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Abstract: Prostate cancer is one of the most common malignancies in men. It is characterized by
a high molecular genomic heterogeneity and, thus, molecular subtypes, that, to date, have not
been used in clinical practice. In the present paper, we aimed to better stratify prostate cancer
patients through the selection of robust long non-coding RNAs. To fulfill the purpose of the study, a
bioinformatic approach focused on feature selection applied to a TCGA dataset was used. In such a
way, LINC00668 and long non-coding(lnc)-SAYSD1-1, able to discriminate ERG/not-ERG subtypes,
were demonstrated to be positive prognostic biomarkers in ERG-positive patients. Furthermore, we
performed a comparison between mutated prostate cancer, identified as “classified”, and a group
of patients with no peculiar genomic alteration, named “not-classified”. Moreover, LINC00920
lncRNA overexpression has been linked to a better outcome of the hormone regimen. Through
the feature selection approach, it was found that the overexpression of lnc-ZMAT3-3 is related to
low-grade patients, and three lncRNAs: lnc-SNX10-87, lnc-AP1S2-2, and ADPGK-AS1 showed,
through a co-expression analysis, significant correlation values with potentially druggable pathways.
In conclusion, the data mining of publicly available data and robust bioinformatic analyses are able
to explore the unknown biology of malignancies.

Keywords: prostate cancer; lncRNA; feature selection

1. Introduction

Prostate cancer (PCa) is one of the most common cancers in men. It is the second-
leading cause of death for men in the US [1], and although, for 2020 compared to the last five
years, its incidence has decreased, it remains the third-leading cause of death in Europe [2].
Advanced age, ethnicity, genetic factors and family history are well-established risk factors
for PCa [3,4], while diet, obesity, physical inactivity, hyperglycemia and environmental
pollution are positively associated with prostate cancer [5,6]. Usually, monitoring of the
plasmatic prostate-specific antigen (PSA) level in the blood is used for the check-up of
the health state of the prostate, and if the value is higher than 4 ng/mL, it is a possible
risk factor for prostate cancer [7]. Since high PSA values do not necessary correspond to
prostate cancer, a gland biopsy is a mandatory step. The correct staging of prostate cancer
represents the starting point to establish which is the best therapeutic strategy, to obtain
information about the prognosis and to compare the results of the various therapeutic
options. Multiple clinical and biopsy parameters can contribute to staging, especially if
added within specific nomograms or through predictive models [8].
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The standard treatment of prostate cancer has different objectives, depending on
the anatomical extension and aggressiveness of the disease but, also, on the patient’s life
expectancy and the presence of comorbidities that may represent a risk of death higher
than that represented by prostate cancer. For this reason, a “watchful waiting” policy
(surveillance in the absence of systematic checks) may be indicated in patients with a
short life expectancy (generally, less than 10 years). Similarly, patients suffering from a
very low low-risk disease, even in the presence of a good life expectancy, can be directed
towards an “active surveillance policy”. In patients with metastatic disease, palliation
remains the most concretely achievable goal, especially if symptomatic. For these patients,
there are currently various hormone therapy (LH-RHa (luteinizing hormone-releasing
hormone agonist) ± nonsteroidal antiandrogen ± Docetaxel, LH-RHa + Abiraterone and
LH-RHa antagonist) [9–14] and chemotherapy (Docetaxel) [15–17] options that, together
with the most recent forms of radiometabolic therapy (alpha emitters) and bone-targeted
therapies, can significantly impact both their quality and their life expectancy. Prostate
cancer has long-been considered a low chemo-sensitive tumor, but in the early 2000s, some
controlled studies demonstrated the effectiveness of Docetaxel in patients suffering from
castration-resistant disease (CRPC) [18]. For patients affected by CRPC who progress after
first-line treatment with deprivation androgenic (ADT), the treatment options available
have increased considerably within the past few years and include new chemotherapeutics,
in addition to Docetaxel [19,20], new hormonal therapies [21], radio-compounds (Radium-
223) [22,23] and immunological therapies (Sipuleucel-T, a dendritic cell vaccine) [24]. How-
ever, immunotherapy, with checkpoint inhibitors such as ipilimumab and nivolumab [25]
has so far produced disappointing results in the treatment of prostate cancer, while the
phase II study KEYNOTE-199, the results of which were presented at ASCO 2018, would
seem to highlight a good therapeutic activity of pembrolizumab monotherapy [26].

