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Abstract: Failure of osteosynthesis implants is an intricate matter with challenging management
that calls for efficient investigation and prevention. Using implant retrieval analysis combined
with standard radiological examination, we evaluated the main causes for osteosynthesis implant
breakdown and the relations among them for a series of cases. Twenty-one patients diagnosed with
implant failure were assessed for this work. For metallurgical analysis, microscopy techniques such as
scanning electron microscopy (SEM), stereomicroscopy, and optical microscopy were employed.
The results showed that material structural deficiencies (nine patients) and faulty surgical techniques
(eight patients) were the main causes for failure. An important number of patients presented with
material structural deficiencies superimposed on an imperfect osteosynthesis technique (six patients).
Consequently, the importance of failure retrieval analysis should not be overlooked, and in combination
with other investigational techniques, must provide information for both implant manufacturing and
design improvement, as well as osteosynthesis technique optimization.
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1. Introduction

Failure analysis is of great importance not only for orthopedics [1–5], but also for other
various medical areas such as general surgery [6–9], gynecology [10–12], cranioplasty [13,14],
ophthalmology [15], and dentistry [16,17], as the investigation of retrieved implants offers insight into
implant failure mechanisms and how to prevent such cases. Physiologic forces are transmitted to intact
human bone under normal conditions without exceeding its ultimate strength. When non-physiologic
forces are applied by trauma or normal bone strength is affected by various pathological entities,
fractures ensue. There are different forces acting on the human skeleton, with natural physiologic
loading comprising a combination of these. A fracture line is characterized by abnormal stress and
strain which must be neutralized by stabilizing devices (external or internal) in order to provide
favorable conditions for bone healing [18,19].

Internal fracture fixation, or osteosynthesis, uses metallic implants that have to meet specific
requirements for orthopedic surgical use. These requirements refer to design, size, and material
properties like strength, stiffness, resistance to fatigue, biocompatibility, and corrosion resistance [20–22].
Last but not least, pre-operative management plays an essential role and needs to be taken
into account for favorable outcomes, as Table 1 presents. Implants used for osteosynthesis are
manufactured using iron-based alloys such as surgical grade stainless-steel 316L, titanium-based alloys,
cobalt-chromium-based composites, or shape-memory alloys [23–25]. Of these, stainless-steel 316L is
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the most commonly used, due to its cost-effectiveness and good integration of corrosion resistance and
mechanical properties.

Table 1. Pre-operative planning.

Radiographic Images
(Multiple Views) Implant Length Implant Diameter

Bone morphology Contralateral bone x-rays
(magnified)

IM canal isthmus
(the narrowest portion of the canal)

Shape of the intramedullary
(IM) canal Traction radiographs 1.0 to 1.5 mm greater than

anticipated IM nail diameter
Fracture pattern and

comminution
Distance between palpable

bony landmarks

Successful clinical results are also dependent on adherence to sound osteosynthesis principles
which achieve load sharing between the implant and bone during the healing period. The main
implant failure mechanisms are mechanical or biomechanical [26]. A numerical analysis can also
provide useful information regarding the loading forces that act on the bone and on the couple formed
by a bone-osteosynthesis implant [27,28]. The tolerable mechanical stress level of an implant may
be exceeded either through cyclic loading (fatigue) or under a single critical load (static or dynamic),
combined with the corrosive effects of the internal biological environment. Especially for fatigue
management, a good load-sharing level between bone and implant is crucial, which is contingent
on good reduction of fracture and proper structural support, provided by adequately-reduced bone
fragments [29,30]. Figure 1 presents the biomechanics of fractures and how forces act on the bone.
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Therefore, both surgical technique and the level of bone comminution—which impacts structural
support—become very important elements for reaching an equilibrium of forces needed for stable
and reliable fixation until healing ensues. If this balance of forces is not established and maintained,
areas of local stress concentration may appear on the implant surface and failure can occur. Biologic
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failure manifests as implant loosening caused by bone resorption at the contact interface with the
implant, due to an inappropriate stabilizing device, excessive physiologic loading during injudicious
rehabilitation, or prolonged bone healing (biologic factors play a key role) [31–33].

This paper presents the failure analysis of a series of stainless-steel osteosynthesis implants used
for primary fixation and revised in the Orthopedics Department of Bucharest Emergency University
Hospital Bucharest.

2. Materials and Methods

In one year, approximately eight hundred cases required osteosynthesis in the Orthopedics
Department of the Bucharest Emergency University Hospital. The reported number of cases with
osteosynthesis implant failure was just under 1%, which is consistent with reported rates in the literature.
Twenty-one cases of osteosynthesis implant failure diagnosed and managed in our department during
a three-year period were assessed for this work. All cases had the primary fixation surgery also done in
our department, with a time-to-failure period ranging from four weeks to seven months. The majority
of patients were male (19 cases), with an age span between 18 and 78 years. Table 2 presents the
centralized data of patients with osteosynthesis implant failure.

