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Abstract. A classification process can be seen as a set of actions by
which several objects are evaluated in order to predict the class(es) those
objects belong to. In situations where transparency is a necessary con-
dition, predictions resulting from a classification process are needed to
be interpretable. In this paper, we propose a novel variant of a naive
Bayes (NB) classification process that yields such interpretable predic-
tions. In the proposed variant, augmented appraisal degrees (AADs) are
used for the contextualization of the evaluations carried out to make the
predictions. Since an AAD has been conceived as a mathematical repre-
sentation of the connotative meaning in an experience-based evaluation,
the incorporation of AADs into a NB classification process helps to put
the resulting predictions in context. An illustrative example, in which
the proposed version of NB classification is used for the categorization of
newswire articles, shows how such contextualized predictions can favor
their interpretability.

Keywords: Explainable artificial intelligence · Augmented appraisal
degrees · Naive Bayes classification · Context handling

1 Introduction

Computer applications like scoring tools that make judgments about individuals,
or graphical applications that incorporate scene recognition to get stunning pho-
tos, can be driven by artificial intelligence (AI). Although such systems can be
very convenient, they might be restricted or avoided in situations where trans-
parency and accountability are highly important. For example, systems that
predict the degree to which individuals are suitable (or unsuitable) for a job
without explaining their predictions can be banned from using in the European
Union according to the General Data Protection Regulation (GDPR) [6]. An
ongoing challenge in this regard is to find appropriate mechanisms to explain
such predictions.

In a previous work [14], we proposed a method to address that challenge
in predictions made by a support vector machine (SVM) classification process
[20,21]. In that method, an evaluation performed to predict whether an object
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belongs to a given class or not is augmented in such a way that the object’s
features supporting the evaluation are also recorded. It has been shown how
such an augmentation, which is represented by means of an augmented appraisal
degree (AAD) [12], can favor the interpretability of SVM predictions.

As a sequel to [14], in this paper we propose a novel version of a naive Bayes
(NB) classification process [9], in which AADs are incorporated to contextualize
the evaluations performed to predict the class(es) an object belongs to. Our
motivation here is that, while the context of evaluations performed by a person
can sometimes be inferred from factors like situational or environmental aspects,
the context of evaluations carried out by a machine might be difficult to infer.
Thus, an explicit representation of the context of evaluations through AADs can
help a NB classifier (NBC) to offer predictions that are better interpretable.

explainable AI  System
user

explainable
NBC

explainable
interface

AADs

contextualized
prediction(s)

explanation

decision

task

Fig. 1. A general view of the proposed version of NBC in the context of the explanation
framework included in the 2016 DARPA report [5].

Contextualized predictions can be useful in situations where informed deci-
sions are needed. In this regard, the proposed NBC, named explainable NBC
(XNBC), can be included within an explainable artificial intelligence (XAI) sys-
tem [5], by which a user can receive those contextualized predictions to make a
decision as shown in Fig. 1. In addition, contextualized predictions can provide
direct insights about what is deemed to be relevant to the (knowledge) model
used by a classification process. This means that such contextualized predictions
can also be used by, say, an AI practitioner to assess the quality of models that
result from different learning scenarios.

To illustrate how the novel XNBC works, we develop a text categorization
process (cf. [10]) by which newswire articles included in the Reuters-21578 col-
lection [8] are evaluated to predict the class(es) those articles belong to. Figure 2
shows a resulting visual representation where it is indicated why and why not
XNBC predicts that a newswire article belongs to a given class up to a spe-
cific level: while the size of a word denotes its influence on the classification,
its typographical style denotes whether the word is in favor of or against the
membership in that class. The evaluation behind such a visual representation
can also be used by, say, the explainable interface of an XAI system to provide
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Food Department officials said the U.S.
Department of Agriculture approved
the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S.
Dlrs a tonne C and F from Pacific North-
west to Colombo. They said the shipment
was for April 8 to 20 delivery. REUTER

Fig. 2. A visual representation of the reasons that justify why and why not a newswire
article belongs to the category ‘wheat’ up to a specific level.

the following explanation: “While words like ‘Dlrs’ or ‘Pacific’ suggest that the
newswire article does not belong to the category ‘wheat’ with a computed overall
grade of 0.29, words like ‘wheat’ or ‘tonnes’ suggest that the article belongs to the
category with a computed overall grade of 0.71. These results indicate that the
article should be considered member of the category up to a 0.42-level.” Notice
how this explanation clarifies what has been relevant to the knowledge model
used for this prediction.