In order to identify a personalized therapy based on the specific characteristics of
patients with prostate cancer, an important issue to consider is that PCa shows a high
grade of genomic variegation, with different patterns and clinical implications. Usually, the
genomic alteration occurs in the early stage of the tumor and accumulates as it progresses;
therefore, is possible to distinguish different molecular subtypes of PCa on the basis of gene
fusion, gene expression signature and other molecular alteration, but this classification
does not correspond to an accurate and precise tumor staging or predictive/prognostic
information [27]. TMPRSS2-ERG fusion is the most common molecular alteration in
localized PCa, with a frequency of 40–50% of all prostate cancer diagnosed [28]. However,
other gene fusions are grouped in the ETS-positive subclass. This includes fusions with ETS
transcription family genes like ETV1 (10%), ETV4, ETV5 and FLI1 (1–5%). ETS-negative
prostate cancer shows recurrent mutations in the SPOP, FOXA1 and IDH genes. Given the
high molecular heterogeneity of prostate cancer, a series of both ETS-positive/negative
subclasses are generally classified as “others”. In this macro-category, the less recurrent,
usually with an unknown molecular meaning, are grouped [29].

The integrated use of an advanced genome analysis has allowed to recognize and to
identify ncRNA, which, even if they do not encode for proteins, have specific biological
functions in cancerogenesis and metastasis. Among ncRNAs, the aberrant expression
of some long non-coding RNA (lncRNAs) are also correlated with the disease state for
PCa [30,31] and with a possible role in competing endogenous RNAs (ceRNAs) [32],
suggesting them a role as targets for therapeutic intervention. Long non-coding RNAs are
RNAs transcripts >200 nucleotides in length [33], with a role in cellular differentiation [34]
and in cancer pathway [35] due to the influence of specific gene expression targets and
could undergo a post-transcriptional processing to produce numerous 5′-cappelled small
RNA [36].

The therapeutic approaches against lncRNAs could be direct by affecting lncRNA
expression or indirect by targeting protein-coding genes dysregulated by the lncRNA with
a consequent perturbation of its molecular pathway and lethal effects on cancer cells [37].
Briefly, the strategies to target lncRNA encompass the repression of lncRNA transcription by
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utilizing DNA-binding elements that target its genomic locus, the silencing of the lncRNA
to induce transcript degradation, the utilization of small molecules thatmask the binding
site for lncRNAs, thereby disrupting the network of interactions responsible for the altered
function in disease-related lncRNA, and the utilization of aptamers, which antagonize the
lncRNA association with binding partners by folding into a three-dimensional structure
with higher affinity and specificity for the same regions [38]. However, in our opinion, the
not well-understood plethora of proteins and, consequently, of cellular pathways that each
lncRNA could affect, considering also their ubiquitous presence, exclude the possibility
to directly target lncRNAs for the biological effects not easy predictable and perhaps
potentially dangerous for noncancer cells.

In the present paper, a feature selection approach was applied to a TCGA-PRAD cohort
to identify lncRNA able to stratify ERG-positive cases and other subtypes. Moreover, the
same approach was also used to focus on the cases with no peculiar genomic alterations.

2. Results
2.1. lncRNA Discriminating ERG-Positive Subtype: Feature Selection

The lncRNA expression data (n = 13,074) were obtained from HT-Seq counts data of the
TCGA-PRAD cohort on the basis of LNCPipedia v5.2 annotation. The TCGA consortium
described the “molecular taxonomy” of prostate cancer (PCa), suggesting eight molecular
subtypes. In Table 1, it can be observed that ERG-positive patients include almost 50% of
the entire cohort.

Table 1. Distribution of the molecular subtypes in the TCGA-PRAD cohort.

MolecularSubtypes n (%)

ERG 151 (45.6)
ETV1 27 (8.1)
ETV4 14 (4.2)
FLI1 4 (1.2)

SPOP 38 (11.4)
FOXA1 9 (2.7)
IDH1 3 (0.9)
other 86 (25.9)

Thus, aiming to identify lncRNAs able to discriminate ERG-positive tumors from the
other subtypes, the DaMiRseq pipeline was applied. Firstly, after lncRNA expression data
filtering by read counts and the coefficient of variation (see “Materials and Methods”),
10,810 features were filtered out, including 25 hyper-variants. After, sample filtering, the
sample size was 329 cases. The SVA algorithm indicated that 18 surrogate lncRNAs were
able to explain 95% of the variance (Figure 1a), and the correlation plot suggested that
none of them had to be excluded in order to adjust the data, because no correlation with
the “class” variable was detected, which was the important result to be considered. The
correlations with other variables were not considered in order to avoid overcorrection of
the data (Figure 1b).

