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A B S T R A C T   

The current COVID-19 pandemic contains an unprecedented amount of uncertainty and variability and thus, there 
is a critical need for understanding of the variation documented in the biological, policy, sociological, and 
infrastructure responses during an epidemic to support decisions at all levels. With the significant asymptomatic 
spread of the virus and without an immediate vaccine and pharmaceuticals available, the best feasible strategies 
for testing and diagnostics, contact tracing, and quarantine need to be optimized. With potentially high false 
negative test results, infected people would not be enrolled in contact-trace programs and thus, may not be 
quarantined. Similarly, without broad testing, asymptomatic people are not identified and quarantined. Inter-
connected system dynamics models can be used to optimize strategies for mitigations for decision support during 
a pandemic. We use a systems dynamics epidemiology model along with other interconnected system models 
within public health including hospitals, intensive care units, masks, contact tracing, social distancing, and a 
newly developed testing and diagnostics model to investigate the uncertainties with testing and to optimize 
strategies for detecting and diagnosing infected people. Using an orthogonal array Latin Hypercube experimental 
design, we ran 54 simulations each for two scenarios of 10% and 30% asymptomatic people, varying important 
inputs for testing and social distancing. Systems dynamics modeling, coupled with computer experimental design 
and statistical analysis can provide rapid and quantitative results for decision support. Our results show that 
widespread testing, contacting tracing and quarantine can curtail the pandemic through identifying asymp-
tomatic people in the population.   

1. Introduction 

Natural biological variation in pathogen impacts and responses, in 
addition to the uncertainty in disease parameters, can greatly affect the 
outcomes of modeling the impacts of a pandemic infectious disease. 
Some examples of these uncertain parameters include transmission, 
infectivity rate, incubation time, mortality, recovery rate, and the stage 
of the greatest infectivity. Completing sensitivity analyses can elucidate 
the role of uncertainties and enable the extrapolation of the results to 
support decision makers. The objective of this work is to use our mature 
and calibrated infectious disease and health care model to make sense of 
this biological and behavioral variability to forecast with probabilities 
and likely outcomes from different scenarios with a specific focus on 
diagnostics and testing. 

Rapidly changing and relatively novel infectious diseases, such as 

coronaviruses, have strong elements of uncertainty due to viral evolu-
tion as well as geographic, population level, and individual differences 
in how the host and virus interact in an outbreak and possibly a 
pandemic. During an epidemic, viruses and hosts continue to evolve, 
adapting and altering their contagiousness and virulence. Human pop-
ulations are diverse with differences in immune function, underlying 
morbidities, genetics, and age groups for responses, as well as exposure 
to infectious diseases. The current COVID-19 pandemic in 2020 contains 
an unprecedented amount of uncertainty [1,2]. With this uncertainty, 
there is a critical need for understanding the variation documented in 
the biological, policy, sociological, and infrastructure responses during 
an epidemic to support decisions at all levels. 

The Modeling Epidemics for Decision Support and Infrastructure 
Analysis System (MEDIAN) project was used to assess potential impacts 
of a range of testing and diagnostics strategies on the COVID-19 
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pandemic. The suite of system dynamics models that comprise the 
MEDIAN platform were previously used and validated for the pandemic 
response for H1N1 influenza in 2009 [3]. A simulation-based uncer-
tainty analysis uses repeated evaluations of a model, using different 
combinations of key model input variables, to estimate the range of 
potential outcomes and most important factors for driving an epidemic. 
Key model inputs, such as mitigations for controlling the epidemic, are 
varied using a computer experimental design structure and identified 
through a sensitivity analysis, which determines how the outcomes vary 
through a range of values of model input parameters. Information about 
the distribution of likely outcomes, which needs to account for these 
outcomes as well as exposure to low-probability, high-consequence 
events, is important in a risk-informed decision-making environment. 

There are many sources of uncertainty in a local or global infectious 
disease outbreak. The sources of variability can be grouped into four 
categories: biological, policy, sociological response, and infrastructure 
responses [3]. The biological uncertainty of the SARS-2 coronavirus is 
unprecedented. Since the SARS-2 coronavirus (SARS-2 COV) is a newly 
emerged disease, almost the entirety of the population is not immune to 
the virus, however, the range of impacts to individuals is from 
completely asymptomatic to death and everything in between [4]. Until 
vaccines were readily available to the population, the intervention 
strategies for fighting the SARS-2 COV included testing and tracing 
potentially exposed individuals, social distancing, quarantining infec-
tious and susceptible persons, and respiratory protection, such as masks. 
Each of these strategies decreases the transmission of the disease. 
Medical interventions continue to help reduce mortality in COVID-19 
patients, but there remains no clear drug therapies for targeting viral 
replication and its multiplication in patients [5]. Particularly for the 
COVID-19 pandemic where state health departments are largely 
autonomous of federal control, their approaches to containing the 
pandemic, such as school closures, vary immensely [6,7]. Sociological 
uncertainties include the behavioral responses of the populations to 
adhering to the policy guidance while infrastructure uncertainties 
include impacts on labor and supply chain interruptions, particularly for 
personal protective equipment. 

The analyses described here identify key uncertain input variables in 
three of these four uncertainty categories and assesses the variability in 
outcomes due to uncertainty in the inputs for testing and diagnostics. In 
particular, we focus on modeling the uncertainties for testing and di-
agnostics (biological, sociological, and policy), contact tracing (socio-
logical and policy), and social distancing through quarantine 
(sociological and policy). As pointed out by Ribeiro da Silva et al. [8], 
laboratory diagnosis is “crucial for the clinical management of patients 
and the implementation of disease control strategies to contain SARS- 
CoV-2 at the clinical and population level”. 

The objectives of this analysis are to (1) describe the application of a 
systems dynamics approach, coupled with a computer experimental 
design of the COVID-19 pandemic, (2) assess the range of consequences 
of the pandemic COVID-19 given the uncertainty about its disease 
characteristics for the asymptomatic population, (3) assess the un-
certainties and strategies for testing and diagnostics on the outcome of 
the pandemic, and lastly, (4) identify high utility and robust strategies, 
especially with regard to testing and diagnostics. 

2. Model Overview 

The model used to perform these analyses is a subset of the suite of 
Modeling Epidemics for Decision Support and Infrastructure Analysis 
(MEDIAN) models described elsewhere [3,9]. The set of models used 
represents infectious disease propagation and possible interventions, 
population, travel, labor, and infrastructure operations as shown in 
Fig. 1. Important sub-models include a general infectious disease (GID) 
model, a population model used to track inter-region travel and labor 
availability, a public health model, and an economic impact estimation 
model. 

The population and infectious disease models interact to introduce 
the pandemic COVID-19 strain into the population and spread the dis-
ease across the region. The population developing symptoms and 
needing treatment place a demand on the public health sector. The use 
of various intervention strategies, such as vaccination, affects the spread 
of the disease and alters the impacts on the public health system and on 

Fig. 1. Major elements of the Modeling Epidemics for Decision Support and Infrastructure Analysis models that can be used in a pandemic COVID-19 im-
pacts analysis. 
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the overall population. The population model also tracks which mem-
bers of the ill population are also members of the workforce and esti-
mates absenteeism due to illness, care for ill family members, or other 
reasons. 

2.1. Model architecture 

The MEDIAN architecture uses the system dynamics method to 
model the dynamics of disease and infrastructure behavior and a Java- 
based program to manage model integration and experiment design 
and execution. System Dynamics (SD) is a methodology and mathe-
matical modeling approach designed to visualize a ‘system’s structure 
and behavior, analyzing the system both qualitatively and quantita-
tively’. Originally developed in the 1950′s by Jay Forrester of the 
Massachusetts Institute of Technology [10,11] to help corporate man-
agers improve their understanding of industrial processes, SD is 
currently being used throughout the public and private sector for policy 
analysis and design. System dynamics software with a graphical user 
interface (GUI), such as the commercially available Vensim™ package 
[12] used in the MEDIAN project, was developed in the 1990’s and has 
been applied to a diverse set of systems. 

