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Abstract: Here, three novel cholesterol (Ch)/low molecular weight polyethylene glycol 

(PEG) conjugates, termed α, ω-cholesterol-functionalized PEG (Ch2-PEGn), were successfully 

synthesized using three kinds of PEG with different average molecular weight (PEG600, 

PEG1000 and PEG2000). The purpose of the study was to investigate the potential application 

of novel cationic liposomes (Ch2-PEGn-CLs) containing Ch2-PEGn in gene delivery.  

The introduction of Ch2-PEGn affected both the particle size and zeta potential of cationic 

liposomes. Ch2-PEG2000 effectively compressed liposomal particles and Ch2-PEG2000-CLs 

were of the smallest size. Ch2-PEG1000 and Ch2-PEG2000 significantly decreased zeta 

potentials of Ch2-PEGn-CLs, while Ch2-PEG600 did not alter the zeta potential due to the 
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short PEG chain. Moreover, the in vitro gene transfection efficiencies mediated by different 

Ch2-PEGn-CLs also differed, in which Ch2-PEG600-CLs achieved the strongest GFP 

expression than Ch2-PEG1000-CLs and Ch2-PEG2000-CLs in SKOV-3 cells. The gene 

delivery efficacy of Ch2-PEGn-CLs was further examined by addition of a targeting moiety 

(folate ligand) in both folate-receptor (FR) overexpressing SKOV-3 cells and A549 cells 

with low expression of FR. For Ch2-PEG1000-CLs and Ch2-PEG2000-CLs, higher molar 

ratios of folate ligand resulted in enhanced transfection efficacies, but Ch2-PEG600-CLs had 

no similar in contrast. Additionally, MTT assay proved the reduced cytotoxicities of 

cationic liposomes after modification by Ch2-PEGn. These findings provide important 

insights into the effects of Ch2-PEGn on cationic liposomes for delivering genes, which would 

be beneficial for the development of Ch2-PEGn-CLs-based gene delivery system. 
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1. Introduction 

Cholesterol (Ch), an essential membrane component in higher eukaryotes, modulates functions of 

membrane proteins and participates in several membrane trafficking and transmembrane signaling 

processes [1]. Ch facilitates the formation of semi-permeable barriers between cellular compartments 

and regulates membrane fluidity [1,2]. Ch has been widely used for liposome preparation and other 

lipid-based drug delivery systems [3,4]. Furthermore, the hydroxyl group in Ch can be modified with 

other moieties [5,6]. Poly (ethylene glycol) (PEG) cholesterol conjugates (PEG-Ch) had been 

developed to enhance the stability and activity of liposomes and other lipid-based drug delivery 

systems [7–9]. PEG-Ch conjugates were further modified with targeting ligands or antibodies to 

increase the targeting efficacy of the delivery systems [10–12]. 

As a PEG-Ch conjugate, it has been reported that the hydrophobic groups in α, ω-Ch-modified PEG 

(Ch2-PEGn) were capable of inserting into the hydrophobic interior of lipid bilayers or membranes [13–15]. 

High molecular weight Ch2-PEGn (PEG30000–PEG35000) had been used to prepare liposome gels [16,17] 

and core-shell emulsion particles [18]. However, there is no report about applying Ch2-PEGn to gene 

delivery up to now. 

For PEG conjugates, the molecular weight of PEG had a significant effect on the properties of the 

drug delivery systems containing them [7,19–21]. PEG2000 modified polyethylenimine (PEI) was more 

efficient than PEG5000 modified PEI as evaluated by in vitro gene transfer [22]. PEG400 significantly 

enhanced fractional laser-assisted drug delivery when compared with PEG2050 and PEG3350 [23]. 

Therefore, the purpose of the study was to explore the potential application of novel cationic 

liposomes (Ch2-PEGn-CLs) containing Ch2-PEGn using three kinds of PEG with different average 

molecular weight (PEG600, PEG1000 and PEG2000) for gene delivery. The impacts of variation in PEG 

molecular weight on the properties, toxicities and gene delivery efficacies were determined.  