In the next section, we outline how an integration of the AAD concept into
the intuitionistic fuzzy set [2,3] concept can be used for the characterization of
the evaluation represented in Fig. 2. Then, we describe our novel variant of NBC
in Sect. 3 and illustrate how it works in Sect. 4. After that, we present some
related work in Sect. 5. The paper is concluded in Sect. 6.

2 Preliminaries

As previously stated, a classification can be seen as a process in which one or
more objects are evaluated in order to predict whether those objects can be sit-
uated in one or more classes. In situations where an object, say x, has features
suggesting that it partially belongs to a given class, say A, a classification algo-
rithm can use the framework of fuzzy set theory [23] to model in mathematical
terms the evaluation of the level to which x is a member of A. In this frame-
work, such an evaluation can be characterized by a membership grade, which is
a number μA(x) in the unit interval [0, 1], where 0 and 1 represent in that order
the lowest and the highest membership grades. For example, if the newswire
article shown in Fig. 2 is denoted by x, and (what has been learned about) the
category ‘wheat’ is represented by A, then μA(x) indicates the level to which x
belongs to A. In this regard, if another category, say ‘corn’, is denoted by B,
the expression μB(x) < μA(x) indicates that the level to which (the newswire
article) x belongs to B is less than the level to which x belongs to A.

An object can also have features suggesting that it does not belong to a class.
Notice in Fig. 2 that, while words such as ‘wheat’ or ‘grain’ are in favor of the
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membership in the category ‘wheat’, words like ‘Dlrs’ or ‘Pacific’ are against that
membership. In this case, a classification algorithm can make use of the intuition-
istic fuzzy set (IFS) [2,3] framework to model the evaluation of an object x by
means of an IFS element. An IFS element, say 〈x, μA(x), νA(x)〉, is constituted
by the evaluated object x, a membership grade μA(x) and a nonmembership
grade νA(x), where μA(x) and νA(x) are two numbers in the unit interval [0, 1]
that satisfy the consistency condition 0 ≤ μA(x) + νA(x) ≤ 1. The buoyancy
[15] of 〈x, μA(x), νA(x)〉, i.e., ρA(x) = μA(x)−νA(x), can be used for comparing
this element to another. For example, if 〈x, μA(x), νA(x)〉 and 〈x, μB(x), νB(x)〉
denote the evaluations of the membership and nonmembership of x in categories
A and B respectively, the expression ρA(x) > ρB(x) will suggest that x belongs
to a larger extent to A than to B.

As can be noticed, neither a membership grade, nor an IFS element can
be used to record the object’s characteristics that lead to the level to which
the object belongs or not to a given class. To record those characteristics, the
notion of augmented appraisal degrees (AADs) has been proposed in [12]. An
AAD, say μ̂A@K(x), is a pair 〈μA@K(x), FμA@K

(x)〉 that represents the level
μA@K(x) to which x belongs to A, as well as the particular collection of x’s
features FμA@K

(x) that have been taken into account to determine (the value
of) μA@K(x) based on the knowledge K. Here, A@K denotes what has been
learned about A after following a learning process that yields K as a result. For
example, consider that A and x denote the category ‘wheat’ and the newswire
article shown in Fig. 2 respectively. With this consideration, one can use an
AAD, say μ̂A@K(x) = 〈μA@K(x), FμA@K

(x)〉, to represent the evaluation of the
proposition ‘x is member of A’ according to what has been learned about the
category ‘wheat’ after following a learning process that produces K as a result. In
this case, while μA@K(x) represents the level to which x belongs to the category
‘wheat’, FμA@K

(x) represents the collection of x’s words such as ‘agriculture’,
‘grain’, or ‘wheat’ that have been considered for quantifying the value of μA@K(x)
according to (the knowledge) K.