In the SD methodology, a problem or a system (e.g., ecosystem, po-
litical system or mechanical system) may be represented as a causal loop 
diagram - a map of a system with all its constituent components and 
their interactions. By capturing interactions and feedback loops, a causal 
loop diagram can help reveal the structure of a system, evaluating a 
system’s behavior dynamically. A causal loop diagram is then trans-
formed in software to a stock and flow model to study and analyze the 
system quantitatively [13,14]. In the MEDIAN suite of models, the stocks 
and flows are used to represent such things as stocks of hospital patients, 
beds, ICU units, masks, and infected persons in different stages of a 
disease, and flows of patients in and out of a hospital, infection rates, and 
death and recovery rates. SD with its representation of feedback loops is 
also a natural choice for representing the interdependencies amongst the 
infrastructures and disease behavior in MEDIAN. 

The MEDIAN modeling process uses a Los Alamos National 
Laboratory-written, Java-based program, Conductor tool, to create and 
manage input for Vensim™. The Conductor tool allows us to merge 

multiple VensimTM sub-models into a single comprehensive model and 
then fully explore the model parameters, in Monte-Carlo fashion, by 
running many separate instances of the model on a high-performance 
parallel computer. Using the Conductor, the modeler chooses the 
experimental design (described below), statistical distribution functions 
to sample each parameter, the number of processors on which to run, 
and the variables to output. The models are considered proprietary at 
this point and while this does lead to challenges with reproducibility of 
the results, the burden is on researchers to show appropriate validation 
and parameterization of epidemiological models [15]. We use experi-
mental design to understand the uncertainty and the variation in the 
results, but the models are entirely deterministic. 

2.2. The infectious disease model 

The infectious disease model is a systems dynamics model that uses 
the core susceptible-exposed-infected-recovered (SEIR) epidemiological 
approach with a set of disease stages [16]. The GID model includes 
demographic groupings; an integrated model for testing and diagnostics, 
contact tracing, quarantine, and isolation. As a form of the SEIR model, 
this application represents a selected population, such as a metropolitan 
area, as homogeneous with exponentially distributed residence times in 
each stage. The use of additional stages and demographic groupings also 
adds heterogeneity where it is useful in capturing key differences be-
tween subpopulations for disease spread. 

The infectious diseases stages are represented generically so that the 
model can be used for any infectious pathogen by adjusting the input 
parameters appropriately (Fig. 2). 

The demographic groups used in the model are as follows:  

• Young (ages 0–19)  
• Young Adults (ages 20–49)  
• Adults (ages 50–69)  
• Older adults (ages 70–79)  
• Elderly (ages 80 + )  
• Responders 

Responders are the health and emergency-services workers who are 

Fig. 2. Representation of the multi-stage susceptible-exposed-infected-recovered general infectious disease model.  
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drawn primarily from the two adult groups (young adults and adults). 
The populations of these groups are thus reduced by the number of re-
sponders in each group. Responders are treated separately in the model 
to allow modeling of an increase in exposure to SARS-2 COV compared 
to the general population and to be able to model different policies for 
response to the pandemic. The demographic groups are very different 
for SARS-2 COV than for influenza due to the different impacts to age 
groups for COVID-19 [17]. 

The basic reproductive number (R0) is the average number of people 
infected by a typically infectious individual in an otherwise susceptible 
population. If the basic reproductive number is greater than 1, the dis-
ease has the potential to spread. If it is less than 1, the disease will die out 
after only a few generations. The parameters that affect R0 include the 
ease of transmission of disease, survivability in the ecosystem, and the 
contact rates among the populations. The MEDIAN infectious disease 
model can use R0 as an input into the model or it can calculate it as an 
output of the model based on input contact rates by demographic group. 
For this study, R0 was used as an input to the model. 

2.3. Metropolitan population model 

The focus of this analysis is on the Metropolitan Statistical Area for 
Albuquerque, New Mexico as an example metropolitan area that in-
cludes the four counties of Bernalillo, Sandoval, Torrance, and Valencia. 
The cases and fatalities in the metropolitan four county region is gov-
erned by the three concurrent processes: detection and control of the 
disease, movement of infected people out of the initial exposure region, 
and the overall rate of disease propagation. The relative values of the 
time constants associated with these processes determine whether the 
outbreak is effectively contained within the metro region or instead 
causes a significant number of cases outside the metro region. For small 
values of the reproduction number and low travel rates, the conven-
tional process of detecting the infection and mobilizing the response can 
react in time to keep the number of extra-metro cases small. However, 
for large values of the reproduction number or higher travel rates, the 
disease can spread outside the targeted region before effective control is 
established and possibly lead to hundreds of fatalities. 

The population model keeps track of the number of people in 
different health statuses for each region. It drives the visitation rates for 
the public health model in three categories: normal afflictions, pandemic 
COVID-19 afflictions, and “worried-well” afflictions. Worried, but clin-
ically healthy, people are those who think they might have the pandemic 
COVID-19, but do not. The population model also outputs the fractional 
labor availability for each infrastructure category. In addition to normal, 
pandemic COVID-19, and worried well people, it also considers the 
number of quarantined and self-isolating people. Parents of infected 
children that stay home from work to care for them can be tracked by the 
model. A sub-model tracks emergency responders separately, so the 
labor availability for emergency services can be different than for other 
infrastructures. All other infrastructures have essentially the same level 
and time history for labor availability. 

2.4. Public health model 

The public health model is a coupled, but separate, systems dynamics 
model, that represents treatment of patients by physicians’ offices and 
clinics, emergency medical services, emergency rooms, and hospitals. 
Within the selected metropolitan area, average values are used for 
patient-treatment capacities and number of hospital beds. Three types of 
patients are tracked in the model: “normal” patients (numbers based on 
historical data), patients who have pandemic COVID-19 (denoted 
“special” within the model), and worried-well patients (people who 
think they might have the pandemic COVID-19, but who do not). As the 
numbers of patients increase over normal conditions, backlogs and long 
waits result, causing a reduction in the quality of care. In addition, if 
large numbers of healthcare workers are sick or in isolation, the capacity 

to treat patients is reduced, further exacerbating the overloading of the 
healthcare system. In a situation like this, it is possible that additional 
healthcare workers would be brought in (for example, healthcare 
workers from other locations and the armed services, retirees, and vol-
unteers) to relieve the overloading, but the ability to add healthcare 
workers is not included in the model at present. It is worth noting, 
however, that the usual methods of bringing in additional healthcare 
workers might not work well in a pandemic because the entire country is 
affected. 

2.5. Normal hospital care 

The ongoing rates of medical treatment under normal conditions are 
based on data for the year 2017 from the “National Hospital Ambulatory 
Medical Care Survey” [18]. Key data are summarized in Table 1. Visit 
rates are given per year in the table, but the model uses units of hours. 
Weekdays and weekends are not differentiated in the model, so annual 
totals were divided by the number of hours in a year to get the hourly 
values used by the model. The numbers listed in the table are all national 
averages. The last two numbers (hospital beds and hospital occupancy 
rate) are available for New Mexico hospitals [19]. The hospital occu-
pancy rate is based on appropriate occupancy rates for the southwest 
region obtained by specifying the number of staffed beds per person and 
the average length of stay for the southwest region. 

A flow diagram illustrating the major patient flows for “normal” 
emergency care in the model is shown in Fig. 3. Several of the fractions 
are unknown, but they have been chosen to be consistent with the data 
in Table 1. For example, a 75-% to 25-% split between emergency pa-
tients going directly to an ER versus being treated in the field by EMS, 
coupled with the assumption that half of the patients treated by EMS are 
then taken to ER by ambulance, results in approximately 14% of patients 
arriving at the ER by ambulance, as shown in Table 1. A total mortality 
rate of 0.3% is derived by combining the mortality rates of the EMS and 
ER patients. 

The demand for “normal” care continues even during an COVID-19 
pandemic; therefore, the team made several adjustments in the model:  

• When there is a long waiting time for visits, up to 20% of the patients 
who would have gone to a physician’s office are assumed to go 
instead to a hospital ER because of an urgent problem. Up to 40% of 
the patients who would have gone to a physician’s office are assumed 
to cancel if there is a long waiting time for visits.  