Finally, the supervised machine learning approach, described by Chiesa et al. [39],
was used to accomplish our aim, which was the selection of robust features—in this case,
lncRNAs to stratify ERG-positive cases from negatives ones. The MDS (Multi Dimensional
Scaling) plot in Figure 2a shows sample distances after feature selection and filtering
of highly correlated lncRNAs. The selected features were then ranked by importance
(Figure 2b), and the best 10 predictors that were identified were depicted in a cluster gram
(Figure 2c). It could be observed that ERG-positive and not are located in two different
clusters. Notably, no pattern of separation for ARv7 presence/absence and Gleason scores
was evidenced.
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Figure 2. (a) Multidimensional scaling plot that shows the effects of normalization and data adjustment. (b) Feature
importance plot showing the best performing long non-coding RNAs (lncRNAs). (c) Cluster gram of the best top 10
lncRNAs discriminating ERG/not-ERG subtypes, and (d) an Ensembl ID/LNCPipedia ID conversion table.

The classification performances of the best 10 predictors were estimated using a
meta-learner—namely, “Ensembl”—that combines the RF, SVM, NB, LDA, LR, and kNN
classifiers. Elevated accuracy, sensitivity and specificity were always greater than 90% for
all classifiers but the kNN algorithm (Figure 3).

2.2. lncRNA-mRNA Coexpression Analysis of lncRNA Discriminating ERG-Positive Subtype

The biological role of the best 10 lncRNAs was explored through the creation of a
co-expression matrix. The lncRNAs and mRNAs were significantly correlated (r > |0.6|
and p-value < 0.05) extracted. In Figure 2d, a conversion table of 92 Ensembl IDs and gene
symbols are reported.
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In Table 2, co-expressed lncRNAs and mRNAs are reported. Thus, significantly
correlated genes to lncRNA-linked mRNAs were also extrapolated to build up a network.
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Table 2. Co-expressed long non-coding RNAs(lncRNAs) and coding genes.

lncRNA Gene r p-Value

SLC5A4-AS1 CPSF1P1 0.8586 <0.0001

LINC02418 ERG 0.7761 <0.0001

lnc-PXDN-3 TPO 0.6901 <0.0001

lnc-OR1D5-1 ERG 0.6836 <0.0001

lnc-OR1D5-1 LINC02418 0.6693 <0.0001

LINC02418 CD8B2 0.6686 <0.0001

LINC02418 DACT2 0.6676 <0.0001

LINC02418 HDAC1 0.6631 <0.0001

LINC02418 ANKRD6 0.6573 <0.0001

LINC02418 OGDHL 0.6564 <0.0001

LINC02418 ALOX15 0.6530 <0.0001

LINC02418 CPNE2 0.6489 <0.0001

LINC02418 SEPTIN9 0.6437 <0.0001

LINC02418 CDH7 0.6389 <0.0001

LINC02418 ITPR3 0.6339 <0.0001

lnc-OR1D5-1 SEPTIN9 0.6311 <0.0001

LINC02418 HLA-DMB 0.6308 <0.0001

LINC02418 VSTM5 0.6233 <0.0001

LINC02418 KCNS3 0.6211 <0.0001

LINC02418 NKAIN1 0.6202 <0.0001

LINC02418 FZD8 0.6138 <0.0001

LINC02418 AMPD3 0.6120 <0.0001

lnc-PXDN-3 ERG 0.6114 <0.0001

lnc-OR1D5-1 ALOX15 0.6073 <0.0001

LINC02418 LAMC2 0.6065 <0.0001

LINC02418 SCYL3 0.6056 <0.0001

lnc-OR1D5-1 CD8B2 0.6026 <0.0001

In Figure 4a, it could be observed that LINC02418, lnc-OR1D5-1 and lnc-PXDN-3
showed significant correlations, and the relative biological enrichment network, depicted
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in Figure 4b, showed that VEGFR signaling pathways, CREB activity, purine metabolism
and the regulation of differentiation of epithelial cells are enriched pathways.
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2.3. PPI Network and Identification of Highly Connected Subnetwork in ERG-Positive Subtype

A protein–protein interaction (PPI) network was built up through the STRING database
and Cytoscape retrieval engine (Figure 5a). The network was then analyzed through the
Molecular Complex Detection (MCODE) algorithm and identified three highly connected
subnetworks. The first cluster included the KCNN4, ITPR3, ITPR1 and CACNA1D proteins
(Figure 5b), enriched in pathways such as the GnRH (gonadotropin-releasing hormone)
signaling pathway, calcium regulation and aldosterone synthesis (Table 3).
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Figure 5. (a) Protein–protein interaction (PPI) network derived from the co-expression network.
(b–d) Subnetworks identified by the Molecular Complex Detection (MCODE) algorithm.

