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Diabetic peripheral neuropathy (DPN) is one of the most common complications of
diabetes mellitus (DM) and affects over one-third of all patients. Neuropathic pain and
nerve dysfunction induced by DM is related to the increase of advanced glycation end
products (AGEs) produced by reactive dicarbonyl compounds in a hyperglycemia
environment. AGEs induce the expression of pro-inflammatory cytokines via the main
receptor (RAGE), which has been documented to play a crucial role in the pathogenesis of
diabetic peripheral neuropathy. Electroacupuncture (EA) has been reported to have a
positive effect on paralgesia caused by various diseases, but the mechanism is unclear. In
this study, we used high-fat-fed low-dose streptozotocin-induced rats as a model of type
2 diabetes (T2DM). Persistent metabolic disorder led to mechanical and thermal
hyperalgesia, as well as intraepidermal nerve fiber density reduction and nerve
demyelination. EA improved neurological hyperalgesia, decreased the pro-inflammatory
cytokines, reduced the generation of AGEs and RAGE, and regulated the glyoxalase
system in the EA group. Taken together, our study suggested that EA plays a role in the
treatment of T2DM-induced DPN, and is probably related to the regulation of metabolism
and the secondary influence on the GLO/AGE/RAGE axis.

Keywords: diabetes, electroacupuncture, peripheral neuropathy, glyoxalase system, advanced glycation end
products, neuropathic pain
INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, hyperlipidemia,
and glycosuria. It has become epidemic worldwide and has one of the highest incidence rates of
chronic diseases. The International Diabetes Federation recently indicated that more than 463
million people have diabetes and the number of cases was expected to increase to 700 million by
2045 (1). Type 2 diabetes (T2DM) is recognized as the most common. The increasing prevalence of
diabetes and its secondary complications have created a huge economic burden around the world
(2), and among the complications, diabetic peripheral neuropathy (DPN) especially type 2 is the
most common and troublesome. Statistics from the Center for Disease Control and Prevention
showed that over half of diabetic patients will develop DPN and over one-third will develop
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neuropathic pain during the process of DM (3, 4). The
complexity and increased prevalence of DPN have inflicted a
burden on human health.

Inflammation plays a critical role in painful DPN (5). Pro-
inflammatory cytokines such as TNF-a, interleukin 1 (IL 1), and
IL 6 have been reported to be important in peripheral
sensitization. In the development of DM, metabolism disorder
resulting from hyperglycemia contributes to inflammatory
signaling mechanisms, leading to the energy stress of
mitochondria and axons, and eventually causes nerve injury
(6). Compounds that inhibit inflammatory response have been
confirmed to be effective in the treatment of DPN (7, 8),
indicating that reducing inflammation and blocking the
cascade is an efficient therapy.

Advanced glycation end products (AGEs) produced by non-
enzymatic reactions contribute to intra- and extracellular protein
cross-link and essential protein modification. AGEs deposit in
almost every part of nerve tissues and the deposition is related to
the density reduction of myelinated nerve fibers (9). Besides,
AGEs can result in nerve dysfunction by interacting with cell
surface receptors essentially the receptor for AGEs (RAGE),
activating the downstream signal cascade, causing a persistent
inflammatory reaction and neurological damage and promoting
the development of diabetic neuropathy (10), which is one of the
main types of pathogenesis of DPN.

Methylglyoxal (MG) is the main precursor of AGEs. In the
continuous hyperglycemia environment, the increase of the MG
level leads to the accumulation of AGEs. As the main rate-
limiting enzyme of the glyoxalase system, glyoxalase-1 (GLO1)
detoxifies MG, with glutathione (GSH) as a cofactor. The
expression and function of GLO1 decrease under hyperglycemia
while RAGE increases, which aggravates the deposition and signal
transduction of AGEs. Enhancing GLO1 expression will prevent
MG-induced formation of AGEs, decrease the downstream
inflammatory signal cascade, and reduce the impairment of the
nerve system, which indicates its potential importance in peripheral
nerve system protection. Therefore, targeting the activation of
GLO1 and the formation of AGEs will be more effective
in treatment.

