area is marked by the red arrow while the tumor edema 
is marked by the yellow arrow. The right part (B) are the registration results of 3 different methods. They show varying degrees of mismatch 
in region of the tumor which is marked by red box. FLAIR, fluid-attenuated inversion recovery; T1ce, contrast-enhanced T1-weighted; 
LapIRN, Laplacian pyramid framework. 

Table 1 Comparison of results achieved by the top-ranking registration methods

Method TRE (mm)↓ Robustness↑ ( )% p 0Jφ ≤ ↓

Elastix 4.54±3.22 – –

3D Inception-Based TransMorph 2.24±1.52 0.82±0.26 0.17±0.28

NICE-Net 1.98±1.46 0.83±0.16 0.16±0.21

Hypermorph 2.64±2.00 0.81±0.27 0.27±1.57

cLapIRN 2.03±1.31 0.80±0.25 0.23±0.18

DIRAC 1.91±1.06 0.82±0.24 0.14±0.20

DIRAC-D 1.88±1.01 0.82±0.23 0.09±0.16

Ours 1.82±0.94 0.85±0.18 0.19±0.24

Results are provided as mean ± standard deviation. ↑, higher is better; ↓, lower is better. TRE, target registration error.  



Zhang et al. Deformable image registration to align MRI scans4788

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4779-4791 | https://dx.doi.org/10.21037/qims-23-1821

Table 2 The ablation study of MRI modalities and post-processing of masks on the BraTS-Reg 2022 

Method Modality TRE (mm)↓ Robustness↑ ( )% p 0Jφ ≤ ↓

DIRAC T1ce 1.91±1.06 0.82±0.24 0.14±0.20

DIRAC-D T1ce-T2 1.88±1.01 0.82±0.23 0.09±0.16

DIRAC-TT T1ce-T2 1.87±0.98 0.82±0.23 0.13±0.18

DIRAC-TF T1ce-FLAIR 1.85±0.95 0.80±0.24 0.14±0.12

DIRAC-TT-DI T1ce-T2 1.86±1.01 0.83±0.23 0.15±0.14

DIRAC-TT-CO T1ce-T2 1.84±0.99 0.84±0.19 0.15±0.16

DIRAC-TT-OD T1ce-T2 1.84±0.98 0.85±0.22 0.13±0.15

DIRAC-TF-DI T1ce-FLAIR 1.86±1.13 0.85±0.22 0.11±0.18

DIRAC-TF-CO T1ce-FLAIR 1.85±1.08 0.82±0.23 0.13±0.20

DIRAC-TF-OD T1ce-FLAIR 1.82±0.94 0.85±0.18 0.19±0.24

Results are provided as mean ± standard deviation. The D suffix indicates the introduction of the T2 modality through single-sided fusion 
input, the TT suffix indicates bimodal inputs with T1ce and T2, and the TF suffix indicates bimodal inputs with T1ce and FLAIR. DI, CO, 
and OD represent 3 post-processing methods for masks. ↑, higher is better; ↓, lower is better. MRI, magnetic resonance imaging; TRE, 
target registration error; T1ce, contrast-enhanced T1-weighted; FLAIR, fluid-attenuated inversion recovery.

and OD represent 3 post-processing methods for masks, 
namely, dilation, first closing operation followed by opening 
operation, and first opening operation followed by dilation, 
respectively. The design of DI serves as a contrast to CO 
and OD. We conducted comprehensive experiments on 
various combinations in both stages as detailed in the Table 2.

Our network architecture is an improvement based on 
DIRAC. To introduce crucial multimodal information from 
the tumor region, we used a bilateral pyramid network to 
extract information from different modalities for fusion. It 
can be observed that introducing the T2 modality effectively 
reduced the average TRE from 1.91 to 1.87 mm. With the 
introduction of the FLAIR modality, TRE further improved 
to 1.85 mm, indicating the FLAIR modality’s effectiveness 
in extracting features from the tumor region. Moreover, 
in the model with inputs of T1ce and T2, using bilateral 
inputs reduced TRE from 1.88 to 1.87 mm, demonstrating 
the helpfulness of bilateral inputs in feature extraction from 
the images. In terms of robustness and smoothness of the 
deformation field, introducing bilateral networks controlled 
them within an acceptable error range.

Building on the introduction of the second modality, we 
further applied 3 post-processing techniques to the non-
corresponding regions constrained by the network. It can 
be observed that when introducing the second modality 
as T2, both CO and OD improved TRE by 1.6%, with 
varying degrees of enhancement in network robustness 
compared to the baseline model. Conversely, when the 

second modality was FLAIR, our model achieved the best 
overall result with a TRE of 1.82 mm, representing a 3.3% 
reduction compared to the DIRAC-D. Network robustness 
also increased by 3.7%. Although it sacrificed some 
smoothness of the deformation field, it remained within a 
controllable range. Figure 4 displays qualitative examples 
of the registration results for each method and the regions 
estimated by our method to have no correspondence. 
The results indicate that our method effectively utilizes 
information from the second modality through bilateral 
networks to accurately locate regions with no valid 
correspondences. It applies reasonable post-processing 
to eliminate mask errors and expand them. Additionally, 
during the training phase, it explicitly excludes these regions 
in similarity measurements, further reducing artifacts and 
registration errors for patients.

Conclusions

We have proposed a deformable registration method with 
bilateral pyramid input for pre-operative and post-recurrence 
brain scan registration, which can jointly register, segment, 
and post-process regions without correspondence. We 
introduced a novel post-processing method for segmentation 
maps to address errors in non-corresponding regions. 
Compared to other deep learning-based methods, our 
study offers a way to utilize multimodal patient image data 
effectively and provides significant insights into the origins 
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and patterns of tumor recurrence. In contrast to traditional 
methods, our approach inherits the runtime advantages 
of deep learning-based methods and does not require any 
manual interaction or supervision, demonstrating great 
potential in fully automatic patient-specific registration.
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