As has been mentioned above, the newswire article x can also contain words
suggesting that it does not belong to the category ‘wheat’. To characterize the
context of this kind of evaluations, the idea of an augmented IFS element, say
〈x, μ̂A@K(x), ν̂A@K(x)〉, has been introduced in [12]. As noticed, an augmented
IFS element consists of a membership AAD, μ̂A@K(x), and a nonmembership
AAD, ν̂A@K(x). Hence, the evaluation of the previous example can be better
characterized by 〈x, μ̂A@K(x), ν̂A@K(x)〉, where the meaning of ν̂A@K(x) is anal-
ogous to the meaning of μ̂A@K(x), i.e., ν̂A@K(x) is a pair 〈νA@K(x), FνA@K

(x)〉
such that νA@K(x) represents the level to which x does not belong to the cate-
gory ‘wheat’ and FνA@K

(x) is the collection of features that have been considered
for quantifying the value of νA@K(x) according to K.

In the next section, we describe how to use AADs to contextualize predictions
made by our novel variant of a naive Bayes classification process.
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3 Explainable Naive Bayes Classification

Let F be the set of features under consideration. In naive Bayes classification
[9,24], the probability P (A|x) of an object, say x, being in a class (or category),
say A, is given by

P (A|x) ∝ P (A)
∏

f∈x

P (f |A), (1)

where P (A) is the prior probability of x being member of A, and P (f |A) is the
conditional probability of a feature f ∈ F occurring in an object x that belongs
to A. This expression takes into account the “naive” assumption made in naive
Bayes classification, which states that all features in x are mutually independent.

The actual value of P (A|x) might be unknown. However, one can compute an
approximation, say P̃ (A|x) = P̃ (A)

∏
f∈x P̃ (f |A), through a (knowledge) model

obtained from a training set, say X0. In this regard, P̃ (A) can be computed by
means of

P̃ (A) =
|XA|

|XA| + |XĀ| , (2)

where |XA| and |XĀ| represent, in that order, the number of objects in X0 that
belong to A and the number of objects in X0 that do not belong to A. Likewise,
P̃ (f |A) can be computed by means of

P̃ (f |A) =
|FA[f ]|

|FA[f ]| + |FĀ[f ]| , (3)

where f denotes any of the x’s features, |FA[f ]| represents the number of occur-
rences of f in training objects that belong to A, and |FĀ[f ]| represents the
number of occurrences of f in training objects that do not belong to A. In this
regard, P̃ (f |A) can be seen as a quantification of the level to which f favors the
membership of x in A.

Instead of multiplying many conditional probabilities in Eq. 1, performing
the computation by summing logarithms of probabilities is preferred. Hence, the
logarithm of P̃ (A|x) can be computed by

log P̃ (A|x) = log P̃ (A) +
∑

f∈x

log P̃ (f |A). (4)

Additionally, to avoid zeros, one can use Laplace smoothing [16], which adds one
to each count. Thus, Eq. 4 can be rewritten as

log P̃ (A|x) ∝ log
|XA| + 1

(|XA| + |XĀ|) + 1
+

∑

f∈x

log
|FA[f ]| + 1

(|FA[f ]| + |FĀ[f ]|) + |FX0 |
, (5)

where |FX0 | denotes the number of features detected in the training objects.
Given a collection of well-known classes, say C, one can use Eq. 5 to predict

the best class C for an object x by means of

C = argmax
A∈C

(log P̃ (A|x)). (6)
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As can be noticed, Eq. 6 computes the predicted category without giving any
explanation of what has been taken into account to make that prediction. For
this reason, we consider that an explicit representation of the context of the eval-
uations made by Eq. 5 is strongly recommended. Hence, we propose our novel
version of naive Bayes classification (NBC), named explainable NBC (XNBC),
which main components: a learning process, an evaluation process and a predic-
tion step, are described next.

