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Pediatric intensivists are bombarded with more patient data than ever before. Integration

and interpretation of data from patient monitors and the electronic health record (EHR)

can be cognitively expensive in a manner that results in delayed or suboptimal medical

decisionmaking and patient harm.Machine learning (ML) can be used to facilitate insights

from healthcare data and has been successfully applied to pediatric critical care data with

that intent. However, many pediatric critical care medicine (PCCM) trainees and clinicians

lack an understanding of foundational ML principles. This presents a major problem for

the field. We outline the reasons why in this perspective and provide a roadmap for

competency-based ML education for PCCM trainees and other stakeholders.

Keywords: artificial intelligence, machine learning, pediatric critical care medicine, medical education, learning

curricula

INTRODUCTION

Pediatric intensivists are bombarded with more patient data than ever before. The density and
complexity of data generated from patients, their monitoring devices, and electronic health records
(EHR) pose significant cognitive challenges. Clinicians are required to integrate data from a
variety of sources to inform medical decision-making, which is further challenged by high stakes,
time-sensitivity, uncertainty, missing data, and organizational limitations (1, 2).

These constraints make critical care environments a compelling use case for artificial intelligence
(AI) in medicine. AI is an umbrella term that contains multiple techniques and approaches.
Modern advances in AI have largely been driven by machine learning (ML) methods such as
supervised, unsupervised, deep, and reinforcement learning (3). ML has the potential to decrease
cognitive load and enhance decision making at the point of care. Additionally, MLmay be uniquely
suited to analyzing the heterogeneous data generated during care and quantifying the complex
determinants of the behavior of critically ill patients. Techniques, expectations, and infrastructures
for developing and utilizing ML have matured, and there are many examples of ML algorithms
published in the critically ill adult (4–8) and pediatric (9–16) literature that robustly predict
morbidities and mortality.

However, these algorithms are at risk of being deployed in an environment wheremany intended
end-users currently lack a basic understanding of how they work (17–20). We argue that the ML
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education gap in pediatric critical care medicine (PCCM)
presents a major problem for the field because it may contribute
to either distrust or blind trust of ML, both of which may
harm patients.

WHY LACK OF ML EDUCATION IS A
PROBLEM FOR PCCM

Clinician distrust of ML is inversely associated with clinician
engagement with the ML tool. Distrustful, disengaged clinicians
are less likely to use even well-performing ML (21), limiting
potential benefits to patients. Distrust may also manifest as
missed opportunities to demystify the technology for trainees,
recruit clinician champions for future ML projects, and realize
the return on institutional and/or extramural investment.
Distrust can therefore be enormously costly—in both non-
monetary and monetary terms—and efforts to combat clinician
distrust in ML through extensive pre-integration education have

TABLE 1 | Proposed PCCM ML curriculum.

Curriculum

objective

Enabling competencies Possible educational strategies

A. Foundational

ML concepts from

development to

deployment

A1. Describe and identify major classes of machine learning (e.g., supervised/unsupervised learning,

deep learning, reinforcement learning) and the phases of applying ML in critical care settings from

development through deployment

A2. Describe key differences in data sources and structure required to build different classes of ML

A3. Recognize limitations of training data common to pediatrics and PCCM (e.g., data sparsity) and

possible mitigation strategies

A4. Explain methodological concepts integral to ML model evaluation (e.g., validation, bias, variance,

etc.) and performance (e.g., sensitivity, specificity, positive predictive value, precision, receiver operating

characteristic curves, F-1 score, etc.)

A5. Demonstrate appropriate application of different ML techniques to specific use cases in PCCM

A6. Gain a foundational understanding of the “human” factors relevant to using ML at the bedside (e.g.,

cognitive biases, cognitive load, trustworthiness, uncertainty, explainability, etc.)