In addition, the gene delivery efficacy of Ch2-PEGn-CLs was further investigated by introduction of 

the targeting moiety (folate ligand) in both folate-receptor (FR) overexpressing SKOV-3 cells and 

A549 cells with low expression of FR. 
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2. Results and Discussion 

2.1. Synthesis and Identification of Ch2-PEGn 

The successful synthesis of Ch2-PEGn was confirmed by 1H-NMR and mass spectra. As shown in 

Scheme 1, Ch2-PEGn was synthesized by esterification of succinic anhydride-cholesterol (suc-Ch) with 

PEG using 4-dimethylaminopyridine (DMAP) and 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide 

hydrochloride (EDCI) as catalysts. The 1H-NMR spectra of Ch2-PEGn were shown in Figure 1A.  

The principal peaks of suc-Ch and poly (ethylene glycol) (PEG) moieties were observed [8,24].  

The molecular weights of Ch2-PEGn were measured by the Quadrupole-Time of Flight (Q-TOF) mass 

spectra as shown in Figure 1B. For Ch2-PEG600 and Ch2-PEG1000, the mass-to-charge ratio (m/z) 

spectrums showed dominant ions at m/z 1545 and 1896. Their m/z ions were singly charged [(M + H)+]. 

Therefore, the measured molecular weight of Ch2-PEG600 and Ch2-PEG1000 were 1544 and 1895 Da 

respectively after subtracting H+. For Ch2-PEG2000, the m/z values differed by 0.5 Da as z, so the 

number of charges was equal to 2. The m/z ions were doubly charged [(M + 2H)2+]. The measured 

molecular weight of Ch2-PEG2000 was 3012 Da [(1508 − 2) × 2]. All the calculated molecular weights 

were consistent with the true molecular weights. 

The melting points and appearances of Ch2-PEGn were summarized in Table 1. Three kinds of 

Ch2-PEGn had different melting points, which might impact the film-forming property of the mixed 

lipids and therefore influence the stability of cationic liposomes. 

Scheme 1. Synthesis route of Ch2-PEGn conjugates. 
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Figure 1. 1H-NMR and mass spectra of Ch2-PEGn. (A) 1H-NMR spectra (400 MHz) of 

Ch2-PEGn in CDCl3; (a,b) 6- and 3-position protons in Chol; (c) protons of methylene in PEG 

and (d) methylene proton of succinyl group. The principal proton peaks of Chol-suc and 

PEG were found in Ch2-PEGn; (B) Mass spectra of Ch2-PEGn. The m/z ions of Ch2-PEG600 

and Ch2-PEG1000 are singly charged molecular-related ions; the m/z ions of Ch2-PEG2000 

are doubly charged molecular-related ions. The measured molecular weight of Ch2-PEG600, 

Ch2-PEG1000 and Ch2-PEG2000 were 1544, 1895 and 3012 Da, respectively. 
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Table. 1. The melting points and appearances of Ch2-PEGn. The melting point was 

recorded as the midpoint value in the melting temperature range to facilitate comparison. 

Samples Melting Point (°C) Appearance (25 °C) 

PEG600 → Ch2-PEG600 20 → 33 (↑) Clear liquid → Clear semi-solid 

PEG1000 → Ch2-PEG1000 33 → 40 (↑) White paste → Clear solid 

PEG2000 → Ch2-PEG2000 52 → 47.5 (↓) White flake → White powder 

2.2. Physicochemical Properties of Ch2-PEGn-CLs 

The particle size and polydispersity index (PDI) of Ch2-PEGn-CLs were shown in Figure 2A. There 

were no significant differences of the particle size and PDI when comparing Ch2-PEG600-CLs  

and Ch2-PEG1000-CLs with mPEG-CLs (CLs modified by mPEG2000-suc-Ch). However, the particle size 

of Ch2-PEG2000-CLs (74 nm) was significantly smaller than those of Ch2-PEG600-CLs and 