3.1 Learning Process

The purpose of the learning process in XNBC is to obtain a model of what
is known about a given category. Hence, a feature-influence model [13], which
allows for the representation of the influence of features on the classification, is
built with Algorithm 1. This algorithm uses a training set, X0, and an identifier
of the category, A, as input, and returns a model KA = 〈ûA, tA〉 as output. The
model KA is characterized by both a directional vector ûA = ω1f̂1 + · · · + ωmf̂m
and a threshold point tA in a m-dimensional feature space M, where ωi denotes
the influence of a feature fi, which is represented by a unit vector f̂i in M. As
shown in Fig. 3, the model KA can be seen as a line defined by ûA and tA: while
the direction of ûA points towards a place where the membership in A is favored,
the location of tA identifies a point where the membership in A is neither favored
nor disfavored.

K
A

(−
)

(+
)

tA

�ûA

Fig. 3. Characterization of the knowledge model KA.

To build the model, Algorithm1 explores the objects included in the training
set X0 in order to determine the prior probability of a given object being a
member of A, as well as the conditional probabilities of the features occurring
in objects that belong to A. It is worth recalling that in NBC the best class
for an object is considered to be the most likely. For this reason, Algorithm1
first updates the following counters (see Lines 3–13): (i) |XA|, which counts how
many objects belong to the category A; (ii) |XĀ|, which counts how many objects
do not belong to A; (iii) |FA[f ]|, which counts the occurrence of the feature f
in objects that belong to A; (iv) |FĀ[f ]|, which counts the occurrence of f in
objects that do not belong to A. Then, the algorithm uses these counters to
compute the following probabilities: (i) the prior probability P (A) of an object
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Algorithm 1: XNBC - Learning Process.
Data: A, X0 /* category, training set */

Result: KA /* knowledge model KA = 〈ûA, tA〉 */

1 |XA| ← 0 /* number of objects that are member of A */

2 |XĀ| ← 0 /* number of objects that are nonmember of A */

3 foreach x ∈ X0 do
4 if x ∈ A then /* if x is member */

/* ...increase the number of members */

5 |XA| ← |XA| + 1
6 foreach f ∈ x do /* for each f in x’s features */

/* ..increase the occurrence of f in members */

7 |FA[f ]| ← |FA[f ]| + count(f, x)
8 FX0 ← FX0 ∪ {f}
9 else /* if x is nonmember */

/* ..increase the number of nonmembers */

10 |XĀ| ← |XĀ| + 1
11 foreach f ∈ x do /* for each f in x’s features */

/* ..increase the occurrence of f in nonmembers */

12 |FĀ[f ]| ← |FĀ[f ]| + count(f, x)
13 FX0 ← FX0 ∪ {f}

/* compute the prior probabilities */

14 |X| ← |XA| + |XĀ|
15 P (A) ← log((|XA| + 1)/(|X| + 1)
16 P (Ā) ← log((|XĀ| + 1)/(|X| + 1))

/* compute the conditional probabilities */

17 foreach f ∈ FX0 do
18 P (f |A) ← log((|FA[f ]| + 1)/(|FA[f ]| + |FĀ[f ]| + |FX0 |))
19 P (f |Ā) ← log((|FĀ[f ]| + 1)/(|FA[f ]| + |FĀ[f ]| + |FX0 |))

/* build the feature-influence model */

20 b ← P (A) − P (Ā)
21 w ← 0
22 foreach f ∈ FX0 do

23 w ← w + (P (f |A) − P (f |Ā))f̂f
24 ûA ← w/||w||
25 tA ← −b/||w||
26 KA ← 〈ûA, tA〉
27 return KA

x being in A (see Line 15); (ii) the prior probability P (Ā) of an object x not
being in A (see Line 16); (iii) the conditional probability P (f |A) of a feature f
occurring in an object that belongs to A (see Line 18); and (iv) the conditional
probability P (f |Ā) of a feature f occurring in an object that does not belong to
A (see Line 19). These probabilities are used for computing the components of
KA, i.e., ûA and tA (see Lines 20–25). As noticed, the conditional probability of
each feature is used as an indicator of its relative influence on the classification.
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Algorithm 2: XNBC - Evaluation Process.
Data: x, KA /* object, knowledge model KA = 〈ûA, tA〉 */