Multiple studies showed the anti-inflammatory effect of
electroacupuncture (EA) on various forms of organ
dysfunction including many diabetic complications (11–13).
Electrical nerve stimulation has been confirmed to reduce pain
in diabetes by a large magnitude (14). It has been endorsed by the
American Pain Society and the National Center for
Complementary and Alternative Medicine because of its
effective therapy and is used by millions of people to reduce
pain and block inflammation (15). Previous research reported
the therapeutic effect of EA treatment in the relief of hyperalgesia
caused by a range of reasons including diabetes-associated
hyperalgesia and its effect on the reduction of the level of
AGEs and RAGE (16–19). However, it is unclear whether this
reduction is relevant to hyperalgesia relief and the particular
mechanism. ST25 (Tianshu) has been used in clinical trails
widely (20, 21). It has been reported that high-intensity ST25-
EA stimulation (1.0-3.0 mA) modulated systemic inflammation
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by activating distinct sympathetic pathways (22). ST25-EA
stimulation was confirmed to regulate the activity of glucose-
inhibited neurons and improve the disorder of lipid metabolism
(23). Our previous research showed that the positive effect on
obesity mediated by ST25-EA stimulation was probably
associated with the promotion of mitochondrial biogenesis and
the regulation of immunologic balance (24, 25). Additionally,
ST25 was confirmed to relieve various forms of pain including
visceral hyperalgesia and cancer pain (26–28).

In this research, we used high-fat-fed/low-dose streptozotocin
(HFD-STZ)-induced rats as T2DM models to recapitulate the
metabolic characteristics in T2DM-induced DPN. Low-dose
streptozotocin (35mg/kg) mildly inhibits beta-cell function,
and combined with insulin resistance caused by the HFD,
results in hyperglycemia (29). It is different from high-dose
STZ-induced diabetes, in which the hyperglycemia results from
beta-cell dysfunction-induced insulin deficiency (30, 31). Herein,
we observed that EA alleviated hyperalgesia and metabolic
disorder in model rats, and inferred that the levels of
inflammation and the GLO/AGE/RAGE axis might be
influenced by that. It may provide further understanding of EA
treatment in DPN.
MATERIALS AND METHODS

Animals and Groups
Eight-week-old Sprague-Dawley male rats weighing
approximately 200-220 g, which were purchased from the
Model Animal Research Center of Nanjing Medical University,
were housed in a controlled temperature room (20-22°C) with
relative humidity of 40%-60%, a 12-h/12-h light/dark cycle, and
ad libitum access to food and water. All of the rats’ experiments
were performed according to the “Guide for the Care and Use of
Laboratory Animals” published by the National Institutes of
Health and with the protocols approved by the Institutional
Animal Care and Use Committee of Nanjing University of
Chinese Medicine (Animal license number: SCXK_2019-0002).
The rats were divided into three groups (control, model, and EA)
and were placed on a basic diet in the first two weeks. Two weeks
later, one of these groups was designated to be the control group
and kept on a basic diet, while the other two groups were placed
on a high-fat-fed diet (30% fat) and designated as type 2 diabetes
groups. Another two weeks later, hyperglycemia was induced by
intraperitoneal injection of STZ (35mg/kg, 0.1 M citric acid
buffer, pH 4.5) in the two high-fat-fed groups, and the control
group was treated with vehicle. One week after STZ injection, the
rats in the high-fat-fed groups with blood glucose >16.7mmol/L
were used in experiments.

EA Stimulation
The rats in the EA group were anesthetized by inhaled isoflurane
(4-5% for induction and 1-2% for maintenance) and placed on a
heating pad to maintain body temperature. EA was performed
with a continuous-wave stimulation for 20 min, with an
alternating frequency of 2/15 Hz and a current of 2 mA (23, 25).
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A pair of non-insulated steel acupuncture needles (0.18 mm in
diameter, 10 mm in length) were inserted at a depth of 3 mm on
ST25 (Tianshu, locating 5 mm laterally to the intersection
between the upper 2/3 and the lower 1/3 in the line joining the
xiphoid process and the upper border of the pubic symphysis),
and the needles were connected to the output terminals of the EA
instrument (LH402A; Beijing Huawei Technologies Co. Ltd).
This treatment was performed six times a week and lasted for 5
weeks. To minimize the extra stimulus and stress, EA stimulation
was carried out with an extremely gentle operation on the rats.
The gas anesthesia was given to rats in the model group at the
same time without performing EA.

Behavioral Test
The behavioral test was conducted every week after the STZ
injection to check if the rats were in hyperalgesia. All of the
behavioral measurements were carried out when the rats were
awake and unrestrained.

