
 

Open Peer Review

Discuss this article

 (0)Comments

RESEARCH ARTICLE

Using machine learning to guide targeted and locally-tailored
empiric antibiotic prescribing in a children's hospital in

 Cambodia [version 1; referees: 2 approved]
Mathupanee Oonsivilai ,       Yin Mo , Nantasit Luangasanatip , Yoel Lubell ,

       Thyl Miliya , Pisey Tan , Lorn Loeuk , Paul Turner , Ben S. Cooper1,4

Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
Division of Infectious Disease, University Medicine Cluster, National University Hospital, Singapore, Singapore
Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK

Abstract
: Early and appropriate empiric antibiotic treatment of patientsBackground

suspected of having sepsis is associated with reduced mortality. The
increasing prevalence of antimicrobial resistance reduces the efficacy of
empiric therapy guidelines derived from population data. This problem is
particularly severe for children in developing country settings. We hypothesized
that by applying machine learning approaches to readily collect patient data, it
would be possible to obtain individualized predictions for targeted empiric
antibiotic choices.

: We analysed blood culture data collected from aMethods and Findings
100-bed children's hospital in North-West Cambodia between February 2013
and January 2016. Clinical, demographic and living condition information was
captured with 35 independent variables. Using these variables, we used a suite
of machine learning algorithms to predict Gram stains and whether bacterial
pathogens could be treated with common empiric antibiotic regimens: i)
ampicillin and gentamicin; ii) ceftriaxone; iii) none of the above. 243 patients
with bloodstream infections were available for analysis. We found that the
random forest method had the best predictive performance overall as assessed
by the area under the receiver operating characteristic curve (AUC). The
random forest method gave an AUC of 0.80 (95%CI 0.66-0.94) for predicting
susceptibility to ceftriaxone, 0.74 (0.59-0.89) for susceptibility to ampicillin and
gentamicin, 0.85 (0.70-1.00) for susceptibility to neither, and 0.71 (0.57-0.86)
for Gram stain result. Most important variables for predicting susceptibility were
time from admission to blood culture, patient age, hospital versus
community-acquired infection, and age-adjusted weight score.

: Applying machine learning algorithms to patient data that areConclusions
readily available even in resource-limited hospital settings can provide highly
informative predictions on antibiotic susceptibilities to guide appropriate empiric
antibiotic therapy. When used as a decision support tool, such approaches
have the potential to improve targeting of empiric therapy, patient outcomes
and reduce the burden of antimicrobial resistance.
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Introduction
There is consistent evidence that early and appropriate treat-
ment of sepsis can reduce mortality1. Since the definitive  
identification of a bacterial pathogen and its antibiotic sus-
ceptibility typically take three to four days using conventional  
culture methods, empiric antibiotic therapy (i.e. therapy that 
starts before the causative organism and its antibiotic suscepti-
bility is known) is recommended. Choice of empirical antibiotic 
aims to balance two objectives: first, to cast a wide spectrum of 
coverage effective against the most likely causative organisms; 
second, to minimize the selection of resistance to reserve  
antibiotics for the wider population2. Balancing the consequences 
associated with these two concerns - immediate patient outcomes 
and long-term resistance patterns impacting on future patients -  
represents a major challenge.

Empiric antibiotic choice for invasive bacterial infections in  
hospitalized children in low-to-middle income countries (LMICs) 
constitutes a particularly stark example of this problem owing 
to the high attributable mortality3, and the high prevalence  
of antimicrobial resistance, particularly in neonates4.

Current World Health Organization (WHO) guidelines for  
suspected sepsis or serious bacterial infection in newborns  
recommend empirical usage of gentamicin and ampicillin as the 
first line therapy, and change to third-generation cephalosporins 
if there is a lack of improvement in 24–72 hours5,6. However, 
a systematic review of community-acquired neonatal sepsis 
in developing countries in 2012 found that of the causative  
pathogens in older infants (1–12 months), only 63% and 64% 
showed in vitro susceptibility to ampicillin and gentamicin, and 
third-generation cephalosporins, respectively6. For neonates,  
susceptibilities were even lower, with only 57% and 56% of  
pathogens susceptible to ampicillin and gentamicin and third- 
generation cephalosporins, respectively.

The potential harms of widespread antimicrobial resistance in 
children were illustrated in a recent study performed between 
2007 and 2016 in a Cambodian children’s hospital, which 
found those infected with third-generation cephalosporin- 
resistant bacteria were less likely than others to receive 
appropriate antimicrobial therapy (57% vs. 94%), and when  
appropriate therapy was administered, it was initiated later7. 
While anticipated clinical efficacy is the primary deciding factor  
in empirical antibiotic choices8, there are other important  
considerations as well. These include side effect profile9, 
cost, ease of administration and risks of promoting resistance  
emergence in hospital settings2.