Ch2-PEG1000-CLs (p < 0.05). It was considered that the size decrease of Ch2-PEG2000-CLs might be 

attributed to the introduction of Ch2-PEG2000, which anchored into the liposomal bilayer by Ch 

segments [25,26] and extended the PEG chain on the surface of the liposome. The PEG chain 

compressed the liposomal particle [22], and therefore reduced the particle size. Then the effect of 

Ch2-PEG2000 on particle size was further studied. As shown in Figure 2B, the particle size of 

Ch2-PEG2000-CLs gradually decreased with a higher polydispersity when the molar ratio of 

Ch2-PEG2000 increased. Due to the high curvature and micellar preference of the large hydrophilic PEG 

chain, it was challenging to stably integrate high molar ratio Ch2-PEGn into liposomal bilayer [27]. 

Therefore, 5 mol% Ch2-PEG2000 was the optimal molar ratio. 

The zeta potentials of Ch2-PEG1000-CLs and Ch2-PEG2000-CLs were significantly lower than that of 

Ch2-PEG600-CLs as seen in Figure 2C (p < 0.001). It suggested that Ch2-PEG1000 and Ch2-PEG2000 

could shield the electric charge of cationic liposomes. Therefore, they were good candidates like 

mPEG2000-suc-Ch for preparing long-circulating or stealth liposomes. The zeta potential of 

Ch2-PEG600-CLs was close to CLs (Figure 2C), which was consistent with the previous report that low 

molecular weight PEG did not effectively shield the positive charge of cationic particles [19]. The potential 

impact of molar ratio of Ch2-PEG2000 on zeta potentials was also studied. As shown in Figure 2D,  

15 mol % was the most efficient ratio in reducing zeta potential. Similar zeta potential values were 

found with 5 and 10 mol % Ch2-PEG2000. 
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Figure 2. Particle size, PDI and zeta potential of Ch2-PEGn-CLs (Mean ± SD, n = 3,  

* p < 0.05, *** p < 0.001). (A,C) Particle size, PDI, and zeta potential of Ch2-PEGn-CLs, 

CLs (normal cationic liposomes without PEG introduction) and mPEG-CLs; (B,D) The 

effect of molar ratio of Ch2-PEG2000 on the particle size, PDI and zeta potential of 

Ch2-PEG2000-CLs. 

 

2.3. Gene Transfection Efficiencies of Ch2-PEGn-CLs 

Different types of cationic liposomes were evaluated in gene transfection efficiencies by 

comparison. As shown in Figure 3, Ch2-PEG600-CLs had slightly higher transfection efficiency than CLs 

and mPEG-CLs, but there were no significant differences. In contrast, the transfection efficiencies of 

Ch2-PEG1000-CLs and Ch2-PEG2000-CLs were significantly lower than that of Ch2-PEG600-CLs (p < 0.001). 

The higher zeta potential of Ch2-PEG600-CLs (Figure 2C) than the other Ch2-PEGn-CLs might be due 

to its high transfection efficiency. Therefore, zeta potential is an important parameter when applying 

Ch2-PEGn to gene delivery. Ch2-PEG2000-CLs, with the same zeta potential but the smaller particle size 

(Figure 2A), achieved a bit higher transfection efficiency than Ch2-PEG1000-CLs. 
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Figure 3. Transfection efficiency and fluorescence images (200×) of Ch2-PEGn-CLs  

(mean ± SD, n = 3, *** p < 0.001). 