Hind Paw Withdrawal Threshold
Von Frey measurements were done after the rats were placed on
the wire for half an hour and had adapted to the environmental
divorce to check mechanism sensitivity. A Von Frey filament was
forced against the hind paw and rose at a uniform speed until the
rats were lifting their hind feet. The force in grams exerted by
wire on the hind paw increased with time. When the rats
withdrew their hind paw, the force stopped increasing, and the
corresponding force was regarded as the withdrawal threshold
and was calculated. Each rat was measured five times, alternately
on the left and right hind paw, with an interval of 5 min (32).

Hind Paw Withdrawal Latency
Hind paw withdrawal latency was measured with an analgesia
meter. Rats were placed on a warm plate (30°C) for half an hour
to adapt to the environmental temperature. The light source was
maneuvered under the hind paw, starting at 30°C and ending at
55°C to avoid scalding the skin. The paw withdrawal time was
recorded to measure the sensitivity of heat. The time was limited
to 30 s. Each rat was measured four times, alternately on the left
and right hind paw, with an interval of 5 min (33).

Nerve Conduction Velocity
Motor nerve conduction velocity (MNCV) and sensory nerve
conduction velocity (SNCV) were recorded in the posterior-
sciatica tibial conduction system using PowerLab 8/35 (AD
Instruments, Australia). The rats were anesthetized by
intraperitoneal injection of urethane (1200mg/kg) and body
temperature was maintained at 37°C during the measurement.
The sciatic nerve near the sciatic notch and the tibial nerve near
the Achilles tendon were stimulated with a single stimulus of 3 V.
The M-wave (used for MNCV calculation) and H-wave (used for
SNCV calculation) reflexes were recorded by the receipt
electrodes placed on the interosseous foot muscle (34–36).

Microcirculatory Blood Perfusion
The microcirculatory blood perfusion units of the dorsal hind
paw were measured by a Laser Doppler (PeriFlux5000, Perimed,
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Sweden). The rats were anesthetized with isoflurane, 4-5% for
induction and 1-2% for maintenance (37), and were then placed
on a heating pad to keep their temperature around 37°C. After
removing the hair on the measuring area, the probe (Probe 408)
was vertically fixed on the skin with double-sided adhesive tape
(PF105-1), and attention was paid to avoid the blood vessels on
the surface. When the baseline was stable, the perfusion units
(PU) of each rat were recorded three times, 3 min each time with
an interval of 5 min. The value of the PU was defined as the
product of the concentration of moving blood cells and the
average movement rate of blood cells.

Biochemical Analyses
Levels of blood glucose and body weight were measured every
week and the measurements were carried out at the same time.
Blood glucose was measured by an ACCU-CHEK Performa
(Roche Diabetes Care GmbH). The levels of insulin, high-
density lipoprotein, low-density lipoprotein, glycosylated serum
protein, triglyceride, non-esterified fatty acid, total cholesterol in
serum, and glutathione in hind paw skin were measured with a
related assay kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing) at the end of the experiment.

ELISA
Standard or samples (50 mL) with enzyme conjugate (100 mL)
(Nanjing Jiancheng Bioengineering Institute, Nanjing) were
added to the appropriate wells in the 96-well polystyrene
microplates, covered with an adhesive strip, and incubated for
60 min at 37°C. The incubation mixture, aspirate and wash
solution (1X, 350 mL), was filled in each well and this procedure
was repeated five times. After the final wash, the blot dried in the
plate and different substrates were added (50 mL) and incubated
for 15 min at 37°C, protected from light. Finally, the stop
solution (50 mL) was added to each well and the optical
density was read at 450 nm using a microtiter plate reader
within 15 min.

Hematoxylin and Eosin (H&E) Staining
After being carefully isolated, the sciatic nerves were fixed in 4%
paraformaldehyde and embedded in paraffin wax. Then 2 mm
semithin sections were taken with a rotary slicer (Leica,
Germany) and mounted on the slides. Hematoxylin and eosin
(H&E) staining was performed under a light microscope
(Olympus, Japan) to observe for pathological changes (38).