The adoption of antimicrobial stewardship programmes in  
hospitals is widely advocated internationally. This is true both 
in LMICs and high income countries10,11. Locally-adapted  
hospital antibiotic policies are important components of such  
programmes, and typically contain recommendations for empiric 
antibiotic use. In most cases, these recommendations are derived 
from expert opinion and informal (non-quantitative) syntheses  
of available evidence12. In some cases simple decision support  
systems based on logistic regression models and scoring  

systems have been developed to help identify patients at high 
risk of being infected with multidrug-resistant pathogens. These 
approaches have primarily been developed in high- and upper 
middle-income countries13–18. The use of predictive modelling 
as part of clinical decision support systems for antimicrobial 
management remains rudimentary, with only one example iden-
tified in a recent systematic review19. It has, however, been  
demonstrated in a randomized trial (in Israel, Germany and 
Italy) that a computerized decision support system making 
use of an underlying causal probabilistic network model can  
lead to more appropriate empiric antibiotic prescribing20.

We hypothesized that applying modern machine learning 
approaches to readily collected patient data can surpass the  
performance of those based on logistic regression or simple deci-
sion trees, and derive patient-specific predictions for antibiotic 
susceptibility. Improved predictions directing empirical anti-
biotic therapy may contribute to better patient outcomes while  
avoiding the overuse of in-appropriate antibiotics that select for  
resistance.

In this study, we propose a locally adapted decision support  
system for a Cambodian children’s hospital by applying an 
array of machine learning algorithms to patient-level data. 
We evaluated the ability of the algorithms to predict whether 
the causative organisms are susceptible to: i) ampicillin and  
gentamicin; ii) ceftriaxone; iii) none of the above. We  
specifically focus on the value of using the predictive  
models to identify patients at high risk of being infected with 
organisms resistant to ceftriaxone, a third-generation cepha-
losporin, the most commonly prescribed empirical antibiotic in  
practice at our study site.

Methods
Data collection
Retrospective data were collected from the Angkor Hospital 
for Children, a non-governmental hospital in Siem Reap, 
Northwestern Cambodia with approximately 100 beds, and its  
Satellite Clinic situated 30km away, with 20 inpatient beds. 
The hospital provides free surgical and general medical care to  
children less than 16 years of age and is equipped with an  
intensive care unit (ICU). Admitted neonates and children come  
from both urban and rural settings, with about two thirds 
residing in Siem Reap province. Over 90% of inpatients 
come from the community, and the rest are transferred from 
another hospital. None of the children are born in the hospital  
as there is no obstetric service.

Blood cultures are routinely taken from febrile inpatients 
(axillary temperature > 37.5°C) in accordance with clinical  
algorithms. Processing of these cultures including in vitro  
antibiotic susceptibility testing has been described elsewhere21. 
Children with at least one positive blood culture between  
February 2013 and January 2016 were included in the present  
study. Bloodstream infections with organisms that are likely 
skin contaminants such as coagulase-negative Staphylococci, 
Gram-positive bacilli, and mixed growths of environmental  
Gram-negative bacilli were excluded. We collected routine  
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clinical and living conditions data, including household size,  
presence of domestic animals, and factors relating to water and  
sanitation.

The study was approved by the Angkor Hospital for Children 
Institutional Review Board (AHC-IRB, 290) and the Oxford 
Tropical Research Ethics Committee (OxTREC, 08-12). Written 
consent for the use of the patient data was obtained from  
the guardians of the children.

Data analysis
We evaluated a suite of machine learning algorithms based on 
their ability to predict the invasive pathogens’ Gram stain and 
in vitro susceptibility to antibiotics using available information 
prior to receiving culture results. Specifically, we considered 
susceptibility to: i) ampicillin and gentamicin; ii) ceftriaxone;  
iii) none of the above. In the event that more than one  
organism was grown from the same blood culture, they were  
categorized as susceptible to the specified antibiotics only if all  
organisms were susceptible to at least one.

To predict the above antibiotic susceptibilities, we selected 
35 independent variables (predictors) from patient records by  
coding quality and relevance. Dichotomous predictors where 
all but ten or fewer patients had the same value were excluded.  
Missing data for binary predictors were treated as negative.

Weight for age standard deviations (z-score), a measure of  
malnutrition, was calculated using the lambda, mu, and sigma 
(LMS) method22 based on growth charts from the Centers for 
Disease Control. An earlier version of this article is available  
on BioRxiv as a preprint https://doi.org/10.1101/367037.

Training the algorithms
We first performed a logistic regression with backwards step-wise 
AIC model selection23. Additional machine learning algo-
rithms were then explored, including decision trees constructed 
via recursive partitioning24, random forests25, boosted decision 
trees using adaptive boosting26, linear support vector machines 
(SVM)27, polynomial SVMs, radial SVMs28 and k-nearest  
neighbours29. All analysis was done in R version 3.5.130 using 
the following packages: MASS31 (stepwise logistic regression); 
rpart32 (decision tress); ranger33 (random forest); fastAdaboost34  
(boosted decision trees); kknn35 (k-nearest neighbors);  
kernlab36 (polynomial and radial SVM); and LiblineaR37 (linear 
SVM and regularized logistic regression).