The subnetwork including the PDE3B, NT5C and AMPD3 proteins (Figure 5c) is
enriched in pathways mainly involved in purine metabolism (Table 4). The third PPI
network cluster includes the LRP5, PTK7 and FZD8 proteins (Figure 5d), whose enrichment
analysis indicated the Wnt pathway as the most enriched (Table 5).



Int. J. Mol. Sci. 2021, 22, 2227 10 of 23

Table 3. Functional enrichment of the first subcluster of the protein–protein interaction (PPI) network.

Category Description FDR Value

GO Function inositol 1,4,5-trisphosphate-sensitive
calcium-release channel activity 4.7 × 10−6

GO Function Cation channel activity 4.7 × 10−6

GO Function Ion-gated channel activity 4.7 × 10−6

GO Function metal ion transmembrane transporter activity 4.7× 10−6

GO Function Calcium channel activity 5.56 × 10−6

GO Process Calcium ion transport 6.31 × 10−6

KEGG Pathways cGMP-PKG signaling pathway 7.6 × 10−6

KEGG Pathways Cellular senescence 7.6 × 10−6

KEGG Pathways Vascular smooth muscle contraction 7.6 × 10−6

KEGG Pathways Circadian entrainment 7.6 × 10−6

KEGG Pathways Retrograde endocannabinoid signaling 7.6 × 10−6

KEGG Pathways Glutamatergic synapse 7.6 × 10−6

KEGG Pathways Cholinergic synapse 7.6 × 10−6

KEGG Pathways Serotonergic synapse 7.6 × 10−6

KEGG Pathways Dopaminergic synapse 7.6 × 10−6

KEGG Pathways Insulin secretion 7.6 × 10−6

KEGG Pathways GnRH signaling pathway 7.6 × 10−6

KEGG Pathways Oxytocin signaling pathway 7.6 × 10−6

KEGG Pathways Renin secretion 7.6 × 10−6

KEGG Pathways Aldosterone synthesis and secretion 7.6 × 10−6

KEGG Pathways Cortisol synthesis and secretion 7.6 × 10−6

KEGG Pathways Cushing’s syndrome 7.6 × 10−6

KEGG Pathways Salivary secretion 7.6 × 10−6

KEGG Pathways Alzheimer’s disease 7.6 × 10−6

KEGG Pathways Calcium signaling pathway 8.6 × 10−6

GO Function inositol 1,4,5 trisphosphate binding 1.36 × 10−6

GO Process regulation of protein secretion 1.43 × 10−5

Reactome Pathways Regulation of insulin secretion 1.58 × 10−5

Reactome Pathways Integration of energy metabolism 1.96 × 10−5

Reactome Pathways Cardiac conduction 2.57 × 10−5

Reactome Pathways CLEC7A (Dectin-1) induces NFAT activation 3.3 × 10−5

GO Process Inorganic cation transmembrane transport 4.36 × 10−5

Reactome Pathways Elevation of cytosolic Ca2+ levels 4.58 × 10−5

Reactome Pathways Muscle contraction 4.58 × 10−5

Reactome Pathways VEGFR2-mediated cell proliferation 4.58 × 10−5

GO Process regulation of insulin secretion 4.82 × 10−5

GO Process Calcium ion transmembrane transport 5.98 × 10−5

GO Process regulation of heart contraction 6.38 × 10−5

Reactome Pathways Role of phospholipids in phagocytosis 7.41 × 10−5

Reactome Pathways Effects of PIP2 hydrolysis 7.62 × 10−5

Table 4. Functional enrichment of the second subcluster of the PPI network.

Category Description FDR Value

KEGG Pathways Purine metabolism 9.3 × 10−6

Reactome Pathways Metabolism of nucleotides 0.002
GO Process purine nucleotide catabolic process 0.0038
GO Process nucleoside metabolic process 0.0064
GO Process carbohydrate derivative catabolic process 0.0064
GO Process purine nucleotide metabolic process 0.032

GO Function Phosphoric ester hydrolase activity 0.0323
GO Function Hydrolase activity 0.0324
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Table 5. Functional enrichment of the third subcluster of the PPI network.