 

To further explain the differences in zeta potential and transfection efficacies of several cationic 

liposomes consisting of Ch2-PEGn with different molecular weights, XPS analysis was carried out of 

various Ch2-PEGn-CLs and the schematic diagrams are shown in Figure 4. More oxygen atoms from 

ethylenedioxy groups of PEG were found on the surface of CLs with the increase of PEG molecular 

weight as shown in Figure 4B. The presence of PEG chains outside of CLs had the potential to  

shield the electronic charge, and decrease the zeta potential as shown in Figure 4A. However, 

Ch2-PEG600-CLs, with the shorter PEG chain, which could not shield the surface charge of liposomes, 

had a significant higher zeta potential than Ch2-PEG1000-CLs and Ch2-PEG2000-CLs, which resulted in 

the increased transfection efficiency. The zeta potentials of Ch2-PEG1000-CLs and Ch2-PEG2000-CLs 

were comparable and might be due to the saturation of the shielding effect. Ch2-PEG1000-CLs and 

Ch2-PEG2000-CLs also showed comparable transfection efficiency due to similar zeta potential. 
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Figure 4. Schematic diagram and XPS analysis of Ch2-PEGn-CLs. (A) Ch segments of 

Ch2-PEGn anchored into the lipid bilayer of CLs. Due to the short PEG chain, Ch2-PEG600 

did not effectively shield the charge of CLs. Ch2-PEG1000 and Ch2-PEG2000 decreased the 

positive charge by covering the surface of CLs. With longer PEG chains, Ch2-PEG2000 

compressed the liposomal particle and therefore Ch2-PEG2000-CLs showed a smaller 

particle size; (B) XPS analysis demonstrated that more PEG segments were located on the 

surface of liposomes when PEG molecular weight increased. 

 

2.4. Gene Transfection Efficiencies of F-Ch2-PEGn-CLs with Introduction of a Folate Ligand 

The gene delivery efficacy of Ch2-PEGn-CLs was further examined by addition of a targeting 

moiety (folate ligand) in both folate-receptor (FR) overexpressing SKOV-3 cells and A549 cells with 

low expression of FR. 

We previously demonstrated that SKOV-3 cells overexpress the folate receptor alpha [24].  

The effects of folate ligand and its density on the transfection efficiencies of Ch2-PEGn-CLs in 
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SKOV-3 cells are shown in Figure 5. For Ch2-PEG600-CLs, the transfection efficacy was close to 19% 

without folate ligand modification. There was no special trend with the change of folate ligand ratio 

for F-Ch2-PEG600-CLs. Their transfection efficacies were all around 20% (Figure 5A,D). In contrast, 

transfection efficiencies of F-Ch2-PEG1000-CLs were significantly elevated with the increase of folate 

ligand density (p < 0.001, shown in Figure 5B,E). About 20% cells were transfected with 2.5% 

F-Ch2-PEG1000-CLs, which was almost 3-fold of that for Ch2-PEG1000-CLs without folate modification. 

Similarly, 2.5% F-Ch2-PEG2000-CLs had higher transfection efficiency than other Ch2-PEG1000-CLs as 

shown in Figure 5C,F. Therefore, the optimal ligand density should be screened when various PEG with 

different molecular weight was employed for preparing CLs in the future. 

Figure 5. The effect of folate ligand densities in F-Ch2-PEGn-CLs on transfection 

efficiencies (mean ± SD, n = 3, *** p < 0.001). (A–C) The transfection efficiencies of 

F-Ch2-PEG600-CLs, F-Ch2-PEG1000-CLs and F-Ch2-PEG2000-CLs. 0%: Ch2-PEGn-CLs without 

folate ligand modification; 0.1%, 1.0% and 2.5%: Ch2-PEGn-CLs modified by 0.1, 1.0 and 

2.5 mol % F-suc-PEG2000-Chol in total lipids, respectively; (D–F) The flow cytometry 

results of transfection by F-Ch2-PEGn-CLs. 