Machine learning models were five-fold cross-validated. 
Data were randomly partitioned into five parts, with one part  
randomly held out for error estimation. An average of three 
repeats was taken to calculate the error for parameter fitting.  
Parameters were fitted for highest Kappa based on a grid  
search38.

The data set was split 80/20 for training and testing purposes.  
For categorical variables we ensured that each category is rep-
resented by at least one record in the training set. To assess  
performance in predicting antibiotic susceptibility patterns, 

each model was refitted to 1,000 random selections of training 
and testing data sets. Performance was compared based on 
area under the receiver operating characteristic curve (AuROC) 
from the test set. We select the best method overall, then  
consider its probability calibration and the most important  
predictors. Variable importance in random forests was calculated  
using the method described in Janitza et al.39.

Identifying the optimum cut-off
The ROC curve describes the diagnostic ability of a binary clas-
sifier system, and plots the true positive rate (or sensitivity, i.e. 
the chance of correctly identifying a non-susceptible infection) 
against the false positive rate (or 1-specificity, i.e. the chance of 
incorrectly concluding an infection is non-susceptible). From 
this it would be possible to derive an optimal cutoff to maximize 
the overall test accuracy (i.e. the chance the test gives a true 
positive or true negative results). However, choosing the  
cut-off in this way would fail to account for the different 
health and economic costs of the two types of misclassifi-
cation error (predicting resistance to an antibiotic when an  
organism is susceptible, and predicting susceptibility when an 
organism is resistant). A more rational approach is to choose  
the test cutoff to maximize overall utility, taking into account 
the different numbers of expected false positives and false  
negatives associated with different cutoffs and the different 
health-economic impacts of these two misclassification errors. 
These include costs of antibiotic prescriptions, excess length 
of stay, mortality as a result of inappropriate empiric antibiotic  
prescriptions and, most challengingly, future impact of resist-
ance selection resulting from different antibiotic prescribing 
decisions. Because the cost of future resistance is difficult 
to quantify, we adopt an alternative approach by considering 
willingness to pay (WTP) for avoiding unnecessary use of car-
bapenems (where such use is considered unnecessary if the  
organism is susceptible to a first line antibiotic). With this  
economic framework, and using conventional recommendations 
for WTP per quality adjusted life year (QALY) gained40, health  
impact and monetary costs can be combined on the same scale 
and represented as net monetary value (monetary loss + QALY 
loss × WTP). In this way, we can assign different net monetary 
values to each of the four possible test outcomes (true positive, 
true negative, false positive, false negative). The optimal cutoff 
for utility will be a value of the specificity that minimizes this 
net monetary loss. We provide illustrative examples of these  
calculations (see S3 Appendix for further details) and provide 
a user-friendly web application to enable optimal cutoffs to be  
determined under different assumptions, available at http://moru.
shinyapps.io/ahc-ml-amr-cost/.

Results
Figure 1 shows the selection of cases used for model training 
and testing. Of 245 cases, two cases were excluded; one due to 
missing target outcome data, and the other due to a biologically  
impossible value.

Based on the AuROC derived from the test data set, the random 
forest method is the most frequently ranked first (Figure 2A  
and 2C), and was consistently superior to decision trees, boosted 
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decision trees, k-nearest neighbours, and the widely-used step-
wise logistic regression. The performance of SVM approaches 
is generally good, but varies with the kernel the models were 
based on and which outcomes were being considered. For 
example, an SVM with polynomial kernel has similar perform-
ance to the random forest approach when predicting resistance  
to ceftriaxone (Figure 2B), but performed poorly in pre-
dicting lack of susceptibility to all three of the antibiotics  
(Figure 2C). 

Ranking, although a good indicator of relative  
performance, does not necessarily indicate prediction ability 
itself. A comparison between multiple low AuROCs could still 
give a top ranked winner despite having low AuROC values. 
Figure 3 shows the Receiver Operating Characteristic (ROC) 
curves for predicting lack of susceptibility to ceftriaxone for  
all methods. This figure highlights the disconnect between pre-
dictive performance on the training data set (blue dotted line) 
and that on the test set (black dashed lines), highlighting the 
importance of separating the training and testing data. ROC 
curves show tradeoffs between specificity and sensitivity. If ROC 
curves for different methods were plotted on the same plot, it is  
possible for ROC curves for different methods to cross, indi-
cating that optimal methods may vary depending on the  
cutoff used, and that the methods with the highest AUC may 
not always be the best for a given application. Importantly, the  
random forest test set ROC curve did not cross with other test set  
ROC curves. S1 Appendix shows ROC curves for remaining  
outcomes.