• If the waiting time for EMS response gets too long, more people will 
go directly to the ER rather than wait. 

Table 1 
Summary of medical care in 2016 and 2017.  

Quantity Value 

Rate of visits to physicians’ offices and hospital 
outpatient departments 

85.1% saw any physician 
2016 

Rate of visits to hospital emergency departments 0.43–2017 visits per year 
per person 

Rate of admissions to community hospitals 8.7% admitted to hospital 
2016 

Fraction of emergency department patients arriving by 
ambulance 

39% − 2017 

Fraction of emergency department patients requiring 
hospital admission 

8.7% 2016 

Fraction of emergency department visits dead on 
arrival or dying in the emergency department 

1.8% − 2017 

Fraction of hospital inpatients dying 0.2% in ED 2016 
Average time spent in emergency department 2–4 h (most patients 

spent) 2016 
Average hospital length of stay 3–4 days (most patients 

stayed) 2016 
Number of staffed community hospital beds 0.0028 beds per person 
Occupancy rate for community hospital beds 66%  
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• When hospital beds are full, nonemergency patients are not admitted 
to hospitals, but the patients who would have been admitted wait 
and are admitted later when the hospital crowding subsides.  

• When demand exceeds normal capacity for treatment, the time it 
takes to treat a patient goes up and quality of care goes down, which 
can cause an increase in the mortality rates. 

2.6. Treatment of pandemic COVID-19 patients 

People becoming ill with the pandemic COVID-19 are added to the 
normal load on the healthcare system. The rates at which people get sick 
and recover or die from the pandemic COVID-19 are calculated by the 
epidemiological model discussed above. The fractional splits in the 
model are variable, depending on the average case fatality rate and the 
degree of crowding in the healthcare system. A higher case fatality rate 
indicates a more severe variant of the disease and so the fractions of 
patients seeking healthcare, requiring emergency care, and requiring 
admission to hospital are higher. 

Overcrowding in the healthcare system can have several effects 
including more people self-treating because waiting times are so long, 
more people going directly to an ER rather than waiting for EMS, and, if 
wait time for hospital admission is long enough, people starting to 
recover before getting into the hospital. Further, as mentioned above, 
overcrowding can cause quality of care to decline and mortality rates to 
increase. In Fig. 3, the hospital “box” includes temporary alternative- 
care facilities that are assumed to be set up when hospitals are full. 
The calculated healthcare cost includes a reduced cost per patient per 
day. For these simulations, MEDIAN assumed that there are enough 
alternative beds (for example, in gyms, convention centers, or else-
where). MEDIAN also assumed that some patients are sent home for care 

because there is no room in hospitals or temporary facilities 
MEDIAN assumed the time spent in an ER would be the same for 

pandemic patients as for normal patients, but the time in hospital would 
be longer. MEDIAN also assumed the average hospital stay for pandemic 
COVID-19 patients would be the same as the COVID-19 recovery time 
(the amount of time spent in the last disease stage in Fig. 2). 

2.7. Worried well 

The number of worried-well patients is highly uncertain, but it could 
be large enough to cause a significant additional load on physicians’ 
offices and ERs. For the analyses discussed here, MEDIAN assumed the 
number of worried-well patients would be 20% larger than the number 
of people who have pandemic COVID-19 symptoms (that is, the number 
of worried-well patients would be 1.2 times the number of pandemic 
COVID-19 patients). The worried-well rate has been much higher for 
many past incidents; for example, there were five times as many worried 
well patients as actual patients afflicted after the Sarin attack in Tokyo 
[20]. However, because a large fraction of the population is assumed to 
become ill in the COVID-19 pandemic if there is no mitigation, the 
worried-well multiplier could not be too much higher. If mitigation 
measures successfully reduce the fraction of the population becoming ill, 
then there would be less reason for the fear response that leads to people 
becoming worried well. Furthermore, while worried-well patients can 
have an important impact on crowding in parts of the healthcare system, 
the uncertainty in the number of worried-well patients has less impact 
than many other uncertainties on the quantities of greatest concern 
(such as number of deaths and economic impact). Therefore, for this 
analysis, the worried-well multiplier was fixed at 1.2. 

The flow of worried-well patients through the healthcare system is 
simpler than for normal or pandemic-COVID-19 patients because, by 
definition, worried-well patients are not seriously ill, but are only afraid 
they might be. Therefore, MEDIAN assumed that not one person is 
treated by EMS, admitted to the hospital, or dies. This simplified patient 
flow is illustrated in Fig. 3. 

The split of patients seeking care at a physician’s office versus an ER 
is variable, depending on the average case fatality rate. MEDIAN 
assumed that if the disease is more severe (as indicated by a higher case 
fatality rate), then worried-well patients would be more likely to seek 
emergency care instead of going to a physician’s office. Also, if the 
waiting time for an appointment at a physician’s office is too long, some 
patients may end up self-treating and bypassing the healthcare system as 
they start to recover from their COVID-19-like symptoms. 

3. Sensitivity and uncertainty analysis 

Uncertainty analysis is estimating the distributions of outcome 
metrics of interest so that probability estimates can be made on the 
consequences of the simulated pandemic. In this context, sensitivity 
analysis is identifying which input variables cause the most variation in 
the outputs. The relative sensitivity of an output to an input variable is 
often given as a ratio of variance measures, referred to as the R2 metric 
later in this section. 

The analysis team selected an initial set of uncertain input variables 
to study, including biological variation, policy options, and sociological 
response differences, based on the team’s experience. An initial sensi-
tivity analysis identified key input variables that are important in 
determining the variation in the outcomes. The team then used the 
resultant variables as the basis for a subsequent uncertainty analysis to 
characterize the uncertainty in the outcomes. 

3.1. Experimental Design 

In the design and modeling of complex systems, designed experi-
ments are frequently the only practical approach to obtaining a solution. 
Typically, a simulation model of system performance is constructed 

Fig. 3. Flow diagram for normal emergency care in the public health model, 
flow diagram for pandemic COVID-19 patients in the public health model, and 
flow diagram for worried-well patients in the public health model. 
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based on knowledge of how the system operates, and sampling via ex-
periments may be employed to estimate the number of possible out-
comes. If the simulation model is computationally expensive, then the 
optimization of the possible outcomes may instead rely on a sampling 
methodology to adequately cover all the possible ranges of inputs that 
contain uncertainty or variability. 

This uncertainty analysis employed an experimental design 
approach to pandemic scenario simulations to obtain information for 
statistical estimates and correlation in the most efficient manner 
possible. The goal of the experiment design was to improve the under-
standing of the correlation between mitigations or the variation in the 
virus infection and the propagation of the pandemic. The design is based 
on a fractional factorial experiment, which allows an experiment to be 
conducted with only a fraction of all the possible experimental combi-
nations of parameter values and it used orthogonal arrays to aid in the 
design of an experiment. The orthogonal array specifies the combina-
tions of inputs for each run of the simulation experiment. This process 
for designing and conducting an experiment to determine the effect of 
design factors (parameters) and noise factors give statistical power for 
both an uncertainty analysis and sensitivity analysis. 

The statistical method of Latin hypercube sampling (LHS) was 
developed to generate a distribution of plausible collections of param-
eter values from a multidimensional distribution. Orthogonal-array 
based LHS is in common use for computer experiments [21–23]. The 
sampling method is often applied in uncertainty analysis. The LHS 
technique was first described by McKay [24] and see Iman et al. [25] for 
a review. In the context of statistical sampling, a square grid containing 
sample positions is a Latin square if (and only if) there is only one sample 
in each row and each column. A Latin hypercube is the generalization of 
this concept to an arbitrary number of dimensions, whereby each sample 
is the only one in each axis-aligned hyperplane containing that sample. 

Latin hypercube design samples input parameters based on stratifi-
cation of the specified marginal distributions of the parameters. This 
approach to designing and conducting an experiment to determine the 
effect of design factors (parameters) and noise factors make this method 
useful for both uncertainty analysis and sensitivity analysis [26]. For the 
pandemic COVID-19 sensitivity study, the experimental design was an 
orthogonal array-based LHS plan (strength three, allowing evaluation of 
main effects without interference from two factor interactions), varying 
nine input variables based on their input distributions for two different 
scenarios (10% and 30% fraction asymptomatic) for a total of 108 runs. 
For this study, we identified nine input variables as potential influential 
variables on the estimated consequences. The input variables and 
associated ranges are listed in Table 2 and were identified based on 
expert opinion and literature review. Input variables that are grouped 
together were varied together (i.e., 100-% correlation among the 
variables). 