Table 2. Statistics data on patients with osteosynthesis implant failure.

No.
Patient

Age

Fracture
Location

(Bone Type)

Type of
Implant

Failure Causes

External
Factors

(Traumatic
Event)

Surgical Causes Implant Defects

Inadequate
Implant

Size

Deficient
Fracture

Reduction

Materials
Defects

Surface
Defects

1 36 Tibia IMN (+)

2 65 Femur IMN (+) (+)

3 72 Femur GN (+)

4 26 Humerus PS (+)

5 44 Tibia IMN (+) (+) (+) (+)

6 31 Tibia PS (+) (+) (+)

7 71 Femur GN (+)

8 67 Femur DHS (+) (+)

9 39 Humerus IMN (+) (+)

10 78 Femur DHS (+)

11 46 Tibia IMN (+) (+) (+)

12 42 Humerus PS (+) (+)

13 69 Femur DHS (+)

14 18 Humerus IMN (+)

15 68 Femur DHS

16 32 Humerus PS (+) (+)

17 74 Femur GN (+)

18 59 Femur DHS (+)

19 46 Humerus IMN (+) (+)

20 55 Tibia IMN (+)

21 69 Femur DHS (+)

IMN=Intramedullary Nail; GN=Gamma Nail; DHS=Dynamic Hip Screw; PS=Plate-Screw System
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In terms of location, 10 were femoral implants, 5 tibia, and 6 humerus implants. The femoral
implants used were 3 Gamma nails, one interlocking nail, and 6 dynamic hip screws. Cases with
diagnosed infection and pathological fractures were not included in the study because of the
confounding role they can have on research [34–36]. The osteosynthesis performed was by closed
reduction and intramedullary nailing in 6 cases (3 femoral and 3 tibia fractures), one of the femoral
fracture sites, and one tibia fracture requiring open reduction, followed by nailing. The humerus lesions
were managed by open reduction and internal fixation with reconstruction or dynamic compression
plates and screws (Auxein Medical, Haryana, India) in 3 cases or closed reduction and intramedullary
nailing for the other 3. All implants (Auxein Medical, Haryana, India) used were made of austenitic
stainless-steel type 316L, implanted using standard instrument sets and surgical techniques.

Diagnosis of implant failure was confirmed either by standard radiological examination during
regular follow-up visits, or on admission for patients with inciting events and new symptoms generated
by implant deterioration. Some radiographic images showing the aspect of deteriorated osteosynthesis
implants are presented in Figure 2.

Images were assessed focusing on quality of reduction, implant type adequacy, size, and position.
Retrieval of broken implants was performed with special care not to cause more damage, especially to
the fracture surface.
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Figure 2. Radiological aspects of fractures with deterioration of osteosynthesis material: humerus
fracture (a) and femoral fracture (b).

Implant failure investigation was conducted by means of macroscopic evaluation, optical
microscopy, and scanning electron microscopy in concordance with recommended standards of
retrieval analysis of failed internal fixation devices.

3. Results

Regarding external factors for osteosynthesis breakdown, we identified nine cases with critical
loading during single traumatic events and five patients with injudicious rehabilitation and excessive
loading. Subsequent radiological evaluation revealed that in eight cases (38%), fracture reduction was
flawed with malrotation, which can add to the dynamic loading of implants or an interfragmentary
gap of more than 2 mm. Only two cases (9.5%) had an unsuitably-sized implant, but always with an
external factor added to the failure process of the fixation device.

3.1. Metallographic Analysis

Optical microscopy images obtained with an Olympus BX51 (Olympus Soft Imaging Solutions,
Münster, Germany,) highlighted the metallographic structure of the sample, as seen in Figure 3.
The presence of recrystallization slabs inside the crystalline grains is noted, and inhomogeneous grains
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of variable size are observed. The obtained images do not give reason to claim that the failure of the
sample was due to technical errors, as no impurities and no gaps are present in the material.
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3.2. Stereomicroscopy

Following stereomicroscopy analysis performed on the fracture section, the image of the fracture
zone can be observed (Figure 4c,d). Analysis was made using a Olympus SZX7 stereomicroscope
(Olympus Soft Imaging Solutions, Münster, Germany). There are different areas with distinct aspects
throughout the entire surface of the fracture. Some areas present an intergranular fracture with
secondary cracks and a fibrous matte appearance, while other areas (glossy appearance) have a bright
crystalline appearance and indicate the site of fracture initiation. Therefore, the fracture has a mixed
character specific to a fatigue fracture with initiation, propagation, and sudden final fracture.Materials 2020, 13, x FOR PEER REVIEW 6 of 11 
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3.3. Scanning Electron Microscopy

SEM (Philips model ESEM XL 30 TMP-FEI Company, Eindhoven, Netherlands) was used to
characterize the surface morphology of the fracture site. Analysis of the images obtained with the
scanning electron microscope (SEM) reinforces the results obtained from optical microscopy analysis.
The fracture had a mixed character, and the propagation waves of the crack can be clearly observed
(Figure 5).
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retrieved intramedullary nails: 100 × (a,b), 60 × (c), 500 × (d,e), 45 × (f).