A7. Learn specific strategies to discuss the results of ML systems with pediatric patients (when

applicable) and families

Asynchronous online module with

subsequent small group discussion

(Competencies A1 and A4)

Interprofessional discussion and case-

based learning with data scientists and

engineers (Competencies A2, A3, and

A5)

Simulation (Competencies A5, A6

and A7)

B. ML Ethical and

legal

considerations in

clinical practice

B1. Explain the issues of bias and inequity in ML algorithms, including its potential etiologies and

implications using published examples

B2. Understand core concepts of data privacy and how they relate to building and using ML

B3. Explain the challenges associated with using ML for shared decision making in PCCM with families

and pediatric patients

B4. Identify sources of liability when using ML outputs to guide decision-making and how to navigate

liability with families and regulators

Bioethics case-based discussion

(Competency B1)

Case-based didactic learning

with clinicians and administrators

(Competencies B2 and B4)

Simulation (Competency B3)

C. Proper usage of

EHR and

biomedical data

C1. Understand broadly how EHR data is used to build ML, including key benefits and limitations to the

approach (e.g., data missingness, data incorrectness, lack of granularity, etc.) and how limitations are

typically managed

C2. Understand the limitations of applying ML to the common pathologies of PCCM (e.g., patient

heterogeneity, age-specific variance, etc.) and strategies to mitigate limitations when possible

C3. Explain some future directions of biomedical data and ML, including novel sources of healthcare

data in critical care (e.g., imaging, genetic data, inflammatory profiles, unstructured/text data, wearable

data, etc.)

Interprofessional discussion with

data scientists, computer scientists,

and health informatics specialists

(Competencies C1 and C2)

Asynchronous online module

(Competency C3)

D. Critical

appraisal of ML

systems

D1. Appraise ML tools/literature based on evidence-based medicine principles (e.g., internal validity,

generalizability, risk of bias)

D2. Understand the core components of reporting guidelines for ML and its prospective evaluation

Case-based discussion with ML

clinician champions and researchers

(Competency D1)

Asynchronous online module with

subsequent small group discussion

(Competency D2)

been successfully employed in both adult (22) and pediatric
critical care (23).

Conversely, blind trust of ML is also problematic for PCCM.
Humans are prone to automation bias whereby automated
decisions are implicitly trusted, especially when end-users
poorly understand the subject matter (24). Automation bias
has been reported in the ML literature, especially among
inexperienced end-users (25). In PCCM, blind trust ofML has the
potential to harm patients. Clinicians may make flawed decisions
when inappropriately using algorithms developed using biased
training datasets (26). Furthermore, algorithms may degrade in
performance over time (27) and across different care settings
(28). These phenomena may be more prevalent in ML developed
from relatively small training datasets (12), as in PCCM. Pediatric
intensivists must be able to critically appraise ML literature and
any ML-based tool. Identifying strengths and weaknesses of any
potential ML intervention is vital to its proper application at the
bedside, and critically ill pediatric patients deserve the same rigor
applied to ML as other important topics in PCCM.
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CLOSING THE GAP: A PROPOSED ML
CURRICULUM FOR PCCM TRAINEES AND
OTHER STAKEHOLDERS

After acknowledging that a ML knowledge gap exists in PCCM,
we must make concerted efforts to close it for the benefit of our
patients. Understanding foundational principles of ML will be
required to effectively interact with many applications of ML,
including diagnostic and therapeutic decision support systems
(e.g., disease risk prediction models, treatment recommender
systems, etc.). Published ML curricula for medical students
(29, 30) and medical (31, 32) and surgical (33) subspecialities
converge on several key domains such as the “critical appraisal of
AI systems” and “ethical and legal implications” (34).We propose
below an ML curriculum for PCCM trainees and stakeholders
based on similar domains, but with key adaptations for clinicians
caring for critically ill children where appropriate.

