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Innate T lymphocytes are a group of relatively recently identified T cells that are not

involved in either innate or adaptive immunity. Unlike conventional T cells, most innate

T lymphocytes express invariant T cell receptor to recognize exogenous non-peptide

antigens presented by a family of non-polymorphic MHC class I-related molecules, such

as CD1d and MHC-related molecule-1 (MR1). Invariant natural killer T (iNKT) cells and

mucosal-associated invariant T (MAIT) cells quickly respond to the antigens bound to

CD1d and MR1 molecules, respectively, and immediately exert effector functions by

secreting various cytokines and granules. This review describes the detrimental and

beneficial roles of iNKT cells in animal models of asthma and in human asthmatic

patients and also addresses the mechanisms through which iNKT cells are activated

by environmental or extracellular factors. We also discuss the potential for therapeutic

interventions of asthma by specific antibodies against NKT cells. Furthermore, we

summarize the recent reports on the role of MAIT cells in allergic diseases.

Keywords: CD1d, MR1, asthma, invariant NKT (iNKT) cells, mucosal-associated invariant T (MAIT) cells

INTRODUCTION

Innate-like T cells (CD1-restricted T cells or MHC-related molecule-1 (MR1)-restricted T cells)
are classified as innate lymphoid cells that have features similar to those of the cells involved in
acquired immunity, such as T cell receptor (TCR) expression (1). However, their TCR repertoire is
very limited, and they recognize self or exogenous non-peptide antigens presented by a family of
non-polymorphic and MHC class I-related molecules (1).

NKT cells are characterized by the expression of TCRs with a limited repertoire, consisting of
Vα14 and Jα18 (in mice) or Vα24 and Jα18 (in humans) (2). In addition, their sets of Vβs are also
skewed toward mainly Vβ8.2 (in mice) and Vβ11 (in humans). Since NKT cells have limited TCRs,
they are called invariant natural killer T (iNKT) cells. α-galactosylceramide (α-GalCer) presented
by CD1d is the most potent and well-analyzed ligand that activates iNKT cells (2). Activated
iNKT cells regulate various immune responses to protect us from tumors or infectious diseases
(3, 4). However, these cells can also contribute to chronic inflammatory disease, such as allergic
inflammation and autoimmune responses (5, 6).

Like iNKT cells, mucosal-associated invariant T (MAIT) cells express a semi-invariant TCR
with a unique TCRα chain (Vα19-Jα33 in mice, Vα7.2-Jα33 in humans) and a restricted set of
TCRβ chains (7). MAIT cells are activated by a bacterial riboflavin derivative presented byMR1 (8).
Although MAIT cells have been suggested to play a role in antibacterial immunity through sensing
MR-1-bound microbial products, it has been speculated that these cells may also be involved in
regulating beneficial host commensal interactions in the intestine and potentially in the lung (9, 10).
As well as participating in antimicrobial immunity, MAIT cells may be involved in the control of
chronic inflammation (11).
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Another interesting feature of these MAIT and iNKT cell
populations is their memory-like phenotype (12). They are able
to produce effector cytokines, cytolytic molecules, and growth
factors at early time points of immune responses. Therefore,
they are considered to play an essential role in the host
defense immune responses. Both populations have distinct and
characteristic tissue localization, as NKT cells reside in the
thymus, spleen, lung and liver, whileMAIT cells are preferentially
found in the gut lamina propria, lung and liver (13, 14). NKT
cells are relatively abundant in mice and show a lower frequency
in humans, whereas the opposite situation is true for MAIT cells
(15).

