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Abstract: Gastric cancer (GC) is one of the commonest
cancers with high morbidity and mortality in the world.
How to realize precise diagnosis and therapy of GC owns
great clinical requirement. In recent years, artificial intel-
ligence (AI) has been actively explored to apply to early
diagnosis and treatment and prognosis of gastric carci-
noma. Herein, we review recent advance of AI in early
screening, diagnosis, therapy and prognosis of stomach
carcinoma. Especially AI combined with breath screening
early GC system improved 97.4 % of early GC diagnosis
ratio, AI model on stomach cancer diagnosis system of saliva
biomarkers obtained an overall accuracy of 97.18 %, speci-
ficity of 97.44 %, and sensitivity of 96.88 %. We also discuss
concept, issues, approaches and challenges of AI applied in
stomach cancer. This review provides a comprehensive view
and roadmap for readers working in this field, with the aim
of pushing application of AI in theranostics of stomach
cancer to increase the early discovery ratio and curative
ratio of GC patients.

Keywords: artificial intelligence; diagnosis; gastric cancer;
prognosis; screening; therapy.

Introduction

Up to date, Gastric cancer (GC) is the fourth commonest
carcinoma and the third primary cause of cancer associated
deaths in the world [1]. As the rapid expansion of precise
medicine, the mortality of stomach carcinoma has begun to
decrease in some countries. However, so far China is still one
of the topfive countrieswith highmorbidity andmortality of
GC [2]. GC is closely associated with those factors such as
lifestyle, heredity and environment [3]. GC is divided into
two stages: (1) EGC: Early Gastric Cancer; (2) AGC: Advanced
Gastric Cancer. In hospital, endoscopy and pathological
biopsy are general means for diagnosis of EGC and AGC [4].
Up to date, discovery rate of EGC in China is still less than
15 % due to vague symptoms of EGC [5]. The patients with
AGC have 24 % five-year survival rate, whereas the patients
with EGC have more than 90 % [6]. To screen out EGC
patients owns huge clinical requirement.

In order to solve problem of detection of EGC, pre-
warning and early diagnosis system of GC has been being
developed since 1999 [7]. Gene expression profile chip was
used to screen out differently expressed genes associated
with EGC, AGC and normal gastric tissues respectively, and
GC prewarning gene chips with primary diagnosis standard
was developed, GC pre-warning database and information
analysis platform was established [8].

GC prewarning and early theranostics system based
on biomarkes was also studied [9]. Some GC biomarkers asso-
ciated with prewarning, diagnosis and staging of GC were
screenedand identified [10–14]. For example, twonovel plasma
microRNA biomarkers such as miR-16-5p andmiR-19b-3p were
identified to be capable of distinguishing GC patients with
different tumor node metastasis (TNM) stages and differenti-
ation grades [10]. Four keyGC circulating exosomalmicroRNAs
such as hsa-miR-130b-3p, hsa-miR-151a-3p, hsa-miR-15b-3p and
hsa-miR-1246 were identified [11], a suspension array with
aggregation-induced emission luminogen barcodes micro-
spheres was developed, and was successfully used for multi-
plex detection of GC microRNAs [12, 13].

Fourteen of volatile organic compound (VOC) breath
biomarkers were screened out to distinguish EGC and AGC
patients from healthy persons, a graphene oxide-gold
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nanoparticles-based sensor was prepared to detect these
VOC biomarkers. This method was successfully used to
detect 200 breath samples from clinical patients with a
sensitivity of 83 % and a specificity of 92 % [14].

Ten kinds of amino acids in human salivawere screened
out as metabolic biomarkers to differentiate EGC and AGC
patients from healthy people [15]. Then, the ultrasensitive
sensors based on graphene oxide nanoscrolls wrapped with
gold nanoparticles were fabricated to measure amino acid
biomarkers in saliva, which successfully distinguished EGC
and AGC patients from healthy population by using 220
clinical saliva samples with excellent performance
(specificity>87.7 % and sensitivity>80 %) [15, 16]. The salivary
detection method based on the surface enhanced raman
scattering (SERS) sensors will revolutionize the technique of
screening EGC and AGC patients from population.