To be effective in supporting decisions, it is useful to not only 
rank well (predict correctly), but also to be well-calibrated (i.e. 
the estimated probabilities that pathogens lack susceptibility 
to an antibiotic should be similar to observed frequencies). 
Calibration refers to coherence between these estimated  
probabilities and the observed frequencies. To illustrate this, a  
calibration plot for the prediction of resistance to ceftriaxone 
with the random forests algorithm is shown in Figure 4. This 

shows that even though the random forests method gives high 
accuracy (i.e. has a high AuROC), in this particular case it 
tends to be overconfident in its prediction probability. This  
overconfidence in prediction could not be improved even after 
adjustment with isotonic regression or Platt scaling41.

Figure 5 illustrates the influence of each independent vari-
able on the random forest model in predicting antibiotic  
susceptibilities39,42.

This shows that the most important predictor for resistance 
to ceftriaxone is patient age (leaving this out would decrease 
the model accuracy 100% of the time). Patient age is closely  
followed by days from hospital admission to blood sample,  
age-adjusted weight score, and the classification of the infection 
as hospital- or community-acquired (omitting this variable would 
decrease model accuracy 75% of the time). Other variables  
had much smaller effects.

The most important predictors in the random forest model for  
the other three outcomes were broadly similar. Interestingly,  
the classification of infection as hospital- or community-acquired 
had less importance for predicting resistance to ampicillin 
and gentamicin compared to ceftriaxone, but household size  
was found to much more important.

Figure 6 illustrates how, used as part of a decision support  
system, the choice of test threshold to inform antibiotic prescrib-
ing decisions would impact on the number of patients treated 
empirically with appropriate antibiotics. Taking a test thresh-
old of 0.21 for the predicted probability that ceftriaxone would 
not be an effective treatment (so above this value, patients 
would be recommended to receive a second-line antibiotic,  
typically a carbapenem, instead of ceftriaxone), 15 out of 15 
(100%) patients in the test data set who have ceftriaxone-resistant 
infections would be correctly identified (true positives). 
This threshold choice would also lead to 14 of the 33 (42%)  
patients with ceftriaxone-susceptible infections unnecessarily  

Figure 1. Selection of records.

Page 5 of 18

Wellcome Open Research 2018, 3:131 Last updated: 29 JAN 2019



Figure 2. Comparison of performance rankings. Histograms of performance rankings obtained with 1000 random splits of the data into 
training (80%) and testing (20%) sets for the eight machine learning algorithms for predicting four outcomes (A) Resistance to ampicillin and 
gentamicin (B) Resistance to ceftriaxone (C) Resistance to ampicillin and gentamicin, and ceftriaxone (D) Gram stain. A ranking of 1 (blue) is 
best, 9 (red) is worst, based on the area under the receiver operating characteristic curve (AuROC) with the test data.

receiving the second-line antibiotic (over-treatment). Adjusting  
the threshold corresponds to moving the red line in  
Figure 6A–B up and down, changing the numbers of patients 
over- and under-treated. The choice of this threshold has an 
impact on patient outcomes and costs; their combined impact 
can be represented as the net utility loss (expressed as a net  
monetary value) due to infection (Figure 6D). A rational 

approach would be to choose the threshold to minimize this  
utility loss. However, quantifying utility loss due to future  
selection for resistance when using antibiotics is challenging43,  
so an alternative approach is to choose a prediction threshold 
based on clinical judgment, and work backwards to determine 
how this implicitly values the utility loss due to over-treatment. 
In this example, we find a threshold of 0.21 implies that we 
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Figure 3. Receiver Operating Characteristic (ROC) curves for predicting resistance to ceftriaxone. Training set (blue dotted line), testing 
set, i.e. predictive performance (black solid line with 95% confidence intervals shown by shading). The diagonal line represents the line of 
no-discrimination, or the expected performance of a random guess.

would be willing to pay $US 200 to avoid one unnecessary 
course of a carbapenem. Details of the calculations can be  
found in the supplementary text (S3 Appendix).

Discussion
Our results show that modern machine learning algorithms can 
outperform widely-used logistic regression models and provide 

predictions about antibiotic susceptibility that could potentially 
be used to improve empirical antibiotic prescribing. We found 
that the random forest approach performed particularly well, 
especially for predicting ceftriaxone resistance, the most widely 
used empiric antibiotic for our study patients. To our knowledge 
this is the first time such machine learning algorithms have  
been applied to this problem in a hospital setting.
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Figure 4. Calibration plots for random forest algorithm. This compares predicted probabilities (grouped into 10 equal-sized bins on x-axis) 
to observed event frequencies in real data (y-axis) using the entire data set. Points close to the grey diagonal line indicate that the predicted 
probability is close to the observed frequency. Numbers above points indicate the number of records contributing to each point.