Upon activation, iNKT cells produce a large amount of both
Th1 and Th2 cytokines in addition to inflammatory cytokines,
such as interleukin (IL)-17 and tumor necrosis factor α (TNFα).
iNKT cells show heterogeneity in their transcriptional factors.
Three different subsets of iNKT cells have been shown to produce
distinct cytokines, defined as NKT1, NKT2 and NKT17 (16, 17).
iNKT cells are also distinguished by their surface molecules, such
as CD4 and IL-17RB. CD4+IL-17RB+ iNKT cells in particular
produce IL-13, IL-9, IL-10, IL-17A, and IL-22 (18). Since these
cytokines exert different immunoregulatory functions, certain
populations of iNKT cells might contribute to the development
of chronic disorders, such as allergic diseases (18). MAIT cells
produce IFN-γ, IL-4, IL-17, and TNFα (12, 19). Lepore et al.
suggested that IL-5 and IL-13 can be produced by MAIT clones
(20). It would be possible to identify distinct subsets of MAIT
cells, that can produce specific cytokines such as is observed in
the case of iNKT cells.

Asthma is a chronic inflammatory disease in the lung that
causes recurring periods of wheezing, chest tightness, shortness
of breath and coughing. It is well established that allergic asthma
is induced by Th2 cell-mediated immune responses (21). Studies
by our group and other authors have revealed that chronic
airway inflammation in asthma patients is caused by pathogenic
memory Th2 cells, which express high levels of IL-33 receptor
ST2 and have a CD161highCRTH2high phenotype in human (22–
25).

Memory T cells are considered to play a beneficial role
by responding immediately and strongly to the secondary
invasion by the same antigen of a microorganism (26). However,
memory T cells can induce adverse effects in cases of chronic
inflammatory disease if they respond to allergens or self-antigens
repeatedly for a long duration (27). Thus, allergen-specific
memory Th2 cells, particularly the pathogenic subpopulation of
ST2+ Th2 cells paly important roles in the pathogenesis of IL-
5-induced eosinophilic inflammation and fibrotic responses (24,
28). However, it is also recognized that asthmatic patients show
heterogeneous phenotypes, including so-called type-1 and type-
2 mixed inflammation with neutrophilic infiltration. Thus, other

Abbreviations: MR1, MHC-related molecule-1; TCR, T cell receptor; iNKT,

invariant natural killer T; α-GalCer, α-galactosylceramide; MAIT, mucosal-

associated invariant T; IL, interleukin; TNFα, tumor necrosis factor α; AHR, airway

hyperactivity; KO, knockout; TLR, toll like receptor;Myl, myosin light chain; HDE,

house dust extract; TIM-1, T cell immunogloblin and mucin domain-1; PtdSer,

phosphatidylserine; TSLP, thymic stromal lymphoprotein; DCs, dendritic cells;

BALF, bronchoalveolar lavage fluid.

cell types, such as NKT cells likely contribute to the development
or exacerbation of asthma (29).

This review describes and discusses the immunoregulatory
roles of innate-like T cells in asthma in animalmodels and human
patients.

BENEFICIAL AND DETRIMENTAL EFFECTS
OF iNKT CELLS FOR ALLERGIC ASTHMA

Many investigators have tried to determine the roles of iNKT
cells in asthma over the past 20 years. To this end, Akbari et al.
assessed OVA-induced airway hyperactivity (AHR) and allergic
airway inflammation in iNKT cell-deficient Jα281 knockout
(KO) and CD1d KO mice (30). They noted a significant defect
in the development of AHR and inflammation in these NKT
cell deficient mice. The defects were corrected by the adoptive
transfer of iNKT cells in an IL-4- and IL-13-dependent manner.
Therefore, iNKT cells were considered to contribute to the
development of AHR and airway inflammation independent
of Th2 cells. In addition, the same group showed that non-
classical NKT cells, which are restricted to a β2-microgloblin-
independent form of CD1d, also contribute to the development
of AHR (31). Woo et al. further suggested that iNKT cells are also
required for the generation of Th2 cells by recruiting CD103+

dendritic cells (DCs) to the lung via the XCL1-XCR1 axis (32).
Furthermore, another group suggested that iNKT cells act as
an adjuvant to enhance allergic asthma, as systemic iNKT cell
activation by α-GalCer administration or adoptive transfer of
iNKT cells before OVA challenge significantly augmented the
Th2 inflammatory responses (33). These results indicate that
iNKT cells have detrimental effects in allergic asthma.