As rapid development of molecular imaging,
multi-functional nanoprobes used for theranostics of GC
were developed, realizing simultaneous imaging and treat-
ment of GC [17–25].Magnetic nanoparticles-labeled lateralflow
test chips andquantitative deviceswere developed [26–28], and
a series of biosensors andmicrofluidic chipwere developed for
fast ultrasensitive detection of GC biomarkers [26, 29–34],
including carcinoembryonic antigen (CEA), carbohydrate an-
tigen 19-9 (CA19-9), Helicobacter pylori CagA protein (H.P.), P53
oncoprotein (P53), pepsinogen I and II (PG I, PG-II), HAI-178, GC
circulation cancer cells (CTC) [35, 36].

Up to date, GC therapeutic methods mainly include sur-
gery, radiation and chemotherapies, which are generally very
effective for early and in situ GC, but advanced andmetastatic
cases do not produce effective respond to chemotherapy or
radiation therapy [37]. Resistance to chemotherapy-induced
apoptosis is one main factor for the failure of conventional
therapies. The current prognosis of GC patients is very poor
with 5-year survivals of less than 24% [38]. Therefore, how to
recognize, track or kill EGC cells is still a great challenge.

GC is not very sensitive to traditional treatment such as
chemotherapy, and radiation therapy, which may be closely
associatedwithmany intrinsic or acquiredproperties of gastric
cancer stem cells (CSCs) [39, 40]. GC stem cells can result in GC
and are main cause for invasion, metastasis, and resistance to
conventional therapies [41]. Therefore, GCSC-based targeted
therapy is one innovative effective therapeutic direction,
multifunctional nanoprobes for targeted imaging and therapy
of GCSCs were developed [42].

The factors for recurrence and metastasis of GC are
summarized as follows [43]: (I) The intrinsic antigenicity
weakness of tumor cells, immunological surveillance of the
host cannot identify and eliminate the malignant cells that
are distributed out of the resection field and the peripheral
lymphoid organs. (II) Immunological surveillance defect or

dysfunction of the host. (III) Most tumor therapeutic drugs
own serious toxicities,may cause extremeweak immunity of
the patients. Therefore, it is very necessary to develop new
therapeutic strategies that could enhance the host immu-
nosurveilliance and/or improve immunogenicity of the
tumor cells. We also developed GC antigens fused vaccine
and achieve better therapeutic efficacy [44].

Artificial intelligence (AI)means the ability of amachine
to learn and display intelligence [45]. Machine learning (ML)
is an implementationmethod of AI, is also the core of AI, and
is the study of learning algorithms. Common ML algorithms
include supervised learning, unsupervised learning, semi-
supervised learning, reinforcement learning, deep learning
(DL), transfer learning, etc. [46]. For example, DL,which is an
innovative method of ML, is capable of keeping machines to
analyze various training images and use backpropagation
algorithms to extract specific image features [47]. This
approach is inspired by the biological neural network of
the human brain, and uses a layered structure of algo-
rithms called multi-layered artificial neural networks. In
addition, just like our brains, DL models can use logic to
analyze data, recognize patterns, draw conclusions, and
make decisions [48].

In the past decade, AI has been widely explored to apply
for medical engineering [48, 49], which is displayed as the
increasing number of medical devices with embedded AI
algorithms on the market, and the increasing number of AI
papers published in journals.

AI has three obvious technology advantages. Firstly, AI
is easy to optimize and can perform cost-effective and
flexible nonlinear modeling of large data sets. Secondly,
these models can make knowledge dissemination easier by
providing explanations. For example, using rule extraction
or sensitivity analysis [49]. Thirdly, unlike machines, the
performance of the human brain may be affected by
fatigue, stress, or limited experience. AI technology will
make up for the limited capabilities of humans, prevent
human error, give machines some reliable autonomy, and
improve work productivity and efficiency.

There are different types of AI computer systems to achieve
different functions in cancer management. The two main cate-
gories of AI systems are computer-aided detection (CADe) for
lesiondetectionandcomputer-aideddiagnosis (CADx) foroptical
biopsy and lesion characterization. Other AI systems provide
treatment assistance, such as personalized therapy training and
surgical skills trainingandassessment [50]. Inaddition, there are
other AI systems that provide technical support for disease
prediction based on patient data. Some examples of applying AI
in cancer management include image interpretation [51], sur-
gical interventions [52], drug discovery [52], hospital-wide data
analysis [53], and personalized treatment [54].
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Herein, we review the recent advances of AI-assisted GC
diagnosis, especially in the early screening and diagnosis of
GC, and GC treatment and prognosis (Scheme 1). We also
discuss the concept, issue and approaches and challenges,
with the aim of attracting a lot of scientists to use AI to solve
precise theranostics of GC to increase the early discovery
ratio and curative ratio of GC patients in near future.