Even with varying only nine input parameters, there can be a high 
degree of variability in the epidemic curves of the pandemic. A past 
study on pandemic influenza show that the output variability of the 
model due to uncertainty in the parameters of the infectious disease 
model can be remarkably large [3]. R2 correlation coefficients are a 
standard metric for evaluating goodness of fit of a model to a statistical 
response, in either an analysis of variance (ANOVA) or modeling a 
polynomial regression framework [22,26–28]. For the sensitivity eval-
uation, the team used R2 as a heuristic tool to rank inputs with respect to 
relative importance. In analysis, R2 was calculated and compared for 
two-way interactions as well as main effects. The (strength three or 
higher) orthogonal-array-based LHS experiment design supports iden-
tification of main effects with reduced potential bias from two-way in-
teractions. In the end, sensitivity based on R2 analysis was a tool to focus 
attention on effects (main and two-way interaction) that arise as having 
relatively larger sensitivity metric. A common assumption for the use of 
R2 as a sensitivity metric can be considered, that includes a sparsity and 
hierarchy of effects. Interaction effects may not be then, be considered 
important, if at least one of the main effects was not and it is assumed 

that high order polynomial terms are less likely. In computer experi-
ments using an LHC experimental design, a large R2 for an interaction 
effect without either main effect being important would require addi-
tional analyses. In the analyses, here this situation did not occur. 

Mitigation responses for testing, quarantine and contact tracing were 
based on potential interventions for pandemic COVID-19 and the New 
Mexico Department of Health response during the first six months of the 
pandemic. These included two scenarios for the fraction of asymptom-
atic infected people of 10% and 30%, with no vaccine or antiviral 
mitigation measures. 

3.2. Contact tracing and Social Distancing 

Contact tracing is identifying and diagnosing persons who may have 
encountered an infected person. Public health workers are given the 
names of people that test positive for COVID-19, interview them for their 
contacts, and tell them to isolate or quarantine themselves and their 
contacts for two weeks which is the general guidance for COVID-19 so 
they can’t infect others. The fraction of actual contacts identified and 
traced varied in the study, ranging from 0.025 to 0.75. These lower 
values are appropriate because the disease is assumed to be contagious 
prior to the appearance of symptoms. The upper limit for contact tracing 
is based on average rates completed by the New Mexico Department of 
Health and then based around that average. The number of contacts per 
afflicted case varied between 5 and 40 people. 

There are many ways to achieve social distancing, including mea-
sures to limit person-to-person interactions such as canceling events 
involving large gatherings and closing buildings or schools. These re-
strictions are sometimes called “focused measures to increase social 
distance” and decrease the rate of contact between individuals, thereby 
slowing the spread of the disease. Closing office buildings, stores, 
schools, and public transportation systems may be feasible community 
containment measures that could be employed during a pandemic. 
Because MEDIAN does not have the resolution to closely model specific 
social distancing measures, MEDIAN approximated social distancing by 

Table 2 
Input variables distributions (normal) used for orthogonal Latin hypercube 
design for testing, contact tracing and quarantine. There are three types of 
diagnostic testing flow strategies, Cohort (e.g. school district or neighborhood), 
random (broader surveillance), and symptomatic testing. The lowest values and 
highest values are within three standard deviations of the mean.  

Variable Normal Distribution Values Units 
Mean Stand. 

Dev. 
Lowest Highest 

Fraction Contact 
Traced and 
Quarantined 

0.5 0.1 0.20 0.8 Dimensionless 
(rate) 

Cohort Testing 
Outcome 
Probabilities 
[False Negative] 

0.275 0.075 0.05 0.50 Dimensionless 
(rate) 

Random Testing 
Outcome 
Probabilities 
[False Negative] 

0.275 0.075 0.05 0.50 Dimensionless 
(rate) 

Symptomatic Testing 
Outcome 
Probabilities 
[False Negative] 

0.275 0.075 0.05 0.50 Dimensionless 
(rate) 

Cohort Testing Time 60 13 21 99 Hours 
Random Testing 

Time 
60 13 21 99 Hours 

Symptomatic Testing 
Time 

60 13 21 99 Hours 

Fraction Traced 
Tested 

0.56 0.14 0.14 0.98 % 

Nominal Random 
Testing Rate 

80 23 11 149 Tests per hour  
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varying the self-quarantine behavior in the models. People self- 
quarantine by voluntarily limiting their contacts with others, thus 
achieving social distancing. Self-quarantined individuals may remain 
home for a variety of reasons, including school closures, child or 
afflicted persons care, fear, telecommuting, or extended leave policy, 
but the reason for their self-quarantine is not explicitly represented in 
MEDIAN. 

The MEDIAN model for social distancing begins by estimating what 
is called the nominal rate of self-quarantine, which is the rate if this 
quarantine behavior were unaffected by competing model behaviors 
such as getting sick or being contact traced. This nominal rate is based 
on a multiplier of the rate that people are entering the prodromal stage. 
This multiplier can be varied by demographic group and is delayed from 
the prodromal rate by a user-defined time reaction delay. Thus, the self- 
quarantine behavior is linked to the observed progression of the disease; 
that is, as more people get sick the tendency for self-quarantine in-
creases. Time reaction delay allows strengthening or weakening of 
coupling between the disease progression and social distancing. 

This nominal rate of self-quarantine won’t be the actual rate because 
the model must account for the fact that people would be getting sick 
and not self-quarantining. MEDIAN also wants to allow for some user 
control to cap the self-quarantine behavior based on data or judgment. 
Therefore, the model calculates an “otherwise occupied rate” that ac-
counts for vaccinations, contact tracing (with quarantine), and people 
entering prodromal. Only the population not otherwise occupied is 
available to be self-quarantined. Thus, the model estimates the actual 
self-quarantine rate as the nominal self-quarantine rate (based on pro-
dromal rate) times a power law damping factor that accounts for the 
fraction of the population available for self-quarantine and the user- 
defined maximum fraction self-quarantined. MEDIAN incorporated 
this maximum relative tendency of the different demographic groups to 
self-isolate during a crisis to represent demographic differences in 
quarantine behavior. For example, infants and the elderly will be much 
more likely to self-isolate than working-age people who need to continue 
work-related tasks. In addition, school-age children may stay home at a 
higher rate due to school closures. So, as the nominal rate approaches 
either the fraction available for self-quarantine or the desired maximum 
self-quarantine rate, it is damped down smoothly so that it never exceeds 
these values. 

The infectious disease model applies this self-quarantine rate to the 
unexposed population. A user-defined multiplier determines the rate 
people leave self-quarantine on the characteristic time of the disease 
(the time from infection to recovery or death). The result is that early in 
the disease progression, the self-quarantine rate looks like a straight 
multiplier on the sick rate; however, as things progress, it becomes 
altered below this nominal rate. In many cases, the self-quarantine rate 
gets damped down much lower than this nominal rate as the population 
gets depleted and the maximum behavior is reached. 

The reaction delay is an important parameter that regulates how 
closely tied the population’s self-quarantine behavior is to the progres-
sion of the disease. The smaller the delay, the closer it is tied to disease 
progression and the more oscillations it creates in the self-quarantine 
and disease progression behavior. People lower their self-quarantine 
behavior as soon as the disease starts to let up, allowing for the dis-
ease to grow again, and so on. The longer the delay, the more these 
behaviors are decoupled and the oscillations are damped out. 

The model calculates a number of metrics that provide useful rep-
resentations of the overall social distancing behavior in a scenario, 
including the cumulative number of persons self-quarantined, the cu-
mulative number of person-days spent in self-quarantine, a population- 
weighted overall fraction self-quarantined (taking into account the 
different behaviors of the demographic groups), the peak self- 
quarantine fraction, and the time during the scenario when the peak 
self-quarantine behavior is achieved. 