Immunohistochemistry Staining (IHC)
Hind paw skin was fixed with 4% paraformaldehyde and
sectioned into 20 mm pieces. The sections were treated with
3% hydrogen peroxide to block the activity of endogenous
peroxidase and incubated with 5% goat serum at 37°C for
30 min. After the reaction with the primary antibody PGP9.5
(1:200, Santa Cruz), secondary antibody, SABC, and
chromogenic agent were dripped onto the sections in turn, and
then they were re-stained with hematoxylin. Finally, sections
were covered with neutral gum and examined under the light
microscope (39).
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Western Blotting Analysis
Hind paw skin and sciatic nerves were isolated and washed in
normal saline. A total of 100 mg of tissue was placed in 300 mL of
lysis buffer, which consists of protease inhibitor and RIPA
(Thermo Scientific), was homogenized and centrifuged at
12000 r/min for 30 min. After that, the protein concentrations
were measured with a BCA Protein Assay Kit (Thermo
Scientific). Then, 15 mg of protein from each sample was
separated on SDS-PAGE and transferred to PVDF membranes.
Next, the membranes were blocked in 5% BSA for 1.5 h and
incubated with primary antibodies PGP9.5 (1:200, Santa Cruz),
AGE (1:500, Abcam), RAGE (1:1000, Abcam), and GLO1 (1:200,
Santa Cruz) overnight at 4°C. After incubating with the
corresponding secondary antibodies (1:5000, Abways) at room
temperature for 1 h, the membranes were analyzed by enhanced
chemiluminescence detection.

Statistical Analysis
Data analysis was performed by SPSS 24.0 (IBM Corp., Armonk,
NY, USA) and GraphPad Prism 8.0 (GraphPad Inc., La Holla,
CA, USA) and presented as mean ± SEM. Two groups were
compared using two-tailed Student’s t-tests and more than two
groups were compared using one-way ANOVA. The images of
immunostaining with H&E were analyzed by ImageJ. * means
compared to control, # means compared to model. A value of
p<0.05 was defined as significant.
RESULTS

Effect of EA on Representative
Symptoms of T2DM Replicated in
HFD-STZ Rat Models
We measured blood glucose levels and body weight to evaluate
the successful induction of models. Compared with the control
group, STZ injection resulted in a significant decrease in body
weight (Figure 1A). Significant disorder of glucose metabolism
including hyperglycemia (blood glucose >16.7mmol/L)
(Figure 1B), insulin resistance (Figures 1J–L), glucose tolerance
reduction (Figures 1G–I), and GSP level (Figure 1M) as well as
lipid metabolism such as levels of HDL, LDL, TCH, NEFA, and
TG (Figures 1N–R) were observed in the model group, which
were consistent with clinical diabetes. EA treatment decreased
blood glucose, body weight, and food intake levels significantly
compared to the model group (Figures 1D–F). Taken together,
hyperglycemia and dyslipidemia were improved in the EA group,
suggesting the therapeutic effect of EA in T2DM.

Effect of EA on the Behavioral Test, Nerve
Conduction Velocity, and Microcirculatory
Blood Perfusion of STZ-HFD-Induced Rats
After STZ injection, hyperalgesia was observed in the model
group and lasted for the whole experimental period (Figures 2A,
B). Motor nerve conduction velocity (MNCV) and sensory
conduction velocity (SNCV) were reduced in the model group
(Figures 2C, D). MBF (microcirculatory blood perfusion) of the
Frontiers in Endocrinology | www.frontiersin.org 4
hind paw was significantly reduced as well (Figure 2G). EA
treatment improved mechanical hyperalgesia and thermal
latency significantly (Figures 2E, F). The MNCV, SNCV
(Figures 2C, D), and MBF (Figure 2G) were observed to
increase after 5 weeks of EA treatment.

Effect of EA on Intraepidermal Nerve Fiber
Density and Histopathology of Sciatic
Nerve in STZ-HFD-Induced Rats
Immunohistochemistry staining was performed for PGP9.5 to
evaluate the effect of EA on intraepidermal nerve fiber density
(IENF). It was observed that IENF in the model group was less
than that in the control one, and EA treatment led to a significant
increase (Figures 3A, B). The relative protein level of PGP9.5 in
hind paw skin was consistent with this result (Figures 3C, D). To
examine the histopathology changes induced by diabetes, we
performed H&E staining of different sections of the sciatic nerve.
Nerves of the model group were shown to be disordered and the
myelinated fibers were smaller than in the control group
(Figure 3E). After EA treatment, the structure of the sciatic
nerve was so improved that the morphology of the myelin sheath
was more complete compared to the model group (Figure 3E).