Result: 〈x, μ̂A(x), ν̂A(x)〉 /* augmented IFS element */

1 F̃μA(x) ← {} /* pro-membership x’s features */

2 F̃νA(x) ← {} /* pro-nonmembership x’s features */

3 μ̃A(x) ← 0 /* pro-membership x’s score */

4 ν̃A(x) ← 0 /* pro-nonmembership x’s score */

5 if tA < 0 then /* a negative threshold favors the score */

6 μ̃A(x) ← μ̃A(x) + abs(tA) /* increase the positive score of x */

7 else /* a positive threshold disfavors the score */

8 ν̃A(x) ← ν̃A(x) + tA /* increase the negative score of x */

/* recall that ûA =
∑

f∈FX0
ωf f̂f */

9 foreach f ∈ x do /* for each f in x’s features */

10 sf ← count(f, x) ∗ ωf /* compute f’s influence */

11 if sf > 0 then /* if f is in favor of x ∈ A */

12 μ̃A(x) ← μ̃A(x) + sf /* increase x’s positive score */

13 F̃μA(x) ← F̃μA(x) ∪ {〈f, sf 〉} /* and record f’s influence */

14 else /* f is against x ∈ A */

15 ν̃A(x) ← ν̃A(x) + abs(sf ) /* increase x’s negative score */

16 F̃νA(x) ← F̃νA(x) ∪ {〈f, abs(sf )〉} /* and record f’s influence */

/* handle the consistency condition 0 ≤ μA(x) + νA(x) ≤ 1 */

17 maxLevel ← max(1, μ̃A(x) + ν̃A(x))

18 foreach 〈f, sf 〉 ∈ F̃μA(x) do
19 FμA(x) ← FμA(x) ∪ {〈f, (sf/maxLevel)〉}
20 foreach 〈f, sf 〉 ∈ F̃νA(x) do
21 FνA(x) ← FνA(x) ∪ {〈f, (sf/maxLevel)}〉
22 μA(x) ← μ̃A(x)/maxLevel
23 νA(x) ← ν̃A(x)/maxLevel

/* finally, build the augmented IFS element */

24 μ̂A(x) ← 〈μA(x), FμA(x)〉
25 ν̂A(x) ← 〈νA(x), FνA(x)〉
26 return 〈x, μ̂A(x), ν̂A(x)〉

3.2 Evaluation Process

The purpose of the evaluation process is to obtain a contextualized evaluation of
the membership of a given object in a given category. The steps of this process are
described in Algorithm 2. This algorithm uses an object x and the knowledge
model KA = 〈ûA, tA〉 for a category A as input, and builds an augmented
IFS element1 〈x, μ̂A(x), ν̂A(x)〉 representing a contextualized evaluation that is
returned as output.

1 To be consistent with the notation introduced in Sect. 2, we should write
〈x, μ̂A@X0(x), ν̂A@X0(x)〉. However, for the sake of readability, we use this simpli-
fied notation hereafter.
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To build a contextualized evaluation, Algorithm 2 computes both a positive
score μ̃A(x) and a negative score ν̃A(x) of x being in category A based on the
threshold point tA and the influence of the features in the directional vector ûA.
The positive score is increased in two cases: if tA is negative (see Line 6); and if
the influence of a feature is positive (see Line 12). Likewise, the negative score
is increased in two cases: if tA is positive (see Line 8); and if the influence of a
feature is negative (see Line 15). While the conditions that arise when a positive
score is increased are recorded in F̃μA

(x) (see Line 13), the conditions that arise
when a negative score is increased are recorded in F̃νA

(x) (see Line 16).
The consistency condition of an IFS element, i.e., 0 ≤ μA(x) + νA(x) ≤ 1, is

guaranteed by Algorithm 2 in Lines 17–23. After this, the algorithm records the
components of the augmented IFS element in Lines 24–25.

3.3 Predicting the Best Class(es)

To predict the best class C ∈ C for an object x, an XAI system (see Sect. 1) can
first use Algorithm 1 for building a knowledge model for each class in C. Then,
that system can use Algorithm 2 to obtain the contextualized evaluation of the
membership of x in each class using these models. After that, the system can
use the buoyancy of those contextualized evaluations (see Sect. 2) to sort them
in descending order. Then, the system can, say, list the top-k of the contextu-
alized evaluations so that a user can be offered the k best classes with the best
context. For each class an augmented IFS element, expressing the context of the
evaluation of x belonging to the class or not, is provided. Together these explain
to users why x has been classified in this way. Hence, with XNBC users and
applications have extra information for giving preference to those classes with
the best credible justification.