The most important variables for predicting antibiotic suscep-
tibility were found to be time from admission to blood cul-
ture, patient age, age-adjusted weight score, and hospital versus  
community-acquired infection. These are objective and routinely 
collected variables available in most clinical settings. All other 
variables included in the models are also easily collected at 
minimal cost through short questionnaires. The computations  
underlying the predictions can readily be performed in a few  
seconds on a low-cost computer, or remotely via any device  
connected to the Internet. This makes the approach highly 
suitable for other LMIC settings, which typically face the  
highest disease burden and the most urgent problems with anti-
microbial resistance44. These machine-learning models, which 
are often assumed to depend on large datasets more commonly 
available in high-income settings45, may be of considerable  
value even in resource-limited and relatively data-poor settings.

Wider implications
Used as part of a decision support system, the best machine 
learning approaches should, in theory, make it possible to  

substantially increase the proportion of patients who receive effec-
tive empiric antibiotics, while minimizing the risks of increased 
resistance selection that would be associated with a blanket change 
in the default choice of empiric antibiotics for all patients. Clearly, 
further work is needed to evaluate such deployment in practice46. 

Rapid microbiological diagnostic tests offer an alterna-
tive pathway for improving the precision of early antibiotic 
prescribing. Affordable and accurate tests are not currently  
available, but this situation may change in the coming years. 
While machine learning approaches proposed here could be 
considered a stopgap, we think it is more likely that the two 
approaches will be complementary. Results from future rapid 
diagnostic tests could be used as inputs in machine learning 
algorithms along with other patient variables, and would be  
expected to lead to more reliable predictions than those from the 
rapid tests alone.

Utility
A common dilemma in designing diagnostic systems is to  
identify the optimal cutoff point for sensitivity and specificity on 
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the ROC curve. Increasing the sensitivity threshold for detect-
ing antibiotic resistance will capture more cases of resistance, 
but will inadvertently lead to more false positives, resulting in 
increased prescriptions of unnecessary broad-spectrum antibiotics 
and selection for resistance. Conversely, while setting the thresh-
old at higher specificity will reduce false positives, the model 
will miss more patients with resistant bacterial infections,  
leading to delayed prescription of appropriate antibiotics. A nat-
ural approach would be to choose the cutoff to maximise utility 
(which includes health outcomes and opportunity costs associ-
ated with economic costs). While quantifying the direct health 
care cost components is relatively straightforward, the costs 
of resistance are far more challenging to calculate. Shrestha  
et al. estimated the costs of resistance per antibiotic consumed,  
assigning a cost of $US 0.8 and $US 1.5 per standard unit of  
carbapenem in Thai and US settings, respectively43. However, 
these estimates did not take into account the potentially grave 
potential consequence of losing a ’last-line’ antibiotic to resistance. 
Better quantification of the cost of resistance is an important area 
of future research47.

Strengths and limitations
We systematically evaluated a number of machine learning 
algorithms to determine the algorithms with the best predic-
tive performance. Most currently available clinical scoring 
systems rely on logistic regression models, probably for  
historical reasons. No method is universally better than another 
method48,49, however different algorithms have strengths and  
weaknesses and our results suggest that by focusing on a single 
learning algorithm, much of the previous literature may have  
missed an important opportunity.

It is possible that a more extensive exploration of logistic regres-
sion models would have yielded better results (for example 
by including interaction terms and variable transformations). 
However, such complexities are rarely considered in practice 
and would impose a substantially greater burden on the analyst  
than the simple “cookbook” approaches considered in this study.

A second important strength of our work is that algorithm training  
and evaluation were performed on different data sets. Though 

Figure 5. Importance of predictors in random forest models. Results show the relative importance of variables for predicting resistance to 
ampicillin + gentamicin (A) resistance to ceftriaxone (B) resistance to all three antibiotics (C) Gram stain (D).
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there are some notable exceptions13,15,18, this separation has not 
always been done in previous attempts to predict antibiotic  
susceptibility. As is clearly shown in Figure 3, if this separation 
is not done true predictive power is likely to be substantially  
lower than reported.

Thirdly, our analysis uses single-hospital data for formulating 
and evaluating models. If we had used a large dataset aggregated 
from multiple settings in the hope of increasing generalis-
ability, the algorithm performance would have likely suffered. 
Scoring systems developed in one setting have been found to 
have substantially worse performance in different settings14,50. 
By applying many different models to the same data set, our  
approach focuses on generalizing predictions toward new  
events within the same setting51.

There are several limitations to our study. The trade-off with 
a setting-specific predictive system is the likely poor predic-
tive value when applied in another setting14,50. Wider deployment 
of such approaches would require models to be tailored to local 
data. The model may also become less relevant as time passes. 
Identifying the most appropriate temporal and spatial selection  
windows for training data is an important area for future research.