Effect of EA on Inflammatory State of the
Footpad Skin and the Sciatic Nerve in
HFD-STZ Rats
To examine the effect of EA on the inflammatory state, we
measured pro-inflammatory cytokines in the HFD-STZ rats’
footpad skin and sciatic nerve, which were reported to be
closely associated with diabetic peripheral neuropathy (5).
Levels of IL 1b, IL 6, and TNF-a in the model groups were
significantly higher than those in the control group both in the
footpad skin (Figures 4A–C) and the sciatic nerve
(Figures 4D–F). EA treatment alleviated the levels of these
three pro-inflammatory cytokines, suggested its anti-
inflammatory effects (Figures 4A–F).

Effect of EA on the Expression of AGEs
and RAGE in the Footpad Skin and the
Sciatic Nerve
It is reported that AGE binds to its receptor RAGE, promotes the
expression of inflammatory signals, and further damages nerve
fibers. To investigate the effect of EA on the expression of AGEs
and their main receptor (RAGE), we measured the expression of
AGEs and RAGE in both the footpad skin and the sciatic nerve.
The levels of AGEs and RAGE of footpad skin in the model
group were significantly increased compared with the control
group (Figures 5A–E) and EA treatment reduced their
expression (Figures 5A–E). Similar results were also found in
sciatic nerves by Western blot and ELISA (Figures 5F–H).

Effect of EA on the Glyoxalase Pathway
GLO1 plays a role in the detoxification of dicarbonyl
compounds, with GSH as a cofactor and D-lactate as a
metabolite, and is the main rate-limiting enzyme of the
glyoxalase system. Diabetes significantly decreased the
July 2021 | Volume 12 | Article 655591
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expression of GLO1 and GSH (Figures 6A–C) in footpad skin
compared with the control group. EA significantly increased the
levels of GLO1 and GSH (Figures 6A–C, p<0.05). Moreover, EA
decreased the levels of D-lactate (Figure 6D, p<0.05) which
increased in the model group. Similar results were observed in
sciatic nerves (Figures 6E–H).
Frontiers in Endocrinology | www.frontiersin.org 5
DISCUSSION

Acupuncture has been proven to play a role in regulating
metabolism and relieving pain and is wildly used in diabetes.
However, few studies target the relationship and the underlying
mechanism between these two effects. In this research, a HFD-
A B

D E F

G IH

J K L M

N

C

O P Q R

FIGURE 1 | Metabolism index of HFD-STZ rats in different groups. Levels of body weight (A), blood glucose (B), food intake (C), and glucose tolerance test (GTT)
(G) in the control group and model group over 12 weeks (n = 6, *p < 0.05, **p < 0.01, ***p < 0.001). The significance was not marked in the figure since the food
was not the same. Compared to the model group, EA treatment decreased body weight (D), blood glucose (E), food intake (F), as well as hyperglycemia in GTT
(H) and related AUC levels (I) significantly (n = 6, #P < 0.05, ##P < 0.01, ###P < 0.001). Levels of homeostasis model assessment for insulin resistance (J), insulin
sensitivity index level (K), fasting insulin level (L), glycosylated serum protein level (M), high density lipoprotein level (N), low density lipoprotein level (O), total
cholesterol level (P), non-esterified fatty acid (Q), and triglycerides level (R) in serum of rats after saline, HFD-STZ-induced, and EA treatment (n = 4, *p < 0.05,
**p < 0.01, ***p < 0.001, #p < 0.05, ##p < 0.01).
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STZ-induced model was recruited for its characteristics of DPN
and metabolism disorder. T2DM is one of the most prevalent
diseases in the world (40, 41). HFD-STZ-induced models are
confirmed to have a more similar phenotype, pathogenesis, and
other human-like conditions than genetic and chemical models,
and are wildly used in related research (42–45), especially low-
dose STZ (35 mg/kg) injection, which has been further proved to
offer metabolic syndrome replication and relatively stable
elevated glucose concentrations following T2DM. Different
from high-dose STZ injection, which completely induces beta-
cell impairment, low-dose STZ injection modestly injures beta-
cells, in which the serum insulin is maintained at a medium level
(Figure 1L), and T2DM is stable without an insulin intake
requirement (46), that is suitable for studies on diabetic
complications including neuropathy (29). A HFD dependably
induces a model of other human conditions and has also been
utilized for chronic inflammation, and that plays a role in T2DM
development (47). In this study, hyperalgesia as well as
hyperglycemia, dyslipidemia, and insulin resistance were
observed in HFD-STZ-induced rats (Figure 1), which is
consistent with the clinical characteristics of neuropathy
induced in T2DM and suggests the successful conduction
of models.