Advance of AI in GC

The 5-year survival rate for advanced GC is 5%–25%, while it
can be 90% for EGC [55]. Early detection and curative treat-
ment are the best strategies to improve the survival rate of
patients. For example, Japan’s nationwide large-scale GC
screening program has reduced related mortality [56].
However, so far morbidity and mortality of GC in the
world is still very high, how to realize precise theranostics
of GC has great clinical requirement. In recent years, AI
are actively applied for clinical GC research, great ad-
vances of AI application for GC have been achieved, and
deeply improve precise theranostics of GC. Up to date, AI
can offer invaluable assistance in the management of EGC
from following seven different levels:
(1) Screening: Deep staked sparse autoencoder neural

network (DSSAENN) for EGC screening based on VOC
biomarkers.

(2) Screening: Support vector machine (SVM) for EGC
screening via Saliva biomarkers.

(3) Diagnosis: CADx for EGC detection in esophagogas-
troduodenoscopy (EGD).

(4) Diagnosis: CADx for invasion depth estimation and
cancer staging.

(5) Diagnosis: AI systems for prediction of H. pylori
infection.

(6) Treatment: AI systems for GC treatment.
(7) Prognosis: AI Systems for lymph node metastasis

(LNM) prediction and survival prediction.

Herein, we review the main advances of AI in GC from
above-mentioned seven levels.

AI in screening EGC via VOC biomarkers

Muhammad et al. constructed a CADe system which used a
softmax classifier and a DSSAENN (DSSAENN is a network
model that automates the process of encoding and
decoding operations) to classify GC based on VOC breath
biomarkers to distinguish EGC, advanced GC and healthy
persons [14]. All the breath samples were collected from
the Shanghai Tongren Hospital, Shanghai, China [57]. They
got an overall accuracy of 89.7 % for AGC and 97.3 % for
EGC detection [57].

As shown in Figure 1, the second model was developed
with [100 40] size of autoencoder, 100 and 40 are the number
of neurons in the 1st and 2nd hidden layers respectively. This
model produces an overall accuracy of 96.3 %, this model
misclassified only four samples of early-stage gastric cancer.

Scheme 1: Application of AI in GC. AI, artificial intelligence; GC, gastric cancer.
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Moreover, this model produces very good accuracy for
predicting healthy person and advanced GC as well. This
model yields an accuracy of 97.4 %, 98.0 % and 93.3 % for
EGC, Healthy and AGC patients respectively [57]. Up to date,
this model is being tested and optimized in multi-clinical
centers, own clinical translation prospects.

SVM based classification system for
GC via saliva

Based on our previous report [15], 220 saliva samples were
collected and analyzed, 10 kinds of amino acid biomarkers
were identified to distinguish the patients with GC from
persons without GC in the saliva samples with dominant
peaks. As shown in Figure 2, the SVM was used for binary
classification. The learning algorithm of SVM is the optimi-
zation algorithm for solving convex quadratic program-
ming. The processed Raman dataset was used to train and
test the establishedmodel. SVM based neural networks were
developed using different kernels. Accuracy, specificity,
sensitivity, and receiver operating characteristics (ROC)
were applied to evaluate the classification model, along
with mean average error (MAE), mean square Error (MSE),
sum average error (SAE), and sum square error (SSE).
Finally, we obtained an overall accuracy of 97.18 %, speci-
ficity of 97.44 %, and sensitivity of 96.88 % for the proposed
model [58, 59].

Our proposed method for the classification of GC is
non-invasive, cheap, and faster. With the combination of
SERS sensors, our proposed model has provided us an
entirely new diagnostic way of GC. The proposed model
is capable of playing an important role in clinics. This
established method owns the prospect of clinical
translation.

CADx for EGC detection in EGD

EGD and biopsy are twomethods that aremostly used for the
diagnosis of EGC. Although EGD is the standard procedure
for diagnosing GC, the false negative rate of EGD for GC is
4.6 %–25.8 % [60–65]. According to recent studies [66, 67], the
missed diagnosis rate of gastroscopy doctors with less than
10 years of work experience is about 25 %. In addition, even
experienced Chinese gastroscopists, due to the heavy burden
of medical image analysis, that is, each gastroscopist has
about 50 patients per day, so it is almost inevitable that they
will encounter missed or misdiagnosed.