4 Illustrative Example

In this section, we present an example where our novel version of naive Bayes
classification is used for predicting the classes of newswire articles. In this exam-
ple, the Reuters-21578 collection [8], which consists of 21578 newswire articles
provided by Reuters, Ltd, has been used. Specifically, we made use of the articles
established in the “modified Apte split” (ModApte) of this collection.

To use Algorithm 1, each article had to be modeled as a feature-influence
vector whose components are the words in the article. Hence, each article was
first split into words using separators such as commas or blank-spaces. Then,
stop words, i.e., words like prepositions or conjunctions that have a negligible
impact on the classification [11], were removed from the previous list of words.
Additionally, words having a common stem were tokenized using the Porter
Stemming Algorithm [18]. After that, Algorithm 1 was used with the feature-
influence vectors corresponding to the 9603 articles included in the training set
of the ModApte split for building a knowledge model for each of the following
categories: earn, acq, money-fx, grain, crude, trade, interest, ship, wheat, corn.
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For the sake of illustration in this paper we consider one article from the
test set of the ModApte split, namely the newswire article identified by 14841.
Algorithm 2 was used with the resulting knowledge models to evaluate the mem-
bership of this article to each of the aforementioned categories. This means that,
augmented IFS elements like 〈x, μ̂earn(x), ν̂earn(x)〉 or 〈x, μ̂grain(x), ν̂grain(x)〉
were obtained as output – here x represents the article identified by 14841.

The resulting augmented IFS elements were used for building visual repre-
sentations like the ones depicted in Fig. 4. For instance, μgrain(x) and νgrain(x),
which are parts of μ̂grain(x) and ν̂grain(x) respectively, were used for computing
the buoyancy ρgrain(x) = 0.60 of the article in category ‘grain’ (see Fig. 4(a)).
Analogously, the positive influence of the word ‘wheat’ on the membership of
this article in category ‘grain’, namely 〈‘wheat’, 0.15〉 ∈ Fμgrain

(x), was used
for setting both the size and the typographical style of this word. Herein, while
the size of the word denotes the influence of this word on the classification, the
typographical style denotes whether this influence is positive or negative.

Food Department officials said the

U.S. Department of Agriculture
approved the Continental Grain Co sale

of 52,500 tonnes of soft wheat
at 89 U.S. Dlrs a tonne C and F from

Pacific Northwest to Colombo. They said the
shipment was for April 8 to 20 delivery.
REUTER

(a) ρgrain(x) = 0.60

Food Department officials said the U.S.
Department of Agriculture approved
the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S.
Dlrs a tonne C and F from Pacific North-
west to Colombo. They said the shipment
was for April 8 to 20 delivery. REUTER

(b) ρwheat(x) = 0.42

Food Department officials said the U.S.
Department of Agriculture approved
the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S. Dlrs
a tonne C and F from Pacific Northwest
to Colombo. They said the shipment was for

April 8 to 20 delivery. REUTER

(c) ρcorn(x) = 0.23

Food Department officials said the U.S.

Department of Agriculture approved

the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S.Dlrs a tonne C

and F from PacificNorthwest toColombo.
They said the shipment was for April 8 to 20

delivery. REUTER

(d) ρship(x) = −0.47

Fig. 4. The four best evaluated categories for a newswire article x.

Those augmented IFS elements were also used for building explanations like
the following: “While words like ‘Dlrs’, ‘April’ or ‘Pacific’ suggest that article
14841 does not belong to category ‘grain’ with a computed overall grade of 0.20,
words like ‘grain’, ‘wheat’ or ‘tonnes’ suggest that the article belongs to the cat-
egory with a computed overall grade of 0.80. These results indicate that article
14841 should be considered member of category ‘grain’ up to a 0.60-level.” Notice
that this explanation indicates not only the level to which this article belongs to
the category ‘grain’ but also provides practical information about what words
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(features) have been focused on during the evaluation. We foresee that this kind
of explanation can help, say, an AI practitioner to improve the knowledge model
used for the evaluation. For instance, if an AI practitioner considers that ‘Dlrs’
and ‘April’ are irrelevant to the evaluation, he/she might exclude these words
from the list that is used during the learning process. Notice also that only the
six most influential words (three with positive influence and three with negative
influence) have been included in the explanation in order to keep it simple and
interpretable. A future work will reveal how this simplification could be used for
improving knowledge models that result from training sets having imperfect or
scarce data.