Acupuncture has been used to manage various forms of pain
including diabetic pain (48). DPN develops as a result of aberrant
myelination, and demyelination is a key mechanism of plasticity
in neuropathic pain (49). Mechanical and thermal hyperalgesia
(Figures 2A, B), nerve conduction velocity decrease (Figures 2C,
D), as well as aggravation of nerve injury were observed in the
model group (Figures 2A–D, G). Nerve conduction velocity
(NCV) is one of the main diagnostic indicators of DPN and is
Frontiers in Endocrinology | www.frontiersin.org 6
always used to assess nerve function (50). In this research, it was
observed that MNCV and SNCV decreased significantly after
T2DM induction. Both animal and human research confirmed
that EA promotes preferential re-innervation of both motor and
sensory neurons (51–53). EA mediates myelin sheath recovery
and axonal regeneration partly through the promotion of
axoplasmic mitochondrial proliferation (54). EA treatment also
increases the graft neurotrophin and enhances remyelination
and functional recovery (55). H&E staining showed that EA
treatment partly protects the nerve from demyelination
(Figure 3). The sparse and disordered sciatic nerve fiber
arrangement and the enlarged myelin lamina gap were
improved after EA treatment (Figure 3E). Hyperglycemia-
induced damage to the microvascular system that supplies
nerve fibers leads to a significant decrease in microcirculatory
blood perfusion and thus injury to the myelin sheath (56).

Metabolic disorder drives the development of diabetic
complications including peripheral neuropathy, which is a
manifestation of neurological dysfunction and affects up to
60% of T2DM patients (1, 57). A tremendous amount of
research suggests that AGEs play a pathogenic role in DPN,
whether it is a direct neurotoxic effect or indirect mediating
inflammatory injury. AGEs accumulate over axons and myelin
sheaths and modify the structural proteins (58), which may cause
myelinated fiber reduction (9), nerve dysfunction, and
neurotrophic support impairment (59). Hyperglycemia and
hyperlipidemia can induce oxidative stress and increase AGEs
in different ways. EA has been increasingly used for metabolism-
related diseases. EA excites somatic afferent fibers, influences
sympathetic nerve activity, increases the secretion of endogenous
beta-endorphin, and ameliorates insulin sensitivity (60, 61). The
A B D

E F G

C

FIGURE 2 | Effect of EA on withdrawal threshold, withdrawal latency, nerve conduction velocity, and microcirculatory blood perfusion. Withdrawal threshold
(A) and latency (B) were evaluated weekly after STZ injection and improved significantly after EA treatment compared to the control group (E, F) (n = 6, *p < 0.05,
**p < 0.01, #p < 0.05, ##p < 0.01). Motor nerve conduction (MNCV) (C) and sensory conduction velocity (SNCV) (D) in the control group, the model group, and the
EA group (n=4, **p < 0.01, #p < 0.05). MBP (G) in the control group, the model group, and the EA group (n = 6, ***p < 0.001, ##p < 0.01).
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effect of blood glucose improvement was confirmed in both
clinical and experimental studies (62, 63). Moreover, it is
reported that EA decreases the levels of NPY in the
hypothalamus, reduces food intake, and thus improves lipid
metabolism (64). In this study, we observed that EA
significantly reduced the levels of hyperglycemia (Figure 2D),
hyperlipidemia (Figure 2E), and insulin resistance (Figure 1J) in
HFD-STZ-induced rats and the metabolism recovery may
decrease the formation of AGEs.

Furthermore, the interactions of AGEs and the receptor have
been proven to be associated with the development of diabetic
neuropathic pain (65). AGEs bind to cell surface receptors like
the receptors of AGEs (RAGE), and alters a series of signaling
cascades (66, 67), which leads to the increase of neuroinflammation
and degeneration (68). Many types of research have confirmed the
Frontiers in Endocrinology | www.frontiersin.org 7
anti-inflammatory effect mediated by EA. It is reported that EA
increases the secretion of endogenous beta-endorphin, suppresses
the transduction of pain, and reduces neuroinflammation through
the activation of sympathetic nerve fibers in the cholinergic anti‐
inflammatory pathway (69–72). We measured the level of RAGE
and inflammatory cytokines and observed the decrease of the
expression of RAGE (Figure 4) and related inflammatory
cytokines including IL 1b, IL 6, and TNF-a (reported to go
together with neuropathic pain (73, 74) (Figure 5), which
mediate nerve injury indirectly. These data suggested that the
effect of EA on metabolic disorder influenced the level of AGEs-
RAGE and the inflammatory signals.