The application of CADx technology in EGD has
many advantages. It can reduce the variability between

Figure 1: Breath analysis based EGC
classification from DSSAENN (Image source:
Reproduced from Aslan et al. [57], 2021 with
permission of Springer Nature). DSSAENN,
deep staked sparse autoencoder neural
network; EGC, early gastric cancer.

Figure 2: Methodology of GC diagnosismodel using SVM (Image source:
Aslam et al. [58]). GC, gastric cancer; SVM, support vector machine.
(Reproduced from Aslan et al. [58], 2015 with permission of NBE).
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operators, improve the accuracy of diagnosis, and help
make treatment decisions quickly and accurately on site. In
addition, CADx will reduce the time, cost and burden of
endoscopic surgery [68].

Hirasawa et al. constructed a convolutional neural
network (CNN)-based diagnostic system for detecting GC
using stored images of EGD [69]. CNN is to convert a picture
into a feature vector, throughmultiple layers of convolution,
pooling, full connection, reduce the dimension of the picture,
and finally transform it into a one-dimensional vector, this
vector contains the characteristics of the picture. The CNN
required 47 s to analyze 2296 test images obtained from two
hospitals (Cancer Institute Hospital Ariake, Tokyo, Japan,
and TokatsuTsujinakaHospital, Chiba, Japan) and two clinics
(Tada Tomohiro Institute of Gastroenterology and Proc-
tology, Saitama, Japan, and Lalaport Yokohama Clinic,
Kanagawa, Japan) and it correctly diagnosed 71 of 77 GC
lesions with an overall sensitivity of 92.2 %, and 161 non-
cancerous lesionswere detected as GC, resulting in a positive
predictive value of 30.6 %. Seventy of the 71 lesions (98.6 %)
with a diameter of 6 mm or more as well as all invasive
cancers were correctly detected. As shown in Figure 3, Li
et al. developed a new system based on CNN to analyze
gastric mucosal lesions observed by magnifying endoscopy
with narrow-band imaging (M-NBI). They concluded that
there is no significant difference in diagnostic specificity and
accuracy between CNN and experts, but the diagnostic
sensitivity of CNN is significantly higher than that of experts.
However, this study excluded type 0-I and type 0-III lesions,
and the scope of application of the CNN system was
limited [51].

Shibata et al. developed a method to detect and segment
EGC regions from gastrointestinal endoscopic images using
Mask-CNN [71]. Ikenoyama et al. evaluated whether CNN is
better than endoscopists in detecting EGC [72].To sum up, AI
based on deep learning through CNN has made significant
progress in the field of gastroenterology.

In addition to CNN can be used for the diagnosis of GC,
SVM is also often used in GC. Miyaki et al. designed an
SVM-based analysis system to be used with an endoscope
system [73]. It can quantitatively identify GC through blue
laser imaging (BLI) magnified images obtained by endos-
copy. The SVM output value for cancerous lesions being
significantly greater than that for reddened lesions or
surrounding tissue [73]. Cheng et al. developed a fourier
transform infrared (FTIR) feature extraction method. It
used continuous wavelet transform (CWT) analysis and
SVM for classification to improve the accuracy of the EGC
diagnosis rate by FTIR [70]. Kanesaka et al. trained two SVM
to develop a CADx system and to help endoscopists identify
and describe EGC. But their study focused on the small

depression type EGC. Other EGCs may require different
algorithms [74].

Podder et al. considered random forest (RF), decision
tree (DT), k-nearest neighbor (KNN), and adaptive boost
(AdaBoost) classifiers for the diagnosis of GC. The results
show thatwhen the test sample is 20 , 30, and 40 %of the data
sample, RF is superior to DT, AdaBoost, and KNN in terms of
accuracy, precision, and recall. For example, when testing a
data set of 30 %, the accuracy values obtained by RF, DT,
AdaBoost, and KNN were 86.67 , 83.33, 86.57, and 83.33 %,
respectively [75].

CADx for invasion depth estimation and
cancer staging

Invasion depth was classified into M, SM1, or SM2 (cancer
with submucosal invasion ≥ 500 μm), MP (cancer invading
the muscularis propria), SS (cancer invading the subserosa),
SE (cancer invasion contiguous to the serosa or penetrating
the serosa, and exposed to the peritoneal cavity), or SI
(cancer invading adjacent structures) [76].