 

As shown in Figure 6A, folate receptor alpha is not expressed on A549 cells by folate receptor assay 

as previously reported [24]. When Ch2-PEGn-CLs and F-Ch2-PEGn-CLs were used to transfect A549 

cells, F-Ch2-PEGn-CLs did not significantly increase the transfection efficiency of Ch2-PEGn-CLs as 

shown in Figure 6B. 
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Figure 6. Folate receptor alpha expression and transfection efficiency on A549 cells.  

(A) Folate receptor alpha expression on A549 cells by flow cytometry and (B) The transfection 

efficiencies of Ch2-PEGn-CLs and F-Ch2-PEGn-CLs on A549 cells. 

 

2.5 Cytotoxicity Evaluation 

The cytotoxicities of Ch2-PEGn on SKOV-3 cells were shown in Figure 7A. The toxicities were 

concentration-dependent. After treatment for 24 h, the half maximal inhibitory concentration (IC50) for 

Ch2-PEG600, Ch2-PEG1000 and Ch2-PEG2000 on SKOV-3 cells were about 78, 145 and 127 μM, 

respectively. Ch2-PEG600 was slightly more toxic to SKOV-3 cells than the other. However, even for 

Ch2-PEG600, the IC50 value was higher than other PEG-lipid conjugates that have been extensively  

used for drug and gene delivery [24,28]. Therefore, Ch2-PEGn may be one kind of safe material for  

gene delivery. 

The cytotoxicities of Ch2-PEGn-CLs on SKOV-3 cells were shown in Figure 7B. The cytotoxicities 

gradually decreased with the increase of PEG molecular weight. The IC50 values for CLs, Ch2-PEG600-CLs, 

Ch2-PEG1000-CLs and Ch2-PEG2000-CLs were about 38, 100, 143 and 302 μM, respectively. 5 mol % 

Ch2-PEGn significantly enhanced the safety of cationic liposomes when compared with CLs  

(p < 0.001). Therefore, employing Ch2-PEGn in preparation was an effective way to reduce the 

cytotoxicity of cationic liposomes. 
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Figure 7. Cytotoxicity of Ch2-PEGn and Ch2-PEGn-CLs on SKOV-3 cells by the MTT assay 

(Mean ± SD, n = 4–6). (A) IC50 values for Ch2-PEG600, Ch2-PEG1000 and Ch2-PEG2000 were 

about 78, 145 and 127 μM, respectively; (B) IC50 values for CLs, Ch2-PEG600-CLs, 

Ch2-PEG1000-CLs and Ch2-PEG2000-CLs were about 38, 100, 143 and 302 μM, respectively. 

The cytotoxicity of CLs was reduced by introducing Ch2-PEGn into Ch2-PEGn-CLs. 

 

3. Experimental Section 

3.1. Materials 

Cholesterol (Ch) was obtained from Bio Life Science & Technology Co., Ltd. (Shanghai, China). 

Poly (ethylene glycol) (PEG) [molecular weight 600 (PEG600), molecular weight 1000 (PEG1000)  

and molecular weight 2000 (PEG2000)] and 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium 

bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) was provided by Accela 

ChemBio Co., Ltd. (Shanghai, China). 4-dimethylaminopyridine (DMAP) was obtained from 

AstaTech Pharma. Co., Ltd. (Chengdu, Sichuan, China). 1, 2-dioleoyl-3-trimethylammonium-propane 

(chloride salt) (DOTAP) was purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA). 

Folate-PEG-succinyl-cholesterol conjugate (F-PEG2000-suc-Ch) and mPEG-succinyl-cholesterol 

conjugate (mPEG2000-suc-Ch) were synthesized and purified in the same procedures as those recorded 

in our previous publications [8,24]. Green fluorescent protein plasmid DNA (pDNA) was extracted 

according to the EndoFree Plasmid Purification Handbook (QIAGEN, Hilden, Germany). All the  

other reagents and solvents were of analytical grade and were used without further purification  

except for chloroform used for cationic liposomes preparation. 