We used Kern’s six step approach for curriculum development
(35) as a guiding framework for our ML in PCCM curriculum
(Table 1). After identifying the PCCM education gap problem
above (Kern’s Step 1), our group of experts in PCCM,
medical education, and ML identified high-priority curricular
needs (Kern’s Step 2) based on previous literature (30) and
group consensus using modified Delphi methodology (36). We
determined specific curriculum objectives (Kern’s Step 3), which
were operationalized into measurable, enabling competencies.
Competencies were designed to be checked “yes, achieved” or

“no, not achieved” at the competition of the curriculum and/or
PCCM training. We suggest educational strategies (Kern’s Step

4) to achieve specific competencies.
Step 5 of Kern’s approach relates to implementation, which

is the practical deployment of the education strategies listed
above within the context of PCCM training resources and

modalities. Many of the forums/methods necessary to institute

the ML in PCCM curriculum already exist in many programs,
thereby increasing the feasibility of delivery. We outline
implementation resources common to many PCCM training
programs, organized by curriculum objective, in Figure 1.
Implementation of the curriculum may be more challenging
in institutions that lack these resources. Shared access to
materials that can be delivered virtually (e.g., freely accessible
online modules, ML conferences/webinars, discussion with
computer scientists via video conference, etc.) may increase
the feasibility of curriculum implementation at less resourced
centers. Curriculum champions at early adopting centers can also
provide mentorship and promote faculty development at centers
that have the desire to implement the curriculum but lack ML
experience or expertise.

The final step of Kern’s approach relates to evaluation
and assessment (35). We recommend a multifaceted
approach. Traditional pre-post assessments using the
Kirkpatrick outcomes hierarchy (37) can collect objective
data such as knowledge of core ML concepts and subjective
data such as trainee confidence applying those concepts.

FIGURE 1 | One potential roadmap for leveraging existing curricular implementation resources common to many PCCM training programs. Resources are divided by

the ML in PCCM curriculum objectives.
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These assessments should be combined with open-ended
discussions with key stakeholders (i.e., educational and
institutional leaders, clinical faculty, trainees, interprofessional
team/allied health members, course teachers, etc.) regarding
key outcomes of interest. This multifaceted approach
acknowledges the known limitations of pre-post assessments
in richly understanding how a curriculum impacts learners.
Evaluations should be repeated longitudinally to measure
retention and identify new high-yield curricular objectives
for PCCM that may arise in the fast-changing field
of ML.

CONCLUSIONS

The promise of ML to improve medical decision making and
patient outcomes is tempered by an incomplete understanding
of the technology in PCCM. This education gap presents
a major problem for the field because trainees and key
stakeholders are at risk for developing distrust or blind trust
of ML, which may negatively impact patients. However, this
problem also presents an opportunity to effectively close the
education gap by instituting an ML in PCCM curriculum.
Our multidisciplinary group is the first to present such a
curriculum in this perspective, focusing on key high-yield
objectives, measurable enabling competencies, and suggested
educational strategies that can utilize existing resources common
to many PCCM training programs. We hope to empower
PCCM trainees and stakeholders with the skills necessary

to rigorously evaluate ML and harness its potential to
benefit patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

DE, VH, and FM: literature search, background and rationale,
writing all or part of the manuscript, critical revision of
the manuscript, and editing of the manuscript. LR, AJ,
and BM: critical revision of the manuscript and editing
of the manuscript. MM: background and rationale, critical
revision of the manuscript, and editing of the manuscript. All
authors agree to be accountable for the content of the work.
All authors contributed to the article and approved the
submitted version.

FUNDING

VH was supported through an Ontario Graduate Scholarship,
Canadian Institutes of Health Research Banting and Best
Master’s and Doctoral Awards, and Vector Institute Postgraduate
Fellowship. LR was supported through a Canada Research Chair
in Population Health Analytics (950-230702).

REFERENCES

1. Patel VL, Kaufman DR, Arocha JF. Emerging paradigms

of cognition in medical decision-making. J Biomed

Inform. (2002) 35:52–75. doi: 10.1016/S1532-0464(02)0

0009-6

2. Nemeth C, Blomberg J, Argenta C, Serio-Melvin ML, Salinas J, Pamplin J.

Revealing ICU cognitive work through naturalistic decision-making methods.