Endoscopic submucosal dissection (ESD) or endoscopic
mucosal resection (EMR) can often be used for intramucosal
carcinoma (M) and cancers with submucosal invasion
<500 μm (SM1), while GC with deeper invasion requires
surgical resection [77]. Therefore, accurate prediction of
invasion depth is crucial for screening patients for endo-
scopic resection.

However, there is currently no reliable method to
determine the invasion depth. In current clinical practice,
experienced endoscopists usually use conventional endo-
scopes or use endoscopic ultrasound (EUS) to evaluate
macroscopic features to diagnose the depth of EGC infiltra-
tion. According to reports, the accuracy of these twomethods
is limited, and no significant differences have been found in
the diagnostic accuracy and macroscopic characteristics of
EUS [78, 79]. The overall accuracy of conventional endoscopy
is 69–79 % [78, 80], depending on the doctor’s experience in
identifying endoscopic features. Therefore, a more accurate
and objective method is needed to diagnose the invasive
depth of GC.

CNN as a deep learning algorithm is often used to detect
the depth of cancer invasion [81]. As shown in Figure 4, Zhu
et al. constructed a CNN-CAD system, which uses ResNet50 to
determine the depth of invasion and screen patients for
endoscopic resection. The result is that the area under the
receiver operating characteristic curve of the CNN-CAD
system is 0.94 (95 % confidence interval [CI], 0.90–0.97). At a
threshold of 0.5, the sensitivity is 76.47 % and the specificity
is 95.56 %. The overall accuracy rate is 89.16 %. The positive
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and negative predictive values were 89.66 and 88.97 %,
respectively. The CNN-CAD system achieves higher accuracy
(17.25 %; 95 % CI, 11.63–22.59) and specificity (32.21 %; 95 % CI,
26.78–37.44) than human endoscopists [82].

Yoon et al. developed a visual Geometry Group (VGG)-16
model to classify endoscopic images as EGC (T1a or T1b) or
non-EGC [83]. Nagao et al. devised three AI systems that use

ResNet50 to predict the invasion depth of GC using white-
light imaging (WLI), non-magnifying narrow-band imaging,
and indigo-carmine dye contrast imaging respectively [76].
Kubota et al. developed a CNN system that uses the back-
propagation (BP) algorithm to calculate the accuracy
of diagnosing the T1, T2, T3, and T4 stagings of GC. As
shown in Figure 5, the discrimination accuracy of T1–T4

Figure 3: The endoscopist uses the green rectangle tomanuallymark the location of the cancer in each image. The yellow rectangle is generated by CNN
to identify suspected lesions and indicate the degree of GC. Although CNN did not identify GC in the distant view (a) it correctly located the GC in the near
view (b) (Image source: Reproduced from Hirasawa et al. [69], 2018 with permission of Springer). (c) The Structure of SVM that Cheng et al. developed
(Image source: Reproduced from Cheng et al. [70], 2007 with permission of IEEE). (d) Inception v3model architecture that Li et al. develop (Image source:
Reproduced from Li et al. [51], 2019 with permission of Springer).
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stages is 77.2 %, 49.1 %, 51.0 %, and 55.3 % (the accuracy of
distinguishing T1a [restricted mucosa] and T1b [submuco-
sal invasion] is 68.9 %). The accuracy of their system can be
improved by modifying the program [84]. Cho et al. estab-
lished a DL algorithm for accurately predicting submucosal

infiltration in endoscopic images of gastric tumors. In in-
ternal testing, the average area under the curve for the
DenseNet-161 network was 0.887 (95 % CI: 0.849–0.924). In
external tests, the average area under the curve reached
0.887 (0.863–0.910) [85].

Figure 4: Endoscopic images: (a) A tumor
invasion depth restricted to the M or SM1.
(b) A tumor invasion depth deeper than the
SM1 (Image source: Reproduced from Zhu
et al. [82], 2015 with permission of Elsevier).
M, mucosa; SM1, submucosa.

Figure 5: Deep learning algorithm. (a) A scheme of the computer learning program with the BP algorithm that Kubota et al. proposed (Image source:
Reproduced from Kubota et al. [84], 2012 with permission of Springer). (b) Schematic diagram of computer-aided diagnosis system that Li et al. proposed
to diagnose the invasion depth of GC (Image source: Reproduced from Li et al. [86], 2015 with permission of Elsevier). (c) Convolutional neural network
computer-aided detection system architecture (Image source: Reproduced from Zhu et al. [82], 2019 with permission of Elsevier).