Simultaneously, other groups reported experimental results
indicating that iNKT cells are not involved in the development
of allergic asthma. OVA-induced allergic inflammation was not
reduced in CD1d-deficient mice or β2-microgloblin KO mice
lacking iNKT cells (34, 35). Moreover, a protective role of iNKT
cells in allergic asthma was suggested. Subsequent AHR in these
models can be suppressed by the systemic activation of iNKT
cells by α-GalCer treatment or the transfer of α-GalCer-loaded
bone marrow-derived DCs before OVA challenge in an IFN-γ-
dependent manner (36, 37). In addition, Grela et al. reported that
IFN-γ-producing iNKT cells stimulated with toll like receptor
(TLR) 7 agonist (R848) attenuated allergic asthma, which is
consistent with the finding that TLR7 stimulation not only
enhances viral responses but also alleviates experimental asthma
(38).

Thus, iNKT cells display either beneficial or detrimental
effects in allergic asthma. These conflicting effects may be due
to the various cytokine production patterns of iNKT cells under
different conditions. IL-4 or IL-13 production from iNKT cells is
required for the development of allergic asthma inmousemodels,
while iNKT cells can produce IFN-γ, which can suppress the
Th2 response and thereby prevent allergic asthma. However, even
when employing similar protocols, different institutes obtained
completely different findings (33, 36, 37). Since iNKT cells can
detect bacterial components through their invariant TCRs or

Frontiers in Immunology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 1942

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Iwamura and Nakayama Innate Like-T Cells in Asthma

Toll-like receptors, the difference in the lung microbiota may
affect the function of distinct iNKT cell subsets, such as NKT1
and NKT2.

Although inducing Th1 bias by iNKT cell activation may
result in the inhibition of AHR and eosinophilic infiltration,
our recent study shed light on how NKT cell activation can
suppress Th2 type inflammation. While immunological memory
plays a central role in providing protection against infection
or cancer, antigen-specific memory CD4T cells contribute to
the pathogenesis of allergic and autoimmune disorders by
recognizing allergens or self-antigens (24, 39). Our data showed
that the activation of iNKT cells with α-GalCer during the
memory phase resulted in the downregulation of IL-4, IL-5,
and IL-13 and up-regulation of IFN-γ in memory Th2 cells
(40). These functionally altered memory Th2 cells display a
decreased capability to induce Th2 cytokines and eosinophilic
airway inflammation. We therefore concluded that activated
iNKT cells directly regulate memory Th2 cell function in
vivo. Chang et al. showed another inhibitory mechanism for
allergic disorder by iNKT cells. They found that influenza
infection in neonates helped prevent allergic asthma by inducing
CD4negCD8neg iNKT cell activation, which is associated with
the expansion of regulatory T cells (41). The inhibitory effect
required T-bet and TLR7 expression in iNKT cells. Furthermore,
the administration of α-GalCer or glycolipid derived from
Helicobacter pylori to neonates recapitulated the result (41),
suggesting that infection with certain microorganisms can
prevent the subsequent development of allergic asthma by
expanding a specific subset of iNKT cells. Therefore, the authors
proposed that treatment of children or allergic patients with
compounds such as α-GalCer or other glycolipids derived from
microorganisms might be effective in preventing or improving
the development or symptoms of allergic asthma.