3.2. Synthesis and Identification of Ch2-PEGn 

3.2.1. Synthesis of Ch2-PEGn 

α, ω-Ch-modified PEGs (Ch2-PEGn) were synthesized according to scheme 1. Firstly, Ch succinic 

anhydride ester (suc-Ch) was synthesized as described before [8]. In brief, Ch, succinic anhydride and 
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DMAP were dissolved in dichlormethane and stirred for 48 h at room temperature. After removing the 

solvent, the crude product was washed by acetic acid. White suc-Ch was obtained. Secondly,  

PEG (PEG600, PEG1000, or PEG2000), suc-Ch, DMAP and EDCI were dissolved in chloroform.  

The mixture was refluxed for 72 h, concentrated under vacuum, and purified on a silica-gel column 

eluting with dichlormethane and methanol. Ch2-PEG600, Ch2-PEG1000 and Ch2-PEG2000 were obtained. 

3.2.2. 1H-NMR and Mass Spectra of Ch2-PEGn 

1H-NMR spectra of Ch2-PEGn were recorded on a Bruker ADVANCEIII spectrometer (400MHz) 

(Billerica, MA, USA) at room temperature. Ch2-PEG600, Ch2-PEG1000 and Ch2-PEG2000 were dissolved 

in CDCl3 with tetramethylsilane as the internal standard. The mass spectra of Ch2-PEGn were 

measured using a Waters Q-TOF Premier (Milford, MA, USA) equipped with ion spray source and N2 

as nebulization gas. 

3.2.3. Melting Point and Appearances 

Melting points of Ch2-PEGn, PEG1000, PEG2000, mPEG2000-suc-Ch, suc-Ch and Ch were determined 

using SGW X-4 melting point apparatus (Shanghai Precision & Scientific Instrument CO., LTD., 

Shanghai, China). The appearances of the materials were recorded. 

3.3. Preparation and Characterization of Cationic Liposomes 

3.3.1. Preparation of Liposomes 

Ch2-PEGn-CLs were prepared by film dispersion method as described before [29]. In brief, 

DOTAP, Ch and Ch2-PEGn (Ch2-PEG600, Ch2-PEG1000 or Ch2-PEG2000) at different molar ratios were 

dissolved in chloroform. Then the organic solvent was removed from the lipids solution using a Büchi 

rotary evaporator. A thin film was formed and further dried under high vacuum for 6 h at room 

temperature. The lipid film was hydrated with 5% (w/v) glucose solution and sonicated by a VCX130 

Vibra-Cell (Sonics & Materials Inc., Newtown, CT, USA) until a translucent lipid suspension was 

obtained. Ch2-PEGn-CLs were formed. They were passed through a 0.22 μm Millipore microporous 

membrane and stored at 4 °C until use. 

CLs and mPEG-CLs (served as controls), folate modified Ch2-PEGn-CLs (F-Ch2-PEGn-CLs, active 

targeted CLs) were prepared in the same way. CLs were made of DOTAP and Ch. mPEG-CLs were 

composed of DOTAP, Ch and mPEG2000-suc-Ch. F-Ch2-PEGn-CLs were consisted of F-PEG2000-suc-Ch, 

DOTAP, Ch and Ch2-PEGn. 

3.3.2. Size and Zeta Potential Determination 

The mean particle size and zeta potential of the liposomes were measured by a Zetasizer Nano ZS 

ZEN 3600 (Malvern Instruments, Ltd., Malvern, Worcestershire, UK). The mean particle size was 

determined at a fixed angle of 173°. The zeta potential of 5 mg/mL liposome at pH 6.0 was 

automatically calculated from the electrophoretic mobility at 25 °C. All the experiments were 

performed in triplicate. 
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3.4. Cell Culture 

Human ovarian carcinoma SKOV-3 cell line and human lung carcinoma A549 cell line were 

obtained from American Type Culture Collection (ATCC). Cells were cultured as a monolayer in 

Dulbecco’s Modified Eagles’s Medium (DMEM, Gibco, Carlsbad, CA, USA) or Roswell Park 

Memorial Institute medium (RPMI)-1640 medium supplemented with 10% fetal bovine serum, 

L-glutamine (2 mmol/L), penicillin (100 units/mL) and streptomycin (100 μg/mL) in a humidified 

atmosphere containing 5% CO2 at 37 °C. 