220 Zha et al.: Artificial intelligence in theranostics of gastric cancer



SVM is also often used to diagnose the depth of GC
invasion. Jiang et al. developed an SVM-based GC prog-
nostic classifier (GC-SVM) based on a variety of clinico-
pathological features and immune markers to predict
overall survival (OS) and disease-free survival (DFS), and
explore whether the GC-SVM classifier can identify patients
with stage II and stage III of GC [87]. Li et al. evaluated the
accuracy of dual-energy spectrum computed tomography
(DESCT) imaging with the aid of a CADx system, which uses
the SVM classification method to assess the serosal infil-
tration of GC patients. The total classification accuracy rate
reaches 90 % [86].

KNN is also a good way to diagnose the depth of GC
invasion. Li et al. used the KNN classifier to distinguish
between lymph node metastasis and non-lymph node
metastasis, and the overall accuracy rate was 96.33 %.
Compared with traditional diagnostic methods such as
spiral CT (sensitivity 75.2 %, specificity 41.8 %) and multi-
slice spiral CT (82.09 %), the diagnostic accuracy of lymph
node metastasis (LNM) is higher [88]. As shown in Figure 6,
Li et al. proposed an improved Citation-KNN method to
identify the depth of tumor invasion of GC through dual-
energy CT imaging. The total accuracy is 0.7692 [89].

AI systems for prediction of H. pylori
infection

As shown in Figure 7, H. pylori infection can induce atrophic
gastritis and intestinal metaplasia, and eventually develop into
GC [90–93].According to reports, patientswithH.pylori infection
have an increased risk of GC, and the incidence of H. pylori
infection has decreased afterH. pylori eradication. This fact has
led the International Agency for Cancer Research to classify
H. pylori as a clear carcinogen [94–98], which in turn has led to
an increase in the prevalence of eradication therapy [99–101].

Endoscopy canhelp diagnoseH. pylori infection. Accurate
endoscopic diagnosis ofH. pylori positive should be confirmed
by various tests, such as blood or urine anti-H. pylori IgG and
fecal antigen, urease breath, or rapid urease tests, followed by
eradication therapy. In addition, patients who have been
eradicated from H. pylori have a moderate risk of developing
GC. Even if the eradication is successful, GC may still
occur [98, 102, 103], which iswhy post-eradication status should
be distinguished from H. pylori-negativity.

Shichijo et al. constructed a CNN and evaluated its
ability to diagnose H. pylori infection. Compared with the

Figure 6: The flowchart of themultiple instance
learning based CADx system that Li et al.
proposed (Image source: Reproduced from
Li et al. [89], 2015 with permission of Elsevier).
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manual diagnosis of endoscopists, CNN has higher accuracy
and shorter time [104]. However, the study only included
H. pylori positive and negative patients, and excluded
patients after H. pylori eradication. So Shichijo et al. con-
structed a CNN and evaluated its ability to determine the
status of allH. pylori infections [105]. Mohan et al. evaluated
the comprehensive performance of CNN-based AI in diag-
nosing H. pylori infection. Compared to physicians, CNN
seemed to perform equivalently [106]. Zheng et al. used
CNN to achieve high diagnostic accuracy for evaluating
H. pylori infection. The area under the curve of the poly
gastric image of each patient is 0.97, and the sensitivity,
specificity, and accuracy are 91.6 %, 98.6 % and 93.8 %.
Their system achieved a high degree of accuracy [107]. Itoh
et al. developed a CNN to detect H. pylori infection and it
turned out that CNN-assistedH. pylori infection diagnosis is
feasible [108].

SVM is also commonly used to diagnose H. pylori
infection. Ishihara et al. proposed a method for detecting
H. pylori infection based on the combination of SVM and
multiple kernel learning (MKL), and the experimental re-
sults obtained by applying this method to real X-ray images
proved its effectiveness [109]. Huang et al. proposed a
computer-aided diagnosis system that uses sequential for-
ward floating selection (SFFS) and SVM to diagnose H. pylori
gastric histology fromendoscopic images [110]. Ishihara et al.
constructed an SVM to automatically detect H. pylori infec-
tion in multi-gastric X-ray images [111].

There are other algorithms that can detect H. pylori
infection. Ishihara et al. used MKL to build a system that can
automatically detect H. pylori infection [112]. The MKL al-
gorithm essentially definesMbase kernel functions and uses
a weighted linear combination of the base functions as the
kernel function of the SVM.