After implant failure analysis, the results showed that nine (42.85%) devices had structural
abnormalities with either material inclusions inside the superficial layer, or surface defects with
evidence of corrosion—all of which accounted for initiation points for material fracture (Table 2).
The cause for surface defects could not be clearly attributed to either damage caused by a careless
surgical implantation techniques or to engineering process errors. Material composition evaluation
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revealed elemental compositions with values compatible with the standard specifications for surgical
grade stainless-steel 316L.

4. Discussion

Successful bone fracture treatment by means of osteosynthesis is dependent on a myriad of factors,
such as correct indication and implant choice, surgical technique, appropriate rehabilitation, biological
factors, and implant characteristics. Nevertheless, fixation devices are not intended for long-term load
bearing in vivo, so the fracture healing process must restore the physiological equilibrium of forces
and reclaim the stress-bearing role of the intact bony structure.

When mechanical failure of fixation devices occurs, it can be categorized as fatigue failure (under
cyclic loading), plastic, or brittle. Fatigue and brittle breakdown are usually associated with flaws in
the material or design of the implant. Fatigue combined with corrosion represents a fearsome and
frequent failure cause, especially for stainless-steel internal fixation devices.

For intramedullary nails, it is well-recognized that the failure process is usually initiated in the
locking holes, proximally or distally (case presented in Figure 6). Sliding screw hip plates are prone
to significant wear and corrosion due to moving components [37,38]. For plates, the breakdown
starting point is commonly situated around the holes where the cross-sectional area is reduced and
where interaction with the screw heads generates wear and corrosion fatigue under localized stress
concentration [39].
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Implant surface integrity is very important because it conventionally becomes the initiation
point for implant fracture. Damage to the surface may be attributed to careless surgical implantation
techniques, dynamic loading conditions (fatigue), wear at component junctions, or faulty manufacturing.
Every type of surface defect, e.g., pitting, fretting, fatigue cracking, or crevicing, is in danger for
corrosion attack in vivo, which increases even more the risk for failure [40].

Unevenly distributed mechanical load on the implant may be considered a crucial element of the
failure process and commonly stems from improper device choice or faulty implantation technique
with inadequate reduction of the bone fragments and insufficient structural support.
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Therefore, we consider that the two main factors that generate the failure process of osteosynthesis
implants are structural abnormalities, with focus on implant surface integrity (initiation point) and
inappropriate surgical treatment algorithm (from implant choice to surgical implantation technique).
The second may be easily identified in clinical practice, but failed implant analysis for identification of
structural abnormalities does not represent a standard procedure. This may mean that many intrinsic
structural flaws of the material or ones inflicted during implantation may be overlooked, and therefore
failure attributed to other causes. We also consider that these two causes coexist for a large percent of
implant failures.

As seen in our series, a considerable number of cases exhibit imperfect reduction, which calls
for improvement of surgical technique, but we believe that failure should not be attributed only to
this factor, with the metallurgical analysis results supporting our view. Of the eight failure cases with
recognized fracture reduction shortcomings, six patients also showed structural abnormalities upon
retrieved implant analysis.

Although a rare event, an implant breakdown before adequate bone healing requires a challenging
management with repeated surgeries, added risks for complications, higher costs, and increased social
and psychological burdens for the patient. Implant failure can manifest as various types of material
fracture patterns, depending on the underlying mechanism. This is why legislation and protocols
governing the manufacture, trade and use of osteosynthesis implants must be well- established and
implemented, ensuring the best quality and reliability and that the relation between material structural
abnormalities and surgical treatment flaws are better analyzed. Furthermore, retrieval analysis of
failed devices used for internal fracture fixation, which provides useful data for manufacturing process
optimization and surgical protocols development, must become a more prevalent tool for failure
research and anticipation [41–44].

The results of our research show that the main two causes for implant failure are inadequate
surgical technique and intrinsic material deficiencies, coupled with corrosion. All these can induce and
promote failure initiation points and result in material breakdown.

5. Conclusions

Intramedullary nail failure represent a problematic matter with an even more demanding
management. Albeit a rare occurrence, it brings significant human and financial costs, calling for
continuous research and development of all factors involved in failure prevention.

Along with surgical implantation techniques and device manufacturing improvements, retrieval
analysis of failed implants is an important tool that can provide data for development and
implementation of better quality standards. This is supported by the results of our research, which show
that structural material flaws account for a high percentage of the observed causes of failure. In order to
identify the breaking mechanisms of osteosynthesis devices, explant analyses are needed. Macroscopic
and microscopic investigations, including stereomicroscopy and scanning electron microscopy, are
techniques that can help us identify the causes that lead to failure of implants.
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