LUNG iNKT CELL-DEPENDENT ALLERGIC
OR NON-ALLERGIC ASTHMA

Lung iNKT cells are relatively abundant compared to iNKT cells
in the peripheral blood (14). The activation of pulmonary iNKT
cells by the intranasal α-GalCer administration rapidly induced
AHR and eosinophilic inflammation in naïve mice, and this effect
was independent of conventional CD4T cells (42). Michel et al.
showed that NK1.1neg iNKT cells produced high levels of IL-
17 and induced neutrophilic infiltration following the intranasal
administration of α-GalCer in a murine model (43). In addition,
the development of AHR was observed in non-human primates
by the direct activation of pulmonary iNKT cells with α-GalCer,
indicating that pulmonary iNKT cells are critical effector cells
in these animal models (44). Our previous study showed that
α-GalCer induced AHR and neutrophilic infiltration, and the
neutrophilic infiltration was significantly attenuated in CD69-
deficient mice, indicating that activated iNKT cells-mediated
asthmatic responses were dependent on CD69 expression (5).
We recently identified myosin light chain (Myl) 9 and Myl12
as functional ligands for CD69 (45). We also showed that the
interaction between CD69 on Th2 cells and Myl9 expressed on

the luminal side of endothelial cells in the blood vessels recruits
activated Th2 cells to the inflammatory site, resulting in airway
inflammation (45, 46). CD69 on iNKT cells might therefore
induce themigration of iNKT cells to the lung by binding toMyl9
or Myl12 and also play a critical role in the development of AHR
and airway inflammation (Figure 1).

Even if iNKT cell activation in the lung does contribute to
asthma, we are unlikely to be exposed to α-GalCer, a component
ofmarine sponge, in our daily lives. Several studies have indicated
that substances naturally existing in our environment, such as
allergens, pathogens and air pollution, might activate iNKT
cells and cause or exacerbate airway inflammation. Glycolipids
from bacteria, such as Sphingomonas, Borrelia, and Leishmania
species, are recognized by invariant TCR of iNKT cells (47). In
particular, glycolipids purified from Sphigomona cell walls were
shown to induce rapid AHR after respiratory administration
in wild-type mice but not iNKT-deficient mice (42). Although
a glycolipid that can induce iNKT cell activation has not
been identified in viruses, Kim et al. suggested that viruses
may facilitate CD1d antigen presentation and induce iNKT
cell activation in an indirect manner (48). The authors also
showed that IL-13 production from macrophages stimulated
by iNKT cells during respiratory virus infection induces the
development of AHR and mucus production independent of the
adaptive immune response.Aspergillus fumigatus is a saprophytic
fungus that is ubiquitous in the environment and is commonly
associated with allergic asthma (49). Albacker et al. reported that
theAspergillus funmigatus-derived glycosphingolipid asperamide
B directly activates iNKT cells in a CD1d-restricted, Myd88-
independent, and dectin-1-independent manner (50). The
intranasal administration of asperamide B rapidly induced
AHR and neutrophil infiltration into the lung, suggesting that
fungi can contribute to the induction of asthmatic symptoms
by iNKT cells. Therefore, iNKT cells activated by glycolipids
from microorganisms may contribute to the development and
exacerbation of asthma symptoms in humans.

It was recently revealed that non-glycolipid stimulation could
also activate iNKT cells, resulting in the induction of AHR.
House dust extract (HDE) contains antigens and is capable of
inducing airway inflammation by activating mouse Vα14 or
human Vα24 NKT cells (51). The stimulation of mouse Vα14
iNKT cells was shown to be CD1d-dependent and not dependent
on TLR agonist present in HDE. Although the antigen in HDE
remains incompletely characterized, the authors suggested that
the immunostimulatory material in HDE was of neither bacteria
nor glycolipid origin (51). Ozone is an air pollutant that has
also been reported to be associated with asthma (52, 53). The
development of AHR was found to be inducible even in healthy
individuals following exposure to ozone, which causes airway
epithelial damage, and increased numbers of neutrophils (54,
55). Furthermore, asthmatic patients are more susceptible to
the detrimental effects of this pollutant. A murine model of
ozone induced-asthma revealed the indispensable role of IL-17-
producing iNKT cells for the induction of AHR (56). Although
how ozone activates iNKT cells is unclear at present, NKT
cells activated by ozone can induce a form of asthma that is
characterized by cellular infiltration and AHR.
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FIGURE 1 | Roles of iNKT cells and Th2 cells in the development of AHR and airway inflammation. Lung iNKT cells can be activated by environmental substances in a