Treatment: AI systems for GC
treatment

Despite advances in computer systems and simulation
methods, surgical training is still based on the direct obser-
vation of expert surgeons [113]. Due to the subjectivity of
human observation, these methods lack consistency, reli-
ability and efficiency [114]. In addition, the widespread
implementation of robotic surgery has led to an increasing
need for appropriate structured training models and objec-
tive evaluation tools for clinical capabilities. The ability of
ML methods to find hidden patterns in large data sets (such
as sports and video data) provides the possibility to better
understand and simulate surgical data to evaluate surgeons’
skills and personalized training.

Fard et al. introduced a framework for objective skill
assessment and prediction based onmotion trajectory data.
Their goal is to establish a classification framework to
automatically assess the performance of surgeons with
different levels of expertise. They used three classification
methods: KNN, logistics regression and SVM and they
proved that this system can classify the expertise of sur-
geons as novices or experts [50]. Wang et al. proposed an
analytical deep learning framework for surgical training
skills assessment. Implement a deep CNN to map multi-
variate time series data of kinematics to a single skill level.
The results are that in-depth architecture has great poten-
tial for efficient online skill assessment in modern surgical
training [115].

As shown in Figure 8, Ershad et al. proposed a sparse
coding framework. Compared with the use of principal
component analysis (PCA) features or raw data, the pro-
posed dictionary learning method can use the user’s joint

Figure 7: Representative endoscopic images of H. pylori positive, negative and eradicated stomach. Atrophy and diffuse redness can be seen during
infection. The regular arrangement of collecting venules (RAC) can be seen in the uninfected stomach. A map-like red appears in the stomach where H.
pylori has been eradicated (Image source: Reproduced from de Vrles et al. [102], 2009 with permission of WWW).
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position data to evaluate the performance of stylistic
behavior in near real-time, and has higher accuracy [116].

Prognosis: AI systems for LNM
prediction and survival prediction

Predicting LNM is important for clinical decisions including
endoscopic mucosal resection, neoadjuvant chemotherapy,
or radical surgery. Inmany cases, the preoperative staging of
N status is not satisfactory [117]. Recently, artificial neural
network (ANN) has been used to predict LNM and have
significantly improved accuracy. Gao et al. used a deep
neural network (DNN) to calculate a CT of the proximal
metastatic lymph node (PGMLN) to simulate the radiologist’s
recognition of the lymph node and obtain more accurate
recognition results [118]. Matsumoto et al. used DNN analysis
to test the accuracy, effectiveness and practicality of deep-
UV-laser-induced fluorescence imaging in detecting LNM
in patients with GC [119]. Hensler et al. used the QUEEN
system to predict the LNM of GC [120]. Su et al. developed a
DL system to achieve early diagnosis of peritoneal
metastasis (PM). The detection network based on fast
Region-CNN uses pre-trained Resnet18 to achieve cell
detection with an average accuracy of 0.8316. The classi-
fication network based on Resnet50 achieved an area
under curve (AUC) of 0.8851, an accuracy of 96.80 %, and
an FNR of 4.73 % in cell classification [121]. As shown in
Figure 9, Li et al. established a deep learning radiology
nomogram based on dual-energy CT (DECT) for the pre-
diction of LNM in GC [122].

Most GC patients have metastatic disease when they
relapse, and the overall prognosis is still poor. The expected
survival period after recurrence is less than 1 year. The high
tumor recurrence rate in patients with advanced GC high-
lights the importance of considering adjuvant therapy.

Based on the survival prediction of GC patients, as shown
in Figure 10, Li et al. developed a new DL prediction al-
gorithm (survival recurrence network [SRN]). Their SRN
predicted a high survival rate, reaching 92 % in the 5th
year after surgery [54]. Biglarian et al. used the Cox pro-
portional hazard and ANN model to predict the survival
rate of GC patients. Compared with the Cox proportional
hazard regression model, the neural network model is a
more powerful tool for predicting the survival rate of GC
patients [123]. Li et al. used an SVM-based method to
generate radiological signature (RS), which can predict
disease-free survival (DFS) and chemotherapy response in
stage II/III GC [124].