3.3. Variable ranges 

For this study, MEDIAN identified nine input variables as likely in 
COVID-19 entail variables on the estimated consequences for testing, 
diagnostics, contact tracing and quarantine. The team reviewed these 
selected variables and associated reasonable ranges with each input 
(Table 2) based on the published and archived (MEDRx) literature and 
other sources for the COVID-19 pandemic and data specific for the 
Albuquerque Metropolitan Statistical Area (MSA). Each input varied 
within the specified ranges for every simulation run. Normal distribu-
tions were assumed for the input variables for a closer resemblance to 
the true distributions prior to the data from around the world being 
published. Table 3 lists the output variables of interest. Input variables 
that are together in a box were varied together (that is, with 100% 
correlation). The team describes the significance of some of the inputs in 
a subsequent section of this report. 

Generating reliable estimates of the reproductive number (R0) for 
COVID-19 is difficult to estimate because R0 is a dynamic number based 
on the behavior of people in the community. An example of the former is 
the profound emerging diversity of COVID-19 impacts of different 
people and the consequent effect of population immunity on trans-
mission. Population age structure, contacts, and density are factors that 
need to be incorporated. The doubling time for a pandemic curve is a 
function of the reproductive number. The magnitude of R0 also de-
termines the intensity of control measures needed to bring the pandemic 
to a halt. 

3.4. Asymptomatic and Pre-Symptomatic Infection 

To understand the sources of new infections, knowing the age of the 
population that is asymptomatic and pre-symptomatic and how many of 
these individuals contribute to new infections is critical. The evidence 
supporting the transmission of SARS-CoV-2 prior to symptoms or 
asymptomatically includes data from multiple sources, and estimates 
have been wide ranging. Several studies suggest that transmission can 
occur in people that are asymptomatic (i.e. no symptoms) [29–31], and 
those that are pre-symptomatic (i.e. are asymptomatic at testing, but 
later develop symptoms [32,33]. Transmission from asymptomatic and 
pre-symptomatic individuals may contribute to many new cases. 

Asymptomatic cases may be more common in middle-aged people 
[34,35]. Studies have found that asymptomatic individuals may be just 
as infectious as those that are symptomatic based on viral shedding 
[36,37]. Likewise, Yin et al. [38] found no difference in transmission 
rates between asymptomatic and symptomatic patients. Asymptomatic 
individuals have been estimated to be infectious for a median of 9.5 days 
[35]. More recently, the duration of viral shedding in asymptomatic 
patients was shown to be 19 days (median interquartile range: 15–25 

Table 3 
Output variables of interest.  

Output Response Variable Description 

Total cumulative deaths Cumulative deaths caused by event 
Maximum outbreak 

duration 
The maximum over all regions of the outbreak 
duration; based on a threshold of 25 people remaining 
in the exposed stage that determines when the 
outbreak is considered over 

Overall total cases Number of pandemic cases, irrespective of treatment 
Total attack rate The total attack rate (ratio of cumulative cases to 

population) in%age terms 
Total cumulative deaths Total fatalities 
Total cumulative 

symptomatic 
Total symptomatic cases 

Total number hospitalized Hospitalizations 
Cumulative cases 

demographically 
Cases by age groups 

Cumulative deaths 
demographically 

Deaths by age groups  

J.M. Fair et al.                                                                                                                                                                                                                                  



Methods 195 (2021) 77–91

84

days) and this viral shedding period was significantly longer than 
symptomatic individuals [39]. 

Given that asymptomatic individuals can transmit the virus, esti-
mating the number of asymptomatic individuals in the population is 
critical. Studies and surveys show wide-ranging estimates of asymp-
tomatic cases, with estimates ranging from 43% to 95% of the popula-
tion [40]. To try and estimate the fraction of asymptomatic cases, using 
capturerecapture methods, Böhning et al. [41] estimated that ratio of 
the total cases to the observed cases is around 2.3. Researchers in Italy 
found that approximately 50% of people positive for the virus were 
asymptomatic at the time of testing [42]. However, in a metanalysis of 
fraction of asymptomatic people, 79 studies in a range of different set-
tings, 20% (95% confidence interval) 17%–25%, of people with SARS- 
CoV-2 infection remained asymptomatic during follow-up [43]. Chil-
dren have also been shown to be asymptomatic with 21 children being 
asymptomatic at the time of sampling out of 100 tested [44]. On the 
other hand, other studies have suggested that as much as 50–75% of 
cases may be asymptomatic [42]. 

Initially, it was estimated that 12% of new cases are caused by pre- 
symptomatic transmission [45]. However, additional studies suggest 
that between 23% and 44% of cases may be from pre-symptomatic 
transmission [46,47]. In a meta-analysis, Casey et al. [48] report that 
the proportion of pre-symptomatic transmission ranged from 42.8% to 
80.6% using data from 13 individual estimates. The average estimate of 
these studies was 56.4%. Pre-symptomatic individuals may be infectious 
up to 3 days prior to showing symptoms [48]. Similarly, Yuki et al. [49] 
found that 56% of patients were asymptomatic or pre-symptomatic at 
the time of transmission events. 

While the spread of SARS-CoV-2 by infected but asymptomatic and 
pre-symptomatic individuals is known, knowledge gaps for SARS-CoV-2 
regarding asymptomatic and pre-symptomatic cases include the 
following:  

1. Narrowing down the number of asymptomatic individuals.  
2. More accurately determining the percentage of new infections 

caused by asymptomatic individuals  
3. Determining how many individuals that are asymptomatic at testing 

eventually develop symptoms and those that never develop 
symptoms  

4. Finding the proportion of undetected positive cases in populations 

3.5. Diagnostics and Testing 

We focused on three areas of uncertainty for testing and diagnostics 
for SARS-2 and COVID-19 infections. First is the error rate (particularly 
the false negative rate) of existing COVID-19 diagnostic tests. Second is 
the number of tests administered per capita of population, usually re-
ported usually as numbers of tests per million people. Lastly, the number 
of hours that it takes to receive back test results which can vary from 
within 24 h to over a week. 

Several factors make this task a difficult one: (1) There remains a lack 
of information on test reliability, and just as important is the ubiquity of 
conflicting information concerning reliability (due in part to differences 
in testing protocols, the time the test was administered relative to the 
onset of infection, as well as innate properties of the tests themselves); 
(2) Terminological and conceptual issues can be confusing; and (3) 
There are a variety of different classes of tests, with a multiplicity of tests 
by different manufacturers for each type. Moreover, the information 
concerning testing accuracy changes on a near-daily basis. Finally, there 
are differences of opinion concerning the implications of test reliability 
on public health policy. Performance estimates, even for a specific 
diagnostic test, can vary widely. There is a consistent pattern for man-
ufacturers’ estimates of performance to be superior to estimates from 
independent evaluators. There need be no intentional (or even unin-
tentional) bias within either set of numbers: it is likely (in some cases 
certain) that manufacturers use near-ideal sampling and test conditions, 

whereas outside evaluators generally use conditions more representa-
tive of the “real-world.” 

Kucirka et al. [50] describes the false-negative rate (FNR) for RTPCR- 
based assays as a function of day after infection. The authors looked at 
nasopharyngeal, oropharyngeal and unspecified upper respiratory tract 
assays separately, but their results do not vary much between these 
types. The FNR is 100% for the first day and drops to 67% by day 4. The 
minimum FNR is about 20% and occurs on day eight and then rises back 
to 66% by day 21. Most of the literature states that the false negative rate 
is very important for COVID-19 tests, because even a small false negative 
rate means that many infected people will be missed, and therefore not 
be identified and contact traced, researchers have been working to 
improve diagnostic methodologies [51,52]. In an unpublished analysis, 
it was shown that even false negative error rates of 20–40% makes a 
difference by putting infectious people into quarantine [53]. 