J Cogn Eng Decis Making. (2016) 10:350–68. doi: 10.1177/15553434166

64845

3. Komorowski M. Artificial intelligence in intensive care: are we there

yet? Intensive Care Med. (2019) 45:1298–300. doi: 10.1007/s00134-019-0

5662-6

4. Gutierrez G. Artificial intelligence in the intensive care unit. Crit Care. (2020)

24:101. doi: 10.1186/s13054-020-2785-y

5. Nassar AP Jr, Caruso P. ICU physicians are unable to accurately predict length

of stay at admission: a prospective study. Int J Qual Health Care. (2016)

28:99–103. doi: 10.1093/intqhc/mzv112

6. Awad A, Bader-El-Den M, McNicholas J, Briggs J. Early hospital

mortality prediction of intensive care unit patients using an

ensemble learning approach. Int J Med Inform. (2017) 108:185–

95. doi: 10.1016/j.ijmedinf.2017.10.002

7. Zeiberg D, Prahlad T, Nallamothu BK, Iwashyna TJ, Wiens J,

Sjoding MW. Machine learning for patient risk stratification

for acute respiratory distress syndrome. PLoS ONE. (2019)

14:e0214465. doi: 10.1371/journal.pone.0214465

8. Sottile PD, Albers D, Higgins C, Mckeehan J, Moss MM. The association

between ventilator dyssynchrony, delivered tidal volume, and sedation

using a novel automated ventilator dyssynchrony detection algorithm.

Crit Care Med. (2018) 46:e151–e157. doi: 10.1097/CCM.00000000000

02849

9. Lonsdale H, Jalali A, Ahumada L, Matava C. Machine learning and

artificial intelligence in pediatric research: current state, future prospects,

and examples in perioperative and critical care. J Pediatr. (2020) 221S:S3–

S10. doi: 10.1016/j.jpeds.2020.02.039

10. Kennedy CE, Aoki N, Mariscalco M, Turley JP. Using time series analysis

to predict cardiac arrest in a PICU. Pediatr Crit Care Med. (2015) 16:e332–

9. doi: 10.1097/PCC.0000000000000560

11. Zhai H, Brady P, Li Q, Lingren T, Ni Y, Wheeler DS, et al. Developing and

evaluating a machine learning based algorithm to predict the need of pediatric

intensive care unit transfer for newly hospitalized children. Resuscitation.

(2014) 85:1065–71. doi: 10.1016/j.resuscitation.2014.04.009

12. Williams JB, Ghosh D, Wetzel RC. Applying machine learning to

pediatric critical care data∗. Pediatr Crit Care Med. (2018) 19:599–

608. doi: 10.1097/PCC.0000000000001567

13. Sánchez Fernández I, Sansevere AJ, Gaínza-Lein M, Kapur K, Loddenkemper

T.Machine learning for outcome prediction in Electroencephalograph (EEG)-

Monitored children in the intensive care unit. J Child Neurol. (2018) 33:546–

53. doi: 10.1177/0883073818773230

14. Lee B, Kim K, Hwang H, Kim YS, Chung EH, Yoon J-S, et al.

Development of a machine learning model for predicting pediatric mortality

in the early stages of intensive care unit admission. Sci Rep. (2021)

11:1263. doi: 10.1038/s41598-020-80474-z

15. Bose SN, Greenstein JL, Fackler JC, Sarma SV, Winslow RL, Bembea MM.

Early prediction of multiple organ dysfunction in the pediatric intensive care

unit. Front Pediatr. (2021) 9:711104. doi: 10.3389/fped.2021.711104

16. Aczon MD, Ledbetter DR, Laksana E, Ho LV, Wetzel RC. Continuous

prediction of mortality in the PICU: a recurrent neural network model

in a Single-Center Dataset∗. Pediatr Crit Care Med. (2021) 22:519–

29. doi: 10.1097/PCC.0000000000002682

17. Wood EA, Ange BL, Miller DD. Are we ready to integrate

artificial intelligence literacy into medical school curriculum:

Frontiers in Pediatrics | www.frontiersin.org 4 May 2022 | Volume 10 | Article 864755

https://doi.org/10.1016/S1532-0464(02)00009-6
https://doi.org/10.1177/1555343416664845
https://doi.org/10.1007/s00134-019-05662-6
https://doi.org/10.1186/s13054-020-2785-y
https://doi.org/10.1093/intqhc/mzv112
https://doi.org/10.1016/j.ijmedinf.2017.10.002
https://doi.org/10.1371/journal.pone.0214465
https://doi.org/10.1097/CCM.0000000000002849
https://doi.org/10.1016/j.jpeds.2020.02.039
https://doi.org/10.1097/PCC.0000000000000560
https://doi.org/10.1016/j.resuscitation.2014.04.009
https://doi.org/10.1097/PCC.0000000000001567
https://doi.org/10.1177/0883073818773230
https://doi.org/10.1038/s41598-020-80474-z
https://doi.org/10.3389/fped.2021.711104
https://doi.org/10.1097/PCC.0000000000002682
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Ehrmann et al. ML Education in PCCM

students and faculty survey. J Med Educ Curric Dev. (2021)

8:23821205211024078. doi: 10.1177/23821205211024078

18. Pinto Dos Santos D, Giese D, Brodehl S, Chon SH, Staab W, Kleinert R, et al.

Medical students’ attitude towards artificial intelligence: a multicentre survey.

Eur Radiol. (2019) 29:1640–6. doi: 10.1007/s00330-018-5601-1

19. Oh S, Kim JH, Choi S-W, Lee HJ, Hong J, Kwon SH. Physician confidence

in artificial intelligence: an online mobile survey. J Med Internet Res. (2019)

21:e12422. doi: 10.2196/12422

20. Mamdani M, Slutsky AS. Artificial intelligence in intensive care medicine.

Intensive Care Med. (2021) 47:147–9. doi: 10.1007/s00134-020-06203-2

21. Verma AA, Murray J, Greiner R, Cohen JP, Shojania KG, Ghassemi M, et

al. Implementing machine learning in medicine. CMAJ. (2021) 193:E1351–

E1357. doi: 10.1503/cmaj.202434

22. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al.

Effect of a machine learning-derived early warning system for intraoperative

hypotension vs standard care on depth and duration of intraoperative

hypotension during elective noncardiac surgery: the HYPE randomized

clinical trial. JAMA. (2020) 323:1052–60. doi: 10.1001/jama.2020.0592

23. SendakMP, RatliffW, Sarro D, Alderton E, Futoma J, GaoM, et al. Real-world

integration of a sepsis deep learning technology into routine clinical care:

implementation study. JMIRMed Inform. (2020) 8:e15182. doi: 10.2196/15182

24. Bond RR, Novotny T, Andrsova I, Koc L, Sisakova M, Finlay D, et al.

Automation bias in medicine: the influence of automated diagnoses on

interpreter accuracy and uncertainty when reading electrocardiograms. J

Electrocardiol. (2018) 51:S6–S11. doi: 10.1016/j.jelectrocard.2018.08.007

25. Gaube S, Suresh H, Raue M, Merritt A, Berkowitz SJ, Lermer E, et al. Do as

AI say: susceptibility in deployment of clinical decision-aids. NPJ Digit Med.

(2021) 4:31. doi: 10.1038/s41746-021-00385-9

26. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias

in an algorithm used to manage the health of populations. Science. (2019)

366:447–53. doi: 10.1126/science.aax2342

27. Subbaswamy A, Saria S. From development to deployment: dataset shift,

causality, and shift-stable models in health AI. Biostatistics. (2020) 21:345–

52. doi: 10.1093/biostatistics/kxz041

28. Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-

Cooley O, et al. External validation of a widely implemented proprietary

sepsis prediction model in hospitalized patients. JAMA Intern Med. (2021)

181:1065–70. doi: 10.1001/jamainternmed.2021.2626

29. McCoy LG, Nagaraj S, Morgado F, Harish V, Das S, Celi LA. What do medical

students actually need to know about artificial intelligence? NPJ Digit Med.