As the main enzymatic detoxification system of MG (a major
precursor of AGEs that have been causally associated with the
induction of neuropathic pain (75), the glyoxalase enzyme system,
A

B D

E

C

FIGURE 3 | Effect of EA on IENF, the expression of PGP9.5, and histopathology of the sciatic nerve. (A) Immunohistochemistry staining for PGP9.5 in hind paw skin
of rats and (B) measurement of IENF (n = 3, ***p < 0.001, ##p < 0.01. Scale bar, 50 mm). (C) Representative Western blot analysis of PGP9.5 staining in footpad skin
and (D) relative protein levels (n = 3, **p < 0.01, ##p < 0.01). (E) Morphological examination of paraffin-sectioned sciatic nerves performed at 12 weeks after
STZ-HFD induction. A single nerve and its myelin sheath were observed in a high-power microscope (×400). (n = 3, scale bar, 50 mm).
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specifically glyoxalase I (GLO1), is responsible for detoxifying them
by converting them to D-lactate, thus suppressing the formation of
methylglyoxal-derived AGEs and providing primary defense against
the reaction of associated glycation (76, 77). In hyperglycemia, the
Frontiers in Endocrinology | www.frontiersin.org 8
accumulation of MG damages the glyoxalase system, which in turn
increases MG, forming a vicious cycle. The possible ways of GLO1
activation, such as nitric oxide (NO) inhibition, Nrf2 activation, and
GSH synthesis, were reported to be regulated by EA treatment (78–
81). The metabolism of MG mediated by the glyoxalase system
depends on glutathione (GSH), which is a crucial co-enzyme of
GLO1. Cellular GSH concentration is directly proportional to the
in situ activity of GLO1 and is related to the antioxidant effect
mediated by GSH (82, 83). It is proven that the antioxidant effect in
the nerve system of EA is associated with the modulation of ROS
and GSH (84). EA mediates the antioxidant effect through the
upregulation of glutathione reductase (GR) and GSH, thus
protecting the nerve system (85). According to the positive effect
on AGEs reduction, we assumed that the effect of EA on metabolic
regulation and antioxidation might have a positive effect on GLO1,
and that was proven in this research with the significant increase of
GLO1 and GSH after EA treatment (Figure 6). Since it is
endogenously formed from MG through the glyoxalase system,
D-lactate is a surrogate and qualitative indicator of MG flux and
partly reflects the level of MG and the intensity of dicarbonyl.
Besides, the increased level of D-lactate is most common in people
with diabetes or obesity compared to others, indicating its
importance in the evaluation of metabolic function (86–88). To
further explore the regulation of the glyoxalase system, we detected
the concentration of D-lactate (Figures 6D–H). The results suggest
positive changes in the glyoxalase system.

In this study, we speculated that the reduction of AGEs was
partly related to the activation of GLO1. Interestingly, the results
showed a certain distance between AGE-RAGE and GLO1
expression in footpad skin. EA treatment almost completely
A B

D E F

C

FIGURE 4 | Effect of EA on the expression of IL 1b, IL 6, and TNF-a in the footpad
skin and the sciatic nerve. Relative levels of IL 1b (A), IL 6 (B), and TNF-a (C) of
footpad skin in the control, model, and EA group (n = 4, **p < 0.01, ***p < 0.001,
#p < 0.05, ##p < 0.01). Relative levels of IL 1b (D), IL 6 (E), and TNF-a (F) of footpad
skin in the control, model, and EA group (n = 3, **p<0.01, #p < 0.05, ##p < 0.01).
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C