Regarding the prediction of the best category (or categories) for article 14841,
the contextualized evaluations were first sorted in descending order according to
the computed buoyancy. After that, the four best evaluated categories (see Fig. 4)
were presented as the most optimistic predictions. As noticed, these predictions
reuse the context of the evaluations and, thus, they can be easily interpreted.
Hence, a user can choose the category which prediction has the most adequate
justification according to his/her perspective. In this regard, experimental stud-
ies about the interpretability and usability of such predictions are considered
and highly suggested.

5 Related Work

Methods aiming to produce a set of rules that explain predictions can be found
in the literature. For instance, a Bayesian method for learning rules that provide
explanations of the predictions according to prior parameters fixed by a user is
proposed in [22]. Another example is the method proposed in [7] for building
Bayesian rules that discretize a high-dimensional feature space into a series of
interpretable decision statements. In the framework of fuzzy set theory, an exam-
ple is the variant of the neuro-fuzzy classification method presented in [17]. This
variant tries to produce a small set of interpretable fuzzy rules for the diagnosis
of patients.

A comprehensive survey of methods proposed for explaining computer pre-
dictions can be found in [4]. This survey has identified two main approaches
of the works found in the literature: one trying to describe how ‘black box’
machine learning approaches work, and the other trying to explain the result
of such approaches without knowing the details on how these work. In the first
approach, the goal is to make “transparent classifiers” by training interpretable
models that can be used for yielding satisfactory explanations. In the second
approach, the purpose is to understand the reasons for the classification or how
a model behaves by, say, changing one or more inputs. In this regard, while our
novel XNBC can be considered to belong to the works following the first app-
roach, the explanation technique proposed in [19] is an example of the second
approach. It is worth mentioning that techniques based on the second approach
try to explain only the reasons for a specific prediction. In contrast, techniques
like XNBC try to explain what has been relevant to the knowledge model and
is applicable for all the possible predictions.
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Contributions proposed by the fuzzy logic community for explaining com-
puter predictions are analyzed in [1]. This analysis suggests that efforts made
by the non-fuzzy community and by the fuzzy logic community can be linked to
solve problems related to the interpretability of computer predictions.

6 Conclusions

In this paper, we have proposed a novel variant of a naive Bayes classifica-
tion (NBC) process that produces contextualized predictions. The novel NBC
process, named explainable NBC or XNBC, consists of a learning process, an
evaluation process and a prediction step: while the purpose of the first is to
obtain a model of what is known about a particular class, the purpose of the
second is to obtain contextualized evaluations of the level to which other objects
belong to that class, these evaluations can then be used in the third for offering
users the k best classes with the best context.

The learning process looks into the objects included into a training collection
to build a knowledge model in which the influence of the features on the con-
textualized evaluations is represented. In this process, the influence of a feature
is determined by the conditional probability of the feature occurring in objects
that belong to the analyzed class.

The evaluation process uses such a knowledge model as input to quantify
the influence of the features on the classification of other objects. Augmented
appraisal degrees (AADs), which are mathematical representations of the con-
text of experienced-based evaluations, are used for handling the evaluations per-
formed during this process. Hence, the evaluation process produces contextual-
ized evaluations that put the forthcoming predictions in context.

In the prediction step, the k best classes corresponding to the top-k of the
resulting contextualized evaluations are presented in such a way that users have
additional information for giving preference to the class(es) with the best credible
justification.

By means of an example in which the categories of newswire articles are
predicted, we have illustrated how the proposed XNBC process can produce
contextualized predictions. We have also explained how those contextualized
predictions can help a user to decide which prediction is the most appropriate
according to his/her perspective and, thus, make an informed (classification)
decision. In spite of that, further study is needed to demonstrate the inter-
pretability and usability of such contextualized predictions.
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