Understanding the algorithms
One potential obstacle to the wider adoption of machine learning 
algorithms is that, to many, they are a black box. An intuitive 
way to understand them is to consider a geometric interpretation. 
Suppose we have a dataset with two predictors, height and 
weight and one binary outcome, diseased or healthy. We then 
plot a graph with weights on the x-axis and height on the  

Figure 6. Effects of test cutoff on decision outcomes and utility. Panels A and B: Impact of test threshold (horizontal red line in panels A 
and B) on classification of resistance to ceftriaxone into false negatives (FN), false positives (FP), true negatives (TN) and true positives (TP) 
in test (panel A) and training (panel B) data. Panel C: The ROC curve is shaded according to utility loss at different cutoffs, where horizontal 
dashed lines correspond to the threshold selected by minimizing the cost function (D), i.e. maximising utility. Higher utilities, i.e. lower costs 
(expressed as a net monetary value) are shaded in green. Interactive version available at http://moru.shinyapps.io/ahc-ml-amr-cost/
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Table 1. Distribution of variables for logistic regression for susceptibility to ceftriaxone.

Characteristics Treatable 
n = 127 

(No/Yes)

Resistant 
n = 68 

(No/Yes)

OR 
(univariate)

95% CI P-value

Age (days) 703; 1063* 1616; 1613* 1.00 1.00-1.00 <0.001

Complication during admission

     Required ICU care/ventilation 32/31 23/109 0.20 0.10-0.40 <0.001

Transfer from another hospital 18/45 18/114 0.47 0.22-1.02 0.057

Admission differential diagnosis

     Sepsis 37/26 82/50 1.19 0.64-2.21 0.581

     Meningitis 4/59 23/109 2.63 0.86-8.06 0.090

     Lower respiratory tract infection/pneumonia 17/46 33/99 0.83 0.42-1.65 0.596

     Upper respiratory tract infection 3/60 6/126 1.29 0.33-5.04 0.714

     Gastroenteritis 9/54 18/114 0.95 0.40-2.25 0.902

     Cellulitis 4/59 11/121 0.95 0.28-3.29 0.937

     Abscess 2/61 10/122 1.08 0.32-3.65 0.902

     Urinary tract infection 2/61 12/120 7.36 0.95-57.25 0.057

Weight for age (SD) -2.2; 1.7* -2.1; 1.7* 1.00 0.84-1.20 0.968

Hospitalised in the last year (times) 0; 0-3‡ 0; 0-3‡ 0.50 0.30-0.84 0.009

Out-patient visits in the last 6 months (times) 0; 0-3‡ 0; 0-3‡ 1.12 0.71-1.79 0.620

Treatment prior to current admission

     Pharmacy 8/55 43/89 3.80 1.67-8.66 0.001

     Nurse 22/41 64/68 1.64 0.88-3.03 0.117

     Traditional Healer (Khru Khmer) 8/55 15/117 0.77 0.32-1.87 0.562

     Received IV fluids 11/52 31/101 1.23 0.59-2.55 0.576

     Received medication 34/29 105/27 4.81 2.44-9.48 <0.001

Household size 6; 3-10‡ 6; 3-10‡ 1.06 0.93-1.20 0.403

Owns domestic animals 49/14 92/40 0.56 0.27-1.17 0.122

Owns livestock 44/19 89/43 0.79 0.42-1.49 0.463

Normally defecate in a toilet 33/30 62/70 0.83 0.45-1.51 0.537

Owns refrigerator 4/59 5/127 1.46 0.38-5.60 0.578

Taken antibiotics in the last 3 weeks 4/59 22/110 3.78 1.08-13.20 0.037

Family member hospitalized in last 3 months 5/58 9/123 0.85 0.27-2.65 0.777

Exposure to environmental drinking water in past week 7/56 24/108 2.15 0.88-5.24 0.091

Normally drink treated water 26/37 61/71 1.43 0.78-2.63 0.249

Hospital acquired infection 34/29 11/121 0.07 0.03-0.16 <0.001

Days from hospital admission to blood sample 0; 0-104‡ 0; 0-104‡ 0.87 0.81-0.94 <0.001

Gender (Male) 33/30 79/53 1.27 0.70-2.33 0.430

Location (Angkor Hospital for Children) 54/9 94/38 0.28 0.12-0.66 0.004

Taken antibiotics prior to admission

     None (antibiotics) 39/24 62/70 0.51 0.28-0.95 0.033

     Penicillin Family 4/59 17/115 2.32 0.84-6.45 0.106

     Unknown 17/46 53/79 1.95 0.99-3.84 0.053

*Mean; SD for normal distributions, ‡Mode; Range for exponential distributions, 

SD, standard deviation; CI, confidence interval; OR, odds ratio; Inf, infinity

Odds ratio from multivariate logistic regression analysis prior to step-wise backward elimination

See S2 Appendix for other outcomes
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y-axis. We can imagine each data point inhabiting a point in  
this 2-dimensional graph plane, feature space. Each point would 
have a label of the class we are trying to predict (i.e. diseased/
healthy). A classification problem can be likened to a search 
to find a line (or lines) which best separates the data points 
with different labels on its feature space. In this example, this 
refers to a line which splits between the diseased and healthy 
on the height-weight graph. For two independent variables 
this plane is 2 dimensional. For n predictors this would require  
n-dimensions. For n > 3 this is harder to visualize, but the  
geometric interpretation still holds.