3.6. Isolation and quarantine 

Isolation refers to separating persons who have a specific infectious 
illness from those who are healthy and restricting their movement to 
stop the spread of that illness. Quarantine refers to separating and 
restricting movement of persons who, while not yet ill, have been 
exposed to an infectious agent and therefore, may become infectious. 
Both isolation and quarantine are public health strategies that have 
proven effective in stopping the spread of infectious diseases. Quaran-
tine of a person exposed to pandemic COVID-19 would last a total of 14 
days to cover for the incubation + prodromal period. For annual COVID- 
19, the incubation period is 2–5 days and the prodromal period after that 
is when the person could be infectious and it could be from 4 to 14 days 
post exposure [54,55]. Without varying this parameter, we used a set 
value of five days for the period prior to symptoms [55]. We separated 
out incubation and the prodromal period in the GID model to separate 
out the potentially infectious period of the infection prior to showing 
symptoms. The simulation scenarios for pandemic COVID-19 used a 
general quarantine factor that varied by age class and by public health 
responders that correspond to the four types of social distancing sug-
gested by previous pandemic plans and researchers [56–58]. These 
included, but were not limited to:  

• Voluntary isolation of the sick at home or in a hospital  
• Voluntary home quarantine of potentially exposed family members 

of the sick  
• Child social distancing, including dismissing students from schools, 

closing childcare programs, and reducing out-of-school social con-
tacts and community mixing  

• Adult social distancing, including canceling large public gatherings 
and altering work environments and schedules 

The fraction of people who self-quarantine is dependent on age 
group, correlated to the rate that people become ill, and restricted to 
those who are not already affected by the outbreak (such as the sick or 
vaccinated). Individuals may self-quarantine either as a result of their 
own preferences (for example, fear reaction to media coverage) or in 
response to guidance from government officials. There is a delay in the 
model between changes in the progress of the outbreak and changes in 
self-quarantining behavior. This delay decouples the disease progression 
and self-quarantine behavior to some degree, with delays of a week or 
more producing reasonable results. 

Due to demographic differences in quarantine behavior, the study 
incorporated a maximum relative tendency of the different demographic 
groups to isolate themselves during a crisis. For example, infants and the 
elderly will be much more likely to self-isolate than working-age people 
who need to continue work-related tasks. In addition, school-age chil-
dren may stay home at a higher rate due to school closures. 

The self-quarantine sick-rate modifier is a multiplier of the rate that 
people are becoming ill, which is used as the initial estimate of the rate 
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at which people self-quarantine. The team assumed that the people that 
self-quarantine will be a multiple of the infected people. They then 
modified the rate to reflect limitations imposed by the availability of 
people to self-quarantine and the maximum fraction of the population 
subset that engages in the self-quarantine activity (self-quarantine ten-
dency is 0.95 for infants and elderly, 0.9 for school-age children, 0.4 for 
adults, and 0.25 for responders). A range of 2 to 10 was used for the sick- 
rate modifier, loosely based on survey results from the SARS outbreak in 
Hong Kong. The team believes that the resulting range of self-quarantine 
behavior in the simulations is reasonable. 

3.7. Base fraction of afflicted seeking healthcare 

This parameter is the fraction of people who would be symptomatic 
with the pandemic COVID-19 and who would seek healthcare of some 
kind (at a physician’s office, clinic, or ER or by calling for EMS) if the 
case fatality rate were 0.02 (the 1918 pandemic case mortality rate). 
MEDIAN used a case fatality rate of 0.02 for the point-case analyses 
earlier in this study and assumed the fraction of afflicted seeking 
healthcare to be 0.6, with the other 40% of people with pandemic 
COVID-19 self-treated. The team based this choice for the earlier part of 
this study on the planning assumptions in the U.S. Department of Health 
and Human Services (HHS) Pandemic Plan, which were that 50% of ill 
people would seek outpatient medical care and 11% would be hospi-
talized in a severe (1918-like) pandemic [58]. This study took the 
fraction seeking medical care to be 60% rather than 50% because the 
HHS plan is unclear about whether the fraction hospitalized is a subset 
of those patients seeking outpatient medical care or a separate fraction. 

In setting an appropriate range of values for the uncertainty analysis, 
MEDIAN considered it unlikely that 100% of COVID-19 victims, 
compared to influenza, would seek medical care, so they set the upper 
limit to 50%. The team set the lower limit to 10% because, in pre-
liminary simulations, unrealistic results would sometimes occur if the 
fraction was lower. For example, if over 60% of COVID-19 cases were 
mild enough that the people would simply self-treat, there might not be 
enough severe cases to account for the assumed death rate. The model is 
currently structured so that anyone sick enough to be at risk of dying is 
assumed to seek healthcare. In reality, some people might die without 
having sought care, but the current model neglects that possibility. 

MEDIAN incorporated a number of adjustments to this fraction in the 
model. Most notably, for case fatality rates higher than 0.02, MEDIAN 
assumed the fraction of afflicted seeking healthcare to be higher than the 
base fraction that is sampled. Thus, at the upper end of the case fatality 
rates considered (that is, near 0.15), the model assumes that almost all 
COVID-19 victims would seek care even if the sampled value of base 
fraction of afflicted seeking healthcare is well below 1.0. In addition, the 
model allows for the possibility that some people will seek healthcare 
and then cancel their request for care if the healthcare system is heavily 
overloaded and the waiting time is so long that their health starts to 
improve. 

3.8. Maximum mortality enhancement multiplier 

This parameter considers a decline in the quality of treatment if the 
healthcare system is overloaded. If waiting times for emergency care or 
to gain admission to hospital are too long, the mortality rate in the 
model will increase, up to the maximum mortality enhancement 
multiplier. In the earlier analyses, this effect was not included, so the 
mortality enhancement multiplier was left at 1.0. For the uncertainty 
analyses, inclusion of this effect was desired, but the amount of increase 
in mortality that could occur is not really known. There have been a 
number of studies (usually relating to particular illnesses) that have 
found increases in mortality when care is delayed, but how the increase 
in mortality might average out over all patients in an emergency room or 
a hospital is not known. Thus, the range of 1 to 2 for the maximum effect 
is somewhat speculative, although it does have some support in the 

literature. 

3.9. Pre-symptomatic and Asymptomatic Spread 

The evidence supporting the transmission of COVID-19 prior to 
symptoms includes data from many sources. First, experimental and 
observational studies of viral excretion usually find that infected people 
start excreting COVID-19 viruses at low levels from their respiratory 
tracts a short time before they develop symptoms [39,46,59]. Second, 
serological studies of levels of population immunity to COVID-19 often 
find people who show antibodies from prior infection but have no 
recollection of symptoms [60]. Modeling analyses have suggested that 
many more people have been infected during the COVID-19 pandemic 
and cases have been greatly underestimated [61]. However, as there are 
few field reports of infections from asymptomatic or pre-symptomatic 
persons, the quantification of asymptomatic and pre-symptomatic 
transmission remains unclear [62]. The first clinical analysis of asymp-
tomatic SARS-CoV-2 infection was for the Diamond Princess cruise ship, 
where an estimated 17.9% of cases on board were asymptomatic [63]. 
Reports of asymptomatic or pre-symptomatic patients excreting high 
levels of virus are rare and it is possible that any infections resulting 
from such transmissions are mild or asymptomatic, although they could 
be important in maintaining chains of transmission [64]. 

Because the spread of viruses by infected, but asymptomatic people, 
is one of the largest biological uncertainties, it has long been described 
as the top research priority for understanding epidemics [65]. Knowl-
edge gaps for COVID-19 continue to include the following questions: (1) 
What is the true infectiousness length of the asymptomatic incubation 
period? (2) What are the quantifiable contributions to COVID-19 
transmission from pre-symptomatic and asymptomatic spread? 