TCR-CD1d-dependent manner or extracellular factors (cytokines, TLR ligands, or apoptotic cells by virus infection). The CD69-Myl9 system may regulate the

infiltration of iNKT cells into inflamed tissues through blood vessels. The activation of lung iNKT cells resulted in AHR and infiltration of either neutrophils, eosinophils,

or both in the airway by producing cytokines.

In addition to the naturally existing molecules in the
environment, extracellular factors are also known to activate
iNKT cells. T cell immunoglobulin and mucin domain-1 (TIM-
1) is an important asthma susceptibility gene and also a receptor
for phosphatidylserine (PtdSer) (57), an important marker of
cells undergoing programed cell death or apoptosis (58). NKT
cells can activate, proliferate, and produce cytokines through
recognition of PtdSer by TIM-1 (59). Furthermore, the apoptosis
of airway epithelial cells activates pulmonary NKT cells, resulting
in AHR and suggesting that TIM-1 serves as a pattern recognition
receptor on NKT cells that senses PtdSer on apoptotic cells as
a damage-associated molecular pattern (60). Previous studies
have shown that apoptosis induced by virus infection or ozone
exposure can trigger NKT activation (48, 56, 60), as infection
with some viruses triggers apoptosis and externalization of
PtdSer. In addition, it has been reported that TLR signaling

enhances the activation of iNKT cells. Vultaggio et al. showed
that systemic dsRNA (poly (I:C)) selectively upregulates the IL-17
production from iNKT cells activated by α-GalCer. The authors
therefore expected that the exacerbation of airway inflammation
might be induced by certain virus infections (61). Furthermore,
several cytokines involved in the initiation and amplification
of Th2 responses have been reported (62). IL-25 is capable
of enhancing AHR and is produced by activated Th2 cells,
epithelial cells, basophils, and mast cells (63). The administration
of recombinant IL-25 induced Th2-type responses, including
increased serum IgE levels, eosinophilia, pathological changes
in the lung, and AHR. These symptoms induced by IL-25 were
not observed in iNKT cell-deficient mice (64, 65). Moreover,
iNKT cells expressing IL-17 receptor B were shown to be essential
for IL-25-induced AHR using an adoptive transfer model (65).
Thymic stromal lymphoprotein (TSLP) is also considered to play
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an important role in the iNKT cell-dependent asthma model
(66). While the targets of TSLP are T cells, mast cells, basophils,
and DCs, Nagata et al. demonstrated that TSLP also acts on
iNKT cells to enhance AHR by up-regulating their production
of IL-13 (67). IL-33 enhanced the production of Th1 and Th2
cytokines in activated NKT cells (68, 69). These results indicate
that natural ligands in the environments act as antigens for iNKT
cells to induce allergic asthma, and TCR-independent stimuli to
iNKT cells may exacerbate the asthmatic symptoms such as AHR
(Figure 1).

Although it is obvious that the direct activation of lung iNKT
cells causes lung inflammation, which types of inflammation
are induced is still controversial. Two groups claimed that
the intranasal administration of α-GalCer induced allergic
airway inflammation because eosinophil infiltration into the
lung, a feature of type 2-mediated responses, was observed
in IL-4- and IL-13-dependent manners (42, 70, 71). However,
neutrophil infiltration, which represents non-allergic airway
inflammation, is frequently observed in severe or Th17-mediated
asthma (72, 73). The activation of iNKT cells by the intranasal
administration of α-GalCer, asperamide B or PtdSer induces
pulmonary neutrophil infiltration, suggesting that iNKT cell may
contribute to non-allergic airway inflammation (5, 43, 50, 59).
In contrast, equivalent numbers of eosinophils and neutrophils
have been noted with ozone or poly (I:C) stimulation (56, 61).
This discrepancy in outcomes may be due to the activation of
distinct subsets of iNKT cells: one produces IL-13 and IL-5,
which activate and recruit eosinophils; the other produces IL-17,
thereby inducing the recruitment of neutrophils. Additional flow
cytometry single cell analyses addressing the precise production
profiles of cytokines in iNKT cells are needed in order to
discriminate the infiltrated subsets.