A geometric visualization allows us to appreciate the varying 
performances of each method by considering how each method 
arrives at the conclusion as to which line (or combination  
of lines) is best. A decision tree can be considered a combi-
nation of decisions, each represented by a line in our feature 
plane (i.e. is weight > 50 kg? can be considered a line at 50 on 
the weight axis). A combination of simple lines allows for more 
complex decision boundaries. However, because of their ability 
to create complex boundaries, they tend to over-fit. Random 
forests are designed to correct for the over-fitting by decision 
trees by building a consensus of a multitude of decision trees,  
and averaging these trees by giving the majority vote after  
polling all component decision trees based on classification.

Conclusions
Decision support systems, informed by readily available setting- 
specific data, have the potential to lead to evidence-based  
hospital antibiotic policies which could improve appropriate 
prescribing of empiric antibiotics. This would be expected 
to lead to better patient outcomes and minimize the risk of  

antibiotic resistance emergence. While guidelines for developing a  
hospital antibiotic policy advocate conducting literature reviews  
and basing recommendations on local cumulative surveillance 
antibiograms12, we have shown that machine learning algo-
rithms informed by relatively small amounts of patient-level data 
can be used to derive patient specific predictions for empirical 
antibiotic therapy. Such a prediction system can be developed  
cheaply, using easily-collected data, and is well-suited to LMIC  
settings.

Data availability
Zenodo: Manuscript dataset - Using machine learning to guide 
targeted and locally-tailored empiric antibiotic prescribing 
in a children’s hospital in Cambodia, http://doi.org/10.5281/ 
zenodo.125696752.
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 ,   Randall C Wetzel Melissa Aczon
VPICU, Children's Hospital Los Angeles, Los Angeles, CA, USA

This is a well written and potentially important paper analyzing the results of a Machine Learning
approach to predicting antibiotic resistance in a children’s hospital in Cambodia with multiple models
including Random Forests. This study compared performance of several off-the-shelf machine learning
methods in classifying bacterial infections.  There were 243 cases, 35 independent variables and 4
clinical (binary) outcomes:  Gram stain; resistance to ampicillin & gentamicin; resistance to ceftriaxone;
and resistance to both.  The results are pretty much exactly what you would expect (with random forests
and GBMs outperforming other methods).   Overall, the paper is well-written and offers some interesting
cost and utility discussions.  The methods section reads like a text book comparison of several ML
algorithms.
 
We applaud this useful work which is well done and well described.
 
 

:Methods
Recommendation for authors:  for each of the 4 tasks, please provide the class-split (resistant or
non-resistant, etc) of your data.
It is nice to see the full cost analysis, instead of only sensitivity-specificity.
:Results

Figure 4:  Presumably, this calibration plot corresponds to a single iteration (out of the 1000) of the
random forest (RF), and that much like the ROCs in Figure 3, there’d be variance to them.  Please state
this explicitly in the text.
In figure 4 how was the calibration plot generated, was this a GiVitI or was a Hosmer Lemehsow
methodology used. Check labels and spelling. 
 
Figure 5:  Similar to above comment – that this corresponds to a single iteration of the RF?
 
Figure 6:  It’s really nice to see this analysis.  However, similar comment again as before:  Is this from the
RF model, and if so, a single iteration?
 
In general the figures should be similar with labels and formatting to aid the readers understanding. They
take a lot of time to digest.
 
Were models with fewer, key observations considered.  In figure sic the importance varies by antibiotic. 
Where the predictor importance logical – any comments, for example owning livestock and refrigeration
are clearly relevant but were these data prospectively gathered.
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Where the predictor importance logical – any comments, for example owning livestock and refrigeration
are clearly relevant but were these data prospectively gathered.
 

:   It is really good to see this section; it shows the authors are thinking about the problemUtility
holistically.
 
Congratulations on this nice comparison of ML techniques and a useful approach to suggesting
appropriate antibiotic therapy.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Referee Expertise: Machine learning approaches to using ICU data to predict outcomes and therapies.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

 29 October 2018Referee Report

https://doi.org/10.21956/wellcomeopenres.16176.r34056

 ,     Quentin Leclerc Gwen Knight
Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease
Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical
Medicine, London, UK

This study attempts to evaluate the potential of machine-learning techniques to guide empiric antibiotic
prescription in hospitalized children in a resource-limited hospital setting. This is an admirable aim as the
impact on patient outcomes and resistance could be great.
 