3.10. Reduction in early symptom contagion due to limited quarantine 

This parameter captures the effect of the assumption that 50% of 
remaining cases are isolated per day after symptoms become apparent; 
for example, 15% of cases slip through due to delayed recognition. This 
study assumed this fraction of persons isolating themselves to be 0.82 
based on the idea of isolating 50% of the remaining symptomatic in-
fections each day for 3 days. The assumption would work as follows: If 
the duration of the early (contagious) stage is 5 days, 20% of the possible 
transmission (without any isolation) would occur each day. If 50% of 
those people were isolated at the beginning of the first day (with the 
initial onset of symptoms), only 10% of the possible transmissions would 
occur. If 50% of the remaining people were isolated at the beginning of 
the second day, only 5% of the possible transmissions would occur that 
day. Again, isolating 50% of the remaining symptomatic infections at 
the beginning of the third day would result in 2.5% of the possible 
transmissions occurring. Assuming everyone else is isolated by the 
beginning of the fourth day, the total transmission would be 0.1 + 0.05 
+ 0.025 = 0.175 of the possible transmissions and the reduction 
multiplier would be 0.825. The model set this variable at 0.82 for all 
runs. This value may be optimistic for pandemic COVID-19. 

3.11. Effective Reproductive Number 

The effective reproductive number, R, for disease transmission is 
defined as the average number of secondary infectious cases produced in 
a population where a fraction X is susceptible over the lifetime of one 
infectious individual [66,67]. The effective reproductive number, R, is 
related to the basic reproductive number, R0, by the equation 

R = R0X (1) 

The basic and effective reproductive numbers are good indicators of 
the severity of a pandemic and the effectiveness of control [68]. In 
general, estimation of these parameters from actual disease outbreak 
data is limited because the process of infection is not observed, data are 
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often incomplete, and the rate of infection in an epidemic is non-linear 
[69]. An effective reproductive number is calculated to integrate the 
impacts of asymptomatic transmission and effects of individuals who 
isolate themselves early in the disease progression due to being ill. Self- 
isolation of infected and symptomatic persons greatly affects the trans-
mission of the disease to new individuals. In terms of the parameters 
used in the MEDIAN infectious disease model, the effective reproductive 
number is given by the following formula: 

R = R0{ft + (1 − ft)(1 − fi) + faCa} (2) 

Where: 
R0 is the basic reproductive number, 
ft is the fraction of transmission prior to clear symptoms, 
fa is the additional fraction asymptomatic, 
Ca is the relative contagion of asymptomatic, and 
fi is the reduction in early symptom contagion due to limited 

quarantine. 

4. Results 

The ranges are quite large for each of the two scenarios for fraction 
asymptomatic, ranging from complete control of the pandemic to much 
higher than the actual number of cases documented in the Albuquerque 
metropolitan area from March to October 2020. The average is some-
times significantly higher than the median. The highest values in these 
figures represent extremely severe consequences for the Albuquerque 
metropolitan area. This shows the great impact that the policies and 
social compliance for mitigations has had on the pandemic in the region. 
The wide ranges of the consequence of the pandemic is, of course, from 
the large amount of uncertainty in the sampled input parameters. The 
previous discussion based on the average values would still be generally 
valid if maximum values were used instead, but the differences among 
the maxima are not as strong as the differences among the averages. 

For the small set of nine inputs that we varied for testing, contact 
tracing, and quarantine, we found significant variation in the outcomes 
of the epidemic within each experiment spread up to two orders of 

magnitude (Fig. 4). The difference between 10% and 30% asymptomatic 
infections was 2.5 orders of magnitude for the highest number of cases 
for each scenario (Fig. 4). For the actual cases in the Albuquerque area in 
New Mexico (red line, Fig. 4), we can see the impact of the community 
doing social distancing, testing and contact tracing, and all of the other 
myriad of mitigations such as wearing masks to lower transmission. We 
can also see that 55% of simulation runs of the 10% asymptomatic 
assumption are better than the pandemic outcome in New Mexico, while 
only 5% of the runs have fewer overall cases for 30% asymptomatic. The 
same pattern of variability was seen for total deaths and 
hospitalizations. 

There was not as much of an impact on the local epidemic for the 
fraction contact traced and tested without the resulting quarantine 
(Fig. 5A). The value of the contact tracing and testing comes from the 
identified infections socially distancing themselves. When including the 
varied social distancing inputs, testing time of hours to hear back test 
results, did not impact the outcome of the local epidemic (Fig. 5B). This 
was also true for the false negative rate and total test ran per hour for the 
broader “random” disease surveillance (Fig. 5C and 5D). However, the 
correlation of contact tracing and quarantine on the overall attack rate 
of the epidemic was strong for all age groups (average R2 = 0.83). The 
overall attack rate can be decreased by over 82% when contact tracing 
and quarantine is implemented in this case and the relationship is almost 
linear (Fig. 6). 

The fraction of people that are asymptomatic greatly impacts the 
outcome of the epidemic and the ability to curtail the number of cases 
(Fig. 7). The greater the number of fraction asymptomatic people 
impacted the hospitalizations. With more asymptomatic people and 
more cases, hospitalizations remain high until around 50% of people are 
contact traced and quarantined. 

The most sensitive variable inputs related to the outcomes of the 
COVID-19 pandemic was (e.g. cases, hospitalizations, deaths, effective 
reproductive number) the Fraction Contact Traced and Quarantined for 
all age groups (R2 0.83–0.87 for 10% Asymptomatic; R2 0.88–0.94 for 
30% Asymptomatic) (Fig. 8). The sensitivity test also revealed that 
mitigations, in general, impacted the pandemic more greatly with 

Fig. 4. Epidemic curves for 54 runs per the two scenarios (Orange = 30% fraction asymptomatic, Blue = 10% asymptomatic), red epidemic curve is four county area 
of Albuquerque, New Mexico. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. A. Fraction of contacted, traced and tested and total cases for both asymptomatic scenarios. B. Testing time from test to reporting (hours). C. False negative 
rate for diagnostics. D. Diagnostic tests per hour for random testing. (Orange = 30% fraction asymptomatic, Blue = 10% asymptomatic). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Fraction contacted, traced, and quarantined and attack rate for the COVID-19.  
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increasing asymptomatic infections. Overall, the diagnostic testing rate 
did not have significant impact on the number of cases. However, the 
false negative test rate was slightly significant for the broader, more 
random testing strategy (R2 0.22–0.29). 

5. Discussion 

Results show that the overall uncertainty in the parameters of the 
infectious disease model can be remarkably large. In a previous study we 
showed that variability can be great for multiple scenario runs that cover 
the range of biological, sociological, and mitigation options for affecting 
the cumulative number of illnesses [3]. In Fair et al. [3], we found that 
the top variables related to overall epidemic attack rate and number of 
cases included (1) Fraction transmission prior to clear symptoms (in-
fectious asymptomatic), (2) Reproductive number, and (3) Disease stage 
duration (all stages). 

A major limitation of models for pandemic COVID-19 is the uncer-
tainty inherent in many of their assumptions. This uncertainty and the 
differences in the assumptions used in each model make model com-
parison difficult. Overall, the infectiousness of the COVID-19 estimated 
by R0 was the most investigated uncertain parameter (ranging from 0.5 
to 21). Most models were in the range for R0 of 2 to 3.5. In comparison, 

this study investigated R0 up to 14.4 to examine where impacts begin to 
degrade the critical infrastructure and public health. However, for runs 
with R0 between 2 and 2.5, the average attack rate is 30.8% for our 
baseline scenario, which compares favorably with other published 
model attack rates for baseline scenarios., Three important biological 
parameters can be identified from the results of all previous pandemic 
COVID-19 models: the basic reproductive number (R0) that corresponds 
to the number of secondary infections generated by primary infectious 
in a susceptible population, the disease generation or stage time that is 
the time interval between one person and the people they infect, and the 
proportion of transmission occurring prior to the onset of symptoms and 
the related fraction of persons that are asymptomatic. 

A primary social response to a contagious disease is to voluntarily 
modify one’s behavior, by any number of means, to reduce the rate of 
contact with other potentially infectious individuals. While it is 
reasonable to assume that some degree of social distancing occurs in a 
pandemic, in this study social distancing is modeled as “on” or “off.” 
When social distancing is on, the degree of social withdrawal is assumed 
to be proportional to the rate of infection. The rate of social distancing is 
mildly decoupled from the rate of infection by introducing a delay to 
account for individual perception of the risk of infection and any prep-
aration needed for entering a social distancing behavior. 

Fig. 7. Fraction contacted, traced and quarantined and total inpatient hospitalizations and total cases for 10% and 30% fraction asymptomatic.  