Technique challenges and prospects

AI has achieved big success in screening, diagnosis, therapy
and prognosis of GC. AI can handle successfully complex
nonlinear relationships, fault tolerance, parallel distributed
processing and learning [125]. In viewof its advantages in the
simultaneous processing of adaptive, quantitative and
qualitative knowledge, as well as the verification results of
multiple clinical studies in multiple fields [126], AI has mul-
tiple uses in the field of clinical medicine [127]. It not only
makes full use of all aspects of clinical diversity [128, 129], but
also helps to solve the problem of lack of objectivity and
universality in the current expert system [130]. DL tech-
niques, in particular, are transforming our ability to inter-
pret imaging data [131, 132].

AI technology faces some great challenges, which must
be solved to ensure its application in cancer screening,
diagnosis, therapy and prognosis [133]. First, medical imag-
ing data cannot be used as input data directly. To solve this
problem, it is necessary to improve the perception of the
machine so that it can get real images and process them.
Second, they also have the risk of overfitting the training

Figure 8: Feature reduction and basis vector
transformation process of Ershad’s model
(Image source: Reproduced from Ershad et al.
[116], 2015 with permission of Springer).

Zha et al.: Artificial intelligence in theranostics of gastric cancer 223



data, resulting in a sharp drop in performance under certain
settings [134]. Continuous algorithm optimization can solve
this challenge. Third, Cabitza et al. [135] puts forward amore
pessimistic view, which mentions the inherent uncertainty
in medicine and the “black box” of neural network/ML ap-
plications thatmay reduce the skills of doctors andmay soon
change certain aspects of healthcare. Deep learning, a
seemingly practical and economical method that will bring
unexpected negative consequences. It is necessary to focus
on a wider range of AI application scenarios, and pay
attention to various issues such as data algorithm security,
technology adaptation, organizational reengineering, social
risk and governance that may arise from technology appli-
cation before AI has a large-scale irreversible impact on
human society, so as to form a systematic understanding and
forward-looking prediction of the social impact character-
istics and dynamics of AI and other technologies as early as
possible and provide timely feedback on the optimization of
the technology development path. Fourth, there are some
ethical and safety issues, such as using AI after obtaining
patient consent and determining who is responsible for
misdiagnosis or wrong treatment [55]. In addition, AI cannot

determine causality, and predictions generated by AI must
be critically evaluated and interpreted by doctors in a clin-
ically meaningful way [55]. To solve the safety and ethical
issues, the design must be continuously optimized and
improved, and the ethical design can be introduced to make
the AI have the ability to judge the behavior similar to
human through ethical design. Fifth, reflectionmakes people
improve, and so should the progress of machine. But AI
cannot reflect on experience and learn from them. Using
language to guide computers to think is a good way to solve
this problem. This process is similar to humans learning to
think by receiving language instruction.

In the era of precision medicine, the predictability of
AI in GC management is promising in the future. But we
believe that AI cannot completely replace doctors, and the
way to achieve the best performance is through human–
machine collaboration. In the era of precision medicine,
combining omics data with clinical information is neces-
sary for future clinical practice. To this end, AI must be
combined with multiple disciplines. In addition, larger
and higher-quality random events need to be used to test
the AI model.

Figure 9: Workflow of the dual-energy CT–based radiomics nomogram (Image source: Reproduced from Li et al. [122], 2020 with permission of Springer).

Figure 10: DL prediction algorithm. (a) Use the corresponding test patients to perform iterative tests on 100well-trained SRNs, and generate ROC curves
to evaluate the average predictive power at each time point. (b) The AUC of the test data set (Image source: Reproduced from Lee et al. [54], 2018 with
permission of ASCO).
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In thenear future,we can further study the application of
AI in the whole process of GC management. In particular,
some possible areas include early detection, stage recognition
and prognosis. For GC detection, it has now entered an
accuracy platform. To transfer CNN from the research envi-
ronment to clinical practice, this accuracy platform must be
established. For GC treatment, future research will focus on
applying the proposed method to data from other parts of the
robot, and be able to provide relevant feedback for trainees to
improve performance in the case of poor detection perfor-
mance. Regarding the prognosis of GC, in the future, it is
necessary to study a system that can predict not only one type
of cancer, but also predict other types of cancer.

Conclusions

In summary, AI has been actively explored in prewarning,
early screening, diagnosis, therapy and prognosis of clinical
GC, and has achieved great advances. However, how to use
AI to realize precise theranostics of GC still face some big
challenges, further works will focus on innovative algo-
rithm, optimizedmodels and validatingmodelswith big data
to suit for requirement of clinical GC theranostics in near
future.
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