3.5. In Vitro Transfection Experiments 

SKOV-3 or A549 cells were seeded on Costar 6-well plates (Corning Inc., Corning, NY, USA) at a 

density of 1.5 × 105 cells per well and cultured in DMEM medium or RPMI-1640 as described before [24]. 

30 min prior to transfection, the culture medium was replaced by 800 μL serum-free DMEM or 

RPMI-1640 in each well. Then Ch2-PEGn-CLs/pEGFP, CL/pEGFP, mPEG-CLs/pEGFP or 

F-Ch2-PEGn-CLs/pEGFP complexes (200 μL, containing 1 μg pDNA) was added to the wells 

respectively. Three wells were used for each lipoplex. After incubating for 5–6 h, cell culture medium 

was changed to DMEM or RPMI-1640 with serum and the cells were incubated for another 42–43 h. 

The transfected cells were observed under an inverted research microscope, Eclipse Ti (Nikon 

Corporation, Tokyo, Japan). Then they were trypsinized with 0.25% trypsin-EDTA, centrifuged and 

resuspended with PBS. The cell suspensions were analyzed by a FACS Calibur flow cytometer  

(BD Biosciences, San Jose, CA, USA) to determine the transfection efficiency of the complexes. 

3.6. Cytotoxicity of Ch2-PEGn and Ch2-PEGn-CLs 

Cytotoxicity of Ch2-PEGn was evaluated in the SKOV-3 cell line by MTT assay as described  

previously [30]. Briefly, cells were seeded on 96-well plates (Corning Inc., Corning, NY, USA) in  

100 μL medium at a density of 5 × 103 cells per well. After overnight incubation, another 100 μL 

Ch2-PEGn solutions at various concentrations (ranged from 1 to 200 μM) were added to the wells. The 

cells were incubated for another 24 h. Then 20 μL MTT solution (5 mg/mL in saline) was added to each 

well. After culturing at 37 °C for 4 h, the medium was removed. 160 μL DMSO was added to each 

well to dissolve formazan crystals. The absorbance was measured at 570 nm on a Multiskan MK3 

microplate reader (Thermo Fisher Scientific Inc., Waltham, MA, USA). Untreated cells were used as 

controls. The relative cell viability compared with control was calculated based on the following 

equation: Relative cell viability (%) = (Atreated/Acontrol) × 100. 

3.7. Statistical Analysis 

Statistical analysis was performed using Student’s Independent-Samples t-Test on SPSS (V 19.0, 

IBM Corp., Armonk, NY, USA). All the statistical tests were two-sided. p < 0.05 was considered as 

statistical significant difference. 
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4. Conclusions 

In this manuscript, a series of Ch2-PEGn at different PEG molecular weights (600, 1000 and 2000) were 

successfully synthesized. Ch2-PEGn-CLs containing various Ch2-PEGn presented different particle size, 

zeta potential and in vivo transfection efficacy, and Ch2-PEG600-CLs exhibited the strongest GFP 

expression in SKOV3 cells due to its highest zeta potential. However, Ch2-PEG600-CLs also had the 

highest in vitro cytotoxicity. After introduction of a folate ligand, the targeting efficacies and optimized 

ligand densities of F-Ch2-PEGn-CLs still depended on the molecular weights of PEG. In sum, 

Ch2-PEGn-CLs are promising carriers for gene delivery. The current work demonstrates the possibility 

of utilizing Ch2-PEGn for gene delivery, and a corresponding systematic investigation of this study 

would benefit the future development of Ch2-PEGn-CLs-based gene delivery systems. 
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