The authors gathered data on the antibiotic resistance profile of bacteria infecting patients, as well as a
range of information on the patients themselves which only required the use of a simple questionnaire to

be obtained. Different machine learning algorithms were trained and tested on these data, and their
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be obtained. Different machine learning algorithms were trained and tested on these data, and their
predictive capabilities were compared. The study successfully shows the potential of these techniques to
identify patients with resistant bacteria, but also to avoid prescribing second-line antibiotics when
unnecessary. The conclusions are encouraging regarding the applicability of this currently uncommon
approach in a wider setting.
 
The manuscript is well written, with clarity in explanations. The authors clearly put a lot of effort into
making their methods and results as comprehensive as possible, even for an audience without any
previous knowledge of machine learning principles. Although the choice of figures is good, to ensure the
reader’s comprehension we believe some minor corrections should be made to these, and a few
methodological points should be further clarified (see below). These do not alter the main analysis but are
only for clarity in further understanding.
 
Minor points

Abstract
Throughout: “AUC” is used three times as an abbreviation instead of “AuROC” which is defined as
the correct abbreviation in the text, suggest replacing “AUC” with “AuROC”

Data
In terms of the data collected, 35 independent variables seems like a lot – is this unusual for such a
hospital to have such data? How generalisable is it?

 
Methods

Could you please expand on why Gram staining was predicted? The reasoning for attempting to
predict antimicrobial resistance is clear, but no justification or discussion is given for the
importance of predicting Gram stain.
In “Methods – Data Analysis”, you mention that “missing data for binary predictors were treated as
negative”. Could you please justify this choice, and comment on the potential impact that this has
on the results? (i.e. might be overestimating the absence of the predictor, which would lead to
incorrectly judging its value as a predictor)
In “Methods – Training the algorithm”: Are “error estimation” and “testing purposes” the same
thing? As in were the data split five ways to give the 80/20 split? the second paragraph feels like it
shouldn’t be there, aren’t you actually explaining the k fold validation you did in the third one?

 
Results

What is a “biologically impossible value”?
It was unclear what random forest test set ROC “did not cross with other test set ROC curves”
means and whether true or not. As in, by eye, it seems very close to crossing other curves – can
you plot this in the supplementary perhaps?
Figure 4: We found this figure difficult. Mainly, in terms of what the bins mean on the x axis. Did you
calculate for each strain what the probability of resistance was and then compare to the actual
probability of resistance? The bins then grouped strains with the same probability?
Figure 4: the points appear to be misaligned with the x-axis?
Figure 4: spelling mistake in “ampicillin”
Figure 4&5: Could the titles match Figure 3 (i.e. “Resistant to ampicillin + gentamicin”, “Resistant to
both” …)? especially since “neither” might induce the reader in thinking this is looking at fully
susceptible bacteria.
Figure 5: Should the y axis label not be “predictors”?

Figure 5: To aid understanding, could you add the interpretation you give in the paragraph
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Figure 5: To aid understanding, could you add the interpretation you give in the paragraph
describing Figure 5’s results i.e. that 100% means reduction in accuracy 100% of the time as I was
unsure of the units for the x axis. Could you also expand on the methodology used to assess the
relative importance of the predictors?
Correction: “but household size was found to BE much more important”
Figure 6: could you make the y axis the same for Figure A & B to make it clearer that the same
cutoff is being used? Also, why is the test set on the left and the train set on the right? Wasn’t the
train set used to determine the threshold and then tested on the test set? So it makes more sense
for them to be switched around?
Figure 6: what does the vertical dashed line correspond to? It looks like the point that minimises the
cost function?
Figure 6: you include “false negatives (FN)” in the caption, but this doesn’t actually appear in the
figure, perhaps consider redoing it with different values to actually show false negatives? (In reality
you would want to avoid having these, but here it would be beneficial for the reader’s
comprehension)
Table 1 is not referred to in the text.
Table 1: “Inf, infinity” in the caption, but this doesn’t appear anywhere in the table
Online tool – could you also allow the threshold to be varied in this?
Online tool – what does the variation in the top two plots show? i.e. when you input a new cost
value?
Using the online tool, our understanding of the last result is that the cost function is minimised at a
threshold of 0.21 when the WTP to avoid carbapenem use is linked to $200? However, if this WTP
decreases the minimum cost also decreases. i.e. the minimum point when, for example WTP is
zero, is $2290 but at $200, more like $2350. Could you provide further explanation of this?

 
Discussion

Wider implications: it is unclear to us how machine learning would be needed with rapid diagnostic
tests if the latter tell you bug and resistance. Could you expand more on what you think machine
learning would add?
Correction: “potentially grave potential consequence” (remove one)

 
S3 appendix

Incorrectly labelled S4 on the pdf.
Table S2: The “WTP for   imipenem use” is confusing terminology. At firstavoiding unnecessary
read, it seems that this should multiply both the TN and the FN. Could you instead somehow link it
to the more intuitive first explanation here that imipenem use is linked to a “cost” for future
resistance?
Table S3: could you make it clearer that this “WTP” is for QALY gain and different to the WTP for
avoiding unnecessary imipenem use?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
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If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.
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