FIGURE 5 | Effect of EA on the expression of AGEs and RAGE in footpad skin and sciatic nerve. (A) Representative Western blot analysis of AGEs staining and
(B) relative protein levels in footpad skin (n = 3, *p < 0.05, ##p < 0.01). (C) Representative ELISA analysis of AGEs in footpad skin (n = 3, **p < 0.01, #p < 0.05).
(D) Representative Western blot analysis of RAGE staining and (E) relative protein levels in footpad skin (n = 3, **p < 0.01, ##p < 0.01). (F) Representative ELISA
analysis of AGEs in the sciatic nerve (n = 3, **p < 0.01, #p < 0.05). (G) Representative Western blot analyses of RAGE staining and (H) relative protein levels in the
sciatic nerve (n = 3, **p < 0.01, ##p < 0.01).
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FIGURE 6 | Effect of EA on the expression of GLO1, GSH, and D-lactate in footpad skin and sciatic nerve. (A) Representative Western blot analysis of GLO1
staining and (B) relative protein levels in footpad skin (n=3, *p < 0.05, #p < 0.05). (C) Representative ELISA analysis of GSH and (D) D-lactate in footpad skin (n=4,
*p < 0.05, #p < 0.05). (E) Representative Western blot analysis of GLO1 staining and (F) relative protein levels in sciatic nerve (n=3, **p < 0.01, ###p < 0.001).
(G) Representative ELISA analysis of GSH and (H) D-lactate in sciatic nerve (n=4, ***p < 0.001, #p < 0.05).
FIGURE 7 | The schematic diagram of EA stimulation on T2DM-induced peripheral neuropathy. T2DM-induced hyperglycemia and dyslipidemia lead to the
accumulation of AGEs and interaction of AGE-RAGE, which alters a series of inflammatory signals and eventually causes DPN. EA stimulation regulates glycolipid
metabolism, which then activates the glyoxalase system and enhances MG detoxification, alleviating the hyperalgesia of DPN.
Frontiers in Endocrinology | www.frontiersin.org July 2021 | Volume 12 | Article 6555919

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang et al. EA Treatment of Diabetic Peripheral Neuropathy
improved AGEs and RAGE but partially ameliorated GLO1 in
footpad skin. One explanation could be that EA might reduce
AGEs and RAGE in other ways, not only by strengthening their
detoxification. High-fat feed, especially containing animal fat,
could lead to a high level of AGEs in circulation and tissues (89).
AGEs and RAGE were reported to increase in hyperglycemia and
hyperlipidemia (90), and that is the characteristic of the HFD-
STZ-induced animal models. In this research, decreased food
intake, reduced blood glucose, and improved dyslipidemia were
found after EA treatment (Figures 1C, F), and that could exert
an influence on AGEs accumulation.

Rare studies report the role of EA in the process in which the
human organism keeps the balance between hyperglycemia-
induced metabolic faculty and the influence on DPN
development based on it. To our knowledge, this is the first
research establishing a connection between the positive effect
conferred by EA and the regulation of the AGE/RAGE axis
mediated by the glyoxalase system. Our research reported the
underlying mechanism of the therapeutic treatment mediated by
EA in diabetic neuropathic pain from the perspective of the its
regulation on metabolism and the secondary influence on the
GLO/AGE/RAGE axis (Figure 7), and it may provide a
therapeutic strategy of T2DM-induced neuropathy.

There are several limitations in this research. First, the exact
regulatory mechanism in the activation of GLO1 and its
relationship with AGE-RAGE have not been clarified. Apart
from the possible ways of GLO1 activation, such as nitric oxide
(NO) inhibition, Nrf2 activation, and GSH synthesis, which were
reported to be regulated by EA treatment (78–81), we infer that
there is a link between metabolism regulation, especially
glycolysis, and GLO1 activation, and EA treatment may play
an essential role among them; whether the effect of EA treatment
on GLO1 activation can be identified from metabolism
regulation is unknown. Additionally, it is still controversial
whether it is necessary to set up a sham-operated group in the
research of EA, a sham-EA group was not applied in this research
(91). Therefore the treatment of DPN may not entirely be
mediated by EA in theory. since it is reported that gastric and
intestinal electrical stimulation (GIES) decreases postprandial
blood glucose levels and regulates metabolism in rats (92–94). In
this research, though we set the pair of needles as close as
possible, the spread of current and its possible stimulation on
the small intestine was inevitable when 2 mA was applied, so the
effect of EA on metabolism regulation may partially be associated
with that. Further research will target the energy metabolism-
related mechanism conferred by EA treatment and the optimal
EA parameters. For a more precise description of the EA effect,
we will include a sham group in the further study.
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