With many clinical and experimental examinations, it has
been revealed that asthma is more heterogeneous and complex
than previously thought. While allergic asthma is induced by
allergens and mediated by Th2 cells, a non-allergic form of
asthma is caused independent of Th2 responses (29). Non-
allergic asthma is induced by multiple environmental factors,
such as air pollution (smoke, ozone, and diesel particles) and
virus infection. Although the immunological pathways of non-
allergy asthma are still unclear, the activation of iNKT cells
with their specific ligands or cytokines may contribute to the
development of non-allergy asthma.

Taken together, these findings suggest that different types of
iNKT cell ligands may activate distinct subsets of iNKT cells,
thereby resulting in distinct patterns of airway inflammation.
Therefore, lung iNKT cell activation may contribute to the
development of various types of asthmatic inflammation
(Figure 1).

THERAPEUTIC INTERVENTION FOR iNKT
CELL-DEPENDENT ALLERGIC ASTHMA

As we pointed out above, iNKT cells may play have a critical
role in the development or exacerbation of asthma. Although
further investigations are needed, Dimaprit (H2 histamine

receptor agonist) or intravenous immunoglobulin treatment
does appear to suppress iNKT cell-dependent allergic asthma
(74, 75). The administration of anti-mouse CD1d monoclonal
antibodies (20H2) or CD1d-dependent antagonist has also been
shown to suppress OVA-induced AHR and inflammation in
murine models (76, 77). Indeed, McKnight et al. reported
that anti-mouse CD1d monoclonal antibody (20H2) treatment
before the intranasal administration of α-GalCer impaired
iNKT cell-induced AHR in an experimental mouse model
of asthma, while this antibody did not suppressed OVA-
induced allergic asthma. These results suggest that this antibody
may attenuate non-allergic asthma (35). Anti-human CD1d
antibody (NIB.2) possesses a high affinity for human and
cynomolgus macaque CD1d and inhibits NKT cell activation by
inhibiting the interactions of the TCRβ chain of iNKT cells with
CD1d (78). NIB.2 treatment significantly reduced the cytokine
levels and numbers of lymphocytes and macrophages in the
bronchoalveolar lavage fluid (BALF) in a primate model of
asthma (78). However, this antibody may affect other CD1d-
restricted T cells that are not involved in airway inflammation
(79). Therefore, the development of a more specific method will
pave the way for therapeutic interventions to alleviate symptoms.

Mouse invariant monoclonal antibody, NKT14 was found
to specifically bind to invariant TCR of mouse iNKT cells
and deplete iNKT cells in mice via antibody-dependent cellular
cytotoxicity and complement-dependent cytotoxicity for 3 weeks
(80). The elimination of iNKT cells was sufficient to prevent
murine AHR and pulmonary eosinophilic inflammation elicited
by the oropharyngeal inhalation with α-GalCer (71). In addition,
NKT14 administration prior to sensitization abrogated either
antigen-mediated AHR alone or both AHR and pulmonary
inflammation (71, 80).

ROLE OF iNKT CELLS IN ASTHMA
PATIENTS

In order to determine the role of iNKT cells in human asthma,
many investigators have examined iNKT cells in asthma patients
with regard to their numbers and the production of cytokines
(Table 1). An initial report published in 2006 by Akbari et al.
stated that more than 60% of CD4T cells in the BALF from
severe asthmatic patients were iNKT cells, while the infiltration
of iNKT cells was not observed in patients with other pulmonary
diseases, such as sarcoidosis, or in healthy controls (81). Three
other supportive reports showed that asthmatic patients display
higher frequency of iNKT cells in BALF as compared to healthy
control donors do (82, 83, 91). However, the very high numbers
of iNKT cells (∼60% among CD4T cells) reported by Akbari
et al. have not been replicated by other investigators.