(2020) 3:86. doi: 10.1038/s41746-020-0294-7

30. Lee J, Wu AS, Li D, Kulasegaram KM. Artificial intelligence in

undergraduate medical education: a scoping review. Acad Med. (2021)

96:S62–S70. doi: 10.1097/ACM.0000000000004291

31. Schuur F, Rezazade Mehrizi MH, Ranschaert E. Training opportunities of

artificial intelligence (AI) in radiology: a systematic review. Eur Radiol. (2021)

31:6021–9. doi: 10.1007/s00330-020-07621-y

32. Valikodath NG, Cole E, Ting DSW, Campbell JP, Pasquale LR, Chiang

MF, et al. Impact of artificial intelligence on medical education in

ophthalmology. Transl Vis Sci Technol. (2021) 10:14. doi: 10.1167/tvst.1

0.7.14

33. Bilgic E, Gorgy A, Yang A, Cwintal M, Ranjbar H, Kahla K, et al.

Exploring the roles of artificial intelligence in surgical education:

a scoping review. Am J Surg. (2021). doi: 10.1016/j.amjsurg.

2021.11.023

34. Sapci AH, Sapci HA. Artificial intelligence education and tools for medical

and health informatics students: systematic review. JMIR Med Educ. (2020)

6:e19285. doi: 10.2196/19285

35. Singh MK, Gullett HL, Thomas PA. Using Kern’s 6-step approach to

integrate health systems science curricula into medical education.

Acad Med. (2021) 96:1282. doi: 10.1097/ACM.00000000000

04141

36. Humphrey-Murto S, Varpio L, Wood TJ, Gonsalves C, Ufholz L-A,

Mascioli K, et al. The use of the Delphi and other consensus group

methods in medical education research. Acad Med. (2017) 92:1491–

8. doi: 10.1097/ACM.0000000000001812

37. Belfield C, Thomas H, Bullock A, Eynon R, Wall D. Measuring effectiveness

for best evidence medical education: a discussion.Med Teach. (2001) 23:164–

70. doi: 10.1080/0142150020031084

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ehrmann, Harish, Morgado, Rosella, Johnson, Mema andMazwi.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Pediatrics | www.frontiersin.org 5 May 2022 | Volume 10 | Article 864755

https://doi.org/10.1177/23821205211024078
https://doi.org/10.1007/s00330-018-5601-1
https://doi.org/10.2196/12422
https://doi.org/10.1007/s00134-020-06203-2
https://doi.org/10.1503/cmaj.202434
https://doi.org/10.1001/jama.2020.0592
https://doi.org/10.2196/15182
https://doi.org/10.1016/j.jelectrocard.2018.08.007
https://doi.org/10.1038/s41746-021-00385-9
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1093/biostatistics/kxz041
https://doi.org/10.1001/jamainternmed.2021.2626
https://doi.org/10.1038/s41746-020-0294-7
https://doi.org/10.1097/ACM.0000000000004291
https://doi.org/10.1007/s00330-020-07621-y
https://doi.org/10.1167/tvst.10.7.14
https://doi.org/10.1016/j.amjsurg.2021.11.023
https://doi.org/10.2196/19285
https://doi.org/10.1097/ACM.0000000000004141
https://doi.org/10.1097/ACM.0000000000001812
https://doi.org/10.1080/0142150020031084
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles

	Ignorance Isn't Bliss: We Must Close the Machine Learning Knowledge Gap in Pediatric Critical Care
	Introduction
	Why Lack of ML Education Is A Problem For PCCM
	Closing The Gap: A PROPOSED ML Curriculum for PCCM Trainees and Other Stakeholders
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References