Fig. 8. Correlation coefficients for all input varied and outputs for 10% and 30% fraction asymptomatic.  
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The effect of social distancing is two-fold. First, it tends to reduce 
morbidity and mortality. Second, it tends to increase the fraction of 
workers unavailable and, hence, increases the fraction of lost GDP [3]. 
These results rely on assumptions about gross social distancing behavior, 
as it is very difficult to get reliable data upon which to base the model. 

In summary, the R2 for a model based on input parameter x1 has a 
larger R2 for a model based on input parameter x2, then x1 is judged 
more influential than x2 for that response. Also, the evaluation of cor-
relation coefficients was based the heuristic significance value for R2 

from goodness of fit evaluation in the regression modeling for random 
data and by inclusion of a phony input column that is included in the 
experiment design but is not actually a simulation input. If R2 for a 
particular response is below a threshold determined by one of these 
strategies, then that parameter is judged likely less important. The 
analysis computed the R2 values for the five varied inputs for each of 
several output metrics. The results served as a filter to eliminate less 
important variables for the propagation of the pandemic. 

Using the R2 criterion in the final sensitivity analysis for each of the 
outputs listed below, the highest-ranking variables that affect that 
pandemic scenario outputs are given. In addition to looking at R2 within 
each scenario, the model can identify other inferences on the relative 
importance of each parameter by using the aggregate data for all sce-
narios. Overall, most epidemiological models agree when using similar 
infectiousness parameters. However, different mitigation results occur 
when the biological parameters differ significantly. This is particularly 
true for COVID-19, where different ages, social classes, other phenotypic 
differences have been documented, such as increased susceptibility with 
blood type or nutrition [70,71]. Other differences in the transmission 
and susceptibility for COVID-19 can be modeled using a systems dy-
namics and computer experimental design, as described here. 

For COVID-19 or other similar epidemics, the false negative is the 
worst-case situation. A person with the pathogen in his/her lungs will go 
untreated and be sent home. As Sarkar [51] writes, “if this (false nega-
tive) happens for someone in the high-risk cohort, then a tragic (and 
possibly avoidable) loss of life can ensue with a high enough possibility”. 
However, the bigger cost is that the person will not be contact traced and 
quarantined. If the person does not have symptoms, they may continue 
to socialize because they do not believe they are positive and will not 
take the precautions necessary to reduce transmission. 

Ultimately, the successful control and containment of a pandemic 
will depend on using a variety of mitigation measures that include both 
pharmaceutical and nonpharmaceutical interventions (NPIs). In 2017, 
the CDC released updated guidance for the use of NPIs during an 
influenza pandemic [56]. These guidelines document the objectives of 
NPIs during a pandemic to include: (1) Delaying the exponential growth 
in illnesses and shifting the pandemic curve to the right to ‘buy time’ for 
production and distribution of a well-matched pandemic strain vaccine. 
(2) Decreasing the pandemic peak. (3) Reducing the total number of 
incident cases and reducing community morbidity and mortality 

NPIs have been shown to be effective in controlling a pandemic in 
our previous study on pandemic influenza [3] and other simulation 
studies [72,73], as well as past pandemics [74]. However, it has also 
been pointed out that the worst outcome may arise when control is 
attempted through social distancing, but not cautiously enough to cause 
the epidemic to be suppressed [75]. Social distancing can also be the 
costliest in terms of lost wages and workers available. 

6. Conclusions 

The impact of any pandemic is highly sensitive to how infectious the 
virus is for infected people not showing symptoms. As with the COVID- 
19 pandemic, the importance and role of asymptomatic transmission is 
documented, but it remains unknown the actual fraction of people that 
are asymptomatic spreaders of the SARS-2 COV [76]. The MEDIAN 
model predicts that transmission through asymptomatic infections of the 
COVID-19 virus is critical for the propagation of the disease, the number 

infected, and the resulting impacts. Household-based interventions can 
significantly reduce pandemic spread. While MEDIAN did not model 
household transmission, MEDIAN results show social distancing in-
terventions that reduce the number of daily interactions can reduce the 
severity of the pandemic (although at significant economic cost). Indi-
vidual and community-based behavioral modifications, such as school 
closures, fear-based home isolation, and social distancing, have a sig-
nificant effect on slowing COVID-19 spread and reducing morbidity and 
mortality. MEDIAN modeled a uniform self-quarantine (social 
distancing) strategy. Because MEDIAN did not model schools, it could 
not represent the infection waves caused by reopening. 

National pandemic preparedness plans currently focus on reducing 
the impacts associated with a constant attack rate in addition to 
reducing transmission. MEDIAN model results build on previous 
modeling studies of pandemic COVID-19 that have focused on the pos-
sibility of containment through mitigation strategies. Understanding 
and predicting the effectiveness of different mitigation strategies in 
controlling a pandemic will depend on the range of virulence, trans-
missibility, age-effects, public response, and response of the public 
health infrastructure. Mitigation strategies and combinations of re-
sponses may vary with the reality of the pandemic scenario presented, 
while maintaining a cost-effective and appropriate response that does 
not affect critical infrastructure and maintains continuity of our nation’s 
business operations and economy. 

The most important variables related to the total number of afflicted 
people in our pandemic system dynamics simulation are the fractions of 
the transmission that occur prior to symptoms (infectious presymp-
tomatic), fraction asymptomatic, and the fraction that quarantine. The 
most important aspect of COVID-19 transmission is the limited window 
of time before symptoms appear when a person is able to transmit the 
virus to other people. The ability to effectively find and contact people 
that may have been exposed to an infected person and then have them be 
quarantined greatly reduced the continued transmission of the COVID- 
19 virus and thus, reduced the total numbers of illnesses and deaths. 
Contact tracing alone reduced the impact of the pandemic significantly. 
The use of the NPI of social distancing reduced the pandemic outcomes 
for both of the asymptomatic scenarios. 

When combining all mitigation strategies available, it was found that 
the overall pandemic impact can be dramatically reduced. The more 
infective overall, and asymptomatic and infective, the virus is, the more 
it will limit the effectiveness of any or even a combination of mitigation 
strategies. All scenarios within the simulation runs contained a signifi-
cant amount of variation. However, even for a 30% fraction of asymp-
tomatic using the combination strategy on high testing rate, contact 
tracing, and social distancing can reduce the pandemic significantly. 
Containing a pandemic that is highly infective is possible with a com-
bination of NPI strategies. However, the simulations here have shown 
that although uncertainty and variability is large, coordinated efforts for 
response and can reduce the impacts felt by potentially millions of 
people. For the other NPI of wearing masks, we did not model the 
variation of mask wearing in this analysis. Overall, large variability was 
observed in the outcomes using possible biological (fraction asymp-
tomatic and false negative diagnostic rate), sociological (quarantine), 
interventions (contact tracing), and policy uncertainty (number of tested 
per capital). 

The impact of the current COVID-19 pandemic is highly sensitive to 
how infectious the virus will remain throughout the pandemic and how 
infectious the disease is prior to an infected person showing symptoms. 
The majority of the above variables deal with biological variability of 
the behavior of the SARS-2 Coronavirus, with the exception of the 
effectiveness of contact tracing and testing rate. With novel virus pan-
demics, until there is a vaccine or pharmaceutical measures that limit 
transmission and not just reduce mortality rates, NPI strategies for 
pandemic COVID-19 that identify infections and quarantine the infected 
people and all recent contacts will be the most effective. This was the 
case for early on in the COVID-19 pandemic and would be the case for 
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future pandemics as well until vaccines are developed and disseminated 
to the population. The results show that all of the interventions 
considered provide reduction in the number of cases and deaths caused 
by the pandemic, but social distancing and contact tracing with quar-
antine give the best results in this analysis. 

Here, we show that systems dynamics modeling of multiple sub- 
systems can be both a flexible and rapid approach for understanding 
the behavior of epidemics and pandemics. Coupled with computer 
simulation experimental designs of orthogonal Latin hypercube sam-
pling, the uncertainty of the system can be better understood, and with 
the correlation analysis the sensitivity of mitigations can be quantified 
quickly. With the systems dynamics approach, thousands of simulations 
can be run and rapidly analyzed. 
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