In contrast, a similar study by other group found that the
number of iNKT cells was not increased in patients with asthma
(91). Another group reported that iNKT cells were found in
low numbers in the sputum or BALF of patients with asthma,
chronic obstructive pulmonary disease and healthy controls,
with no significant differences among the three groups (84).
Mutalithas et al. also reported similar results in the BALF (85).
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Furthermore, the influx of iNKT cells in the airways was not
observed after segmental allergen challenge (92, 93). To explain
this discrepancy, Thomas et al. (93) and Vijayanand (84) pointed
out that 6B11 antibody was able to stain alveolar macrophages
nonspecifically. They suggested that the higher frequency of
iNKT cells was due to the non-specific binding to the cells,
and that the lymphocyte population should be gated for the
analysis of iNKT cells (83, 91). However, Akbari et al. argued
that they had already gated the lymphocyte population and
used a CD1d-tetramer instead of 6B11 antibody to stain iNKT
cells. In addition, those authors readdressed the issue regarding
the number of iNKT cells in BALF from patients with severe
asthma the next year (86). They confirmed that patients with
severe asthma had a significantly increased number of iNKT cells
compared to healthy controls. In this report, however, CD1d-
restricted iNKT cells accounted for 2–7% of total CD3+ cells in
the BALF of asthmatic patients, and only 1 patient with severe
asthma had an iNKT cell proportion of 64.5% (93). The findings
of Reynolds et al. supported the increase in the number of iNKT
cells in the lung using biopsies with allergen challenge (94).
Nevertheless Brooks et al. subsequently suggested that the high
frequency of iNKT cells detected in BALF was due to the non-
specific staining of dead cells (87). In addition, they also indicated
that there was no marked difference in the frequency of 6B11+

iNKT cells in sputum even when including dead cells in the
samples.

After 2010, it was suggested that a reduced iNKT cell
frequency in the PBMCs of asthmatic patients did not imply
that iNKT cells were irrelevant to the development of asthma.
Koh et al. showed that the numbers of NKT cells in peripheral
blood did not differ markedly between patients and control
groups (88). However, in sputum, the numbers of iNKT cells were
significantly increased in patients with asthma. Their subsequent
study demonstrated the negative correlation between blood
iNKT cell number and eosinophils, cytokines, or chemokines
in sputum (95). These results suggested that iNKT cell might
be mobilized to the lung during the exacerbation. Two other
groups also demonstrated the profound reduction or no increase
in iNKT cells in the blood of asthma patients compared to
the normal control group (89, 90). However, they also showed
an increased IL-4 production in iNKT cells of asthma patients
compared to controls. Pedroza showed that pediatric asthmatic
patients undergoing exacerbations of asthma displayed increased
numbers of iNKT cells in the blood that also produced less
IFN-γ and more IL-4 than children with stable asthma or in
healthy control children (96). These results suggest that Th2-like
iNKT cells might be involved in the development of asthmatic
exacerbations.

At present, studies on iNKT cells in asthma patients have
provided conflicting results. The frequency of iNKT cells in the
lungs is particularly hotly debated. As such, we conclude that
the frequency of iNKT cell does not always reflect the severity
of the diseases. Although there are some recent reports that
suggest no correlation between the blood iNKT cell number
and clinical asthma severity (97), it is becoming more widely
recognized that iNKT cells likely play a role in the development
and possibly exacerbation of allergic asthma. In addition, the

studies of iNKT cells in other asthma etiologies, such as chronic,
occupational, steroid-resistant, exercise-induced, and aspirin-
induced asthma, where Th2 cells may not paly a major role, may
provide new insights into these type of diseases. We therefore
suggest a few experimental design approaches to adopt when
studying the role of iNKT cells in particular diseases. First, in the
flow cytometry analysis of iNKT cells in patients, lymphocytes,
particularly live cells, should be gated for the analysis, and control
staining, including with isotype controls, should be performed,
with the results compared. This will prevent the contamination
of cells with non-specific staining patterns. Second, more than
two staining protocol should be employed. At least three different
approaches have been established for identifying iNKT cells,
such as CD1d-tetramer, anti-Vα24 antibody and 6B11 antibody
recognizing the CDR3 region of Vα24-JαQ TCR. Although these
approaches should theoretically provide similar results, using
multiple staining protocols may help clear up any confusion if
controversial results are obtained. Third, in addition to assessing
the frequency of iNKT cells, their cytokine production (IL-2, IL-
4, IFN-γ, or IL-17) should also be examined by flow cytometry.
As we discussed above, it would be difficult to demonstrate
the relevance of iNKT cells to diseases by analyzing only the
frequency of such a small population. Examining changes in
their function may therefore be useful for elucidating their
contribution to the pathology of diseases.

MR1-RESTRICTED CELLS

MAIT cells are a subset of innate-like T lymphocytes first
described in 1999 (98). These MR-1-restricted cells are abundant
in humans and can rapidly express a variety of pro-inflammatory
cytokines (12). While iNKT cells are suggested to play critical
roles in murine models of allergic airway diseases, they are rare in
human airways. MAIT cells, by contrast, are 5- to 10-fold more
abundant in humans than in mice (15). Since MAIT cells exist in
the lung andmay be able to produce Th2 cytokines (19, 20), these
cells may contribute to the development of asthma. However,
several reports have indicated a different role for these cells.
Hinks et al. observed a striking deficiency of Vα7.2+ CD161+ T
cells in blood, sputum, and bronchial biopsy samples, suggesting
that the deficiency correlated with the severity of asthma (11, 99).
A similar deficiency in humans was observed in autoimmune
diseases (systemic lupus erythematosus, rheumatoid arthritis,
Crohn’s disease, ulcerative colitis, or chronic inflammatory
disease, such as type 2 diabetes) (100–103). In addition, it was
reported that an increased MAIT cell frequency at 1 year of age
was associated with a decreased risk of asthma by 7 years of age
(104). These results suggest that MAIT cells may play a protective
role against chronic inflammation.

Given that MAIT cells respond to bacterial metabolites, it is
possible that MAIT cell activation by gut or lung microbiota is
required to prevent asthma. If MAIT cells can exert a suppressive
function against chronic inflammation, this hypothesis would be
inconsistent with their ability to produce various inflammatory
cytokines. In addition, it was also reported that the numbers
of MAIT cells producing IL-17 are increased in asthmatic
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patients (105). Since MAIT-deficient mice have been generated
(106), investigations into the function of MAIT cells infiltrating
the inflammatory site in mouse models may help provide
answers.

CONCLUSION

Studies investigating the roles of iNKT cells in allergic
responses have helped to explain the Th2-dependentmechanisms
underlying the development of allergic asthma. However,
iNKT cells also have been suggested to be associated with
the development of non-allergic airway inflammation that is
induced and/or exacerbated by non-Th2 factors, such as viruses,
air pollution and inflammatory cytokines (IL-17 or TNFα).
Furthermore, recent studies have suggested that NKT cells or
MAIT cells may play a critical role in the inhibition of asthmatic
symptoms. Although a clear conclusion has not been reached
due to inconsistent results, innate-like T cells apparently have

critical and varied roles in regulating immune responses. As such,
more intensive studies will be required in order to elucidate
the mechanisms underlying the induction of various types of
asthma by innate-like T cells and establish innovative therapeutic
strategies.
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