Category Description FDR Value

GO Component Wnt-Frizzled-LRP5/6 complex 7.05 × 10−6

ReactomePathways RNF mutants show enhanced WNT signaling and proliferation 1.2 × 10−5

GO Function Coreceptor activity involved in Wnt signaling pathway 2.89 × 10−5

ReactomePathways Regulation of FZD by ubiquitination 3.37 × 10−5

GO Process CanonicalWnt signaling pathway 5.31 × 10−5

ReactomePathways Signaling by WNT in cancer 5.59 × 10−5

GO Function Wnt-activated receptor activity 8.12 × 10−5

GO Function Wnt-protein binding 1.1 × 10−4

GO Process Blood vessel development 0.0013
ReactomePathways TCF-dependent signaling in response to WNT 0.0013

GO Process Tube morphogenesis 0.0018
KEGG Pathways mTOR signaling pathway 0.0023
KEGG Pathways Wnt signaling pathway 0.0023
KEGG Pathways Breast cancer 0.0023
KEGG Pathways Hepatocellular carcinoma 0.0023
KEGG Pathways Gastric cancer 0.0023

ReactomePathways Signaling by WNT 0.0023
ReactomePathways Diseases of signal transduction 0.0029

GO Function Signaling receptor activity 0.0032
GO Process Non-canonical Wnt signaling pathway 0.0032

KEGG Pathways Pathways in cancer 0.0048
GO Process Sensory organ morphogenesis 0.0173

ReactomePathways Disease 0.0191
GO Process Epithelial tube morphogenesis 0.0231

GO Component Plasma membrane part 0.0293
GO Process Blood vessel morphogenesis 0.0328
GO Process Regulation of protein serine/threonine kinase activity 0.0451
GO Process Embryonic morphogenesis 0.0484

2.4. Prognostic and/or Predictive Role of the Best 10 lncRNAs Discriminating ERG versus
Non-ERG Subtypes

Clinical data of the TCGA-PRAD cohort was downloaded—in particular, the Gleason
score and PFS time related to first-line treatment (hormone-therapy)—in order to hypothe-
size a possible role of the selected lncRNAs as prognosticators and/or predictors of the
response to hormone therapy.

The prognostic role was explored by stratifying patients according to their Gleason
scores in both the ERG-positive and non-ERG subgroups. In particular, as demonstrated
by the literature, patients with Gleason scores ≤ 3+4 are low-grade, whilst PCa cases
with Gleason scores ≥ 4+3 are affected by high-grade tumors and, thus, with a worse
prognosis. In our analysis, as shown in Figure 6a, only patients with a Gleason score ≤ 3+4
significantly overexpressed LINC00668 and lnc-SAYSD1-1 in the ERG-positive subgroup.
In contrast, no positive associations were found in the non-ERG one. Thus, it could be
supposed that these two lncRNAs could have a positive prognostic role inERG-positive
PCa patients.

Furthermore, patients were stratified according to the expression values of the best 10
lncRNAs and by log-rank test Kaplan-Meier curves. Importantly, we demonstrated that
a low level of only LINC00920 lncRNA was strongly correlated with a poorer PFS after
hormone therapy (p < 0.013) in the ERG-positive subgroup of PCa patients; conversely, this
correlation was absent in the non-ERG subgroup (Figure 6b).
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2.5. Feature Selection to Classify the “Not-Classified” Subtype

The authors of the PCa molecular subtyping identified the so-called “others” sub-
group [27], constituting almost 25.9% of the entire cohort (Table 1). Such a group, that we
define as the “not-classified” group, showed no peculiar genomic alterations. Thus, to be
able to classify this group, the same pipeline was applied, using as the class variable the
“classified” group, including ERG, ETV1, ETV4, FLI1, SPOP, FOXA1 and IDH1-positive
patients, and “not classified”, including, as stated above, the “others” subtype. The lncRNA
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raw read count expression matrix was filtered for lncRNA expression. In particular, in
this step, 10,773 features were filtered out, including 32 hyper-variant features. Thus,
2267 features remained and underwent a variance stabilizing transformation (“vst”) nor-
malization. In the sample filtering step, three samples were discarded, and 328 patients
remained. Twenty surrogate variables were identified as able to explain 95% of the variance
and, thus, were used to adjust the data. In the feature selection step, 2229 lncRNAs were
discarded, leaving 38 features. Moreover, two highly correlated lncRNAs were removed,
and thus, 36 features remained for the classification. The remaining features were ranked
for their importance, as shown in Figure 7a, and the top 10 best lncRNAs were selected.
The clusterplot (Figure 7b) evidenced a clear clustering of classified and not-classified
tumors. In Figure 7c, the conversion table and Venn diagram compared the identified top
10 lncRNAs, discriminating between classified/not-classified cases and ERG/not-ERG
patients. lnc-SAYSD1-1, LINC00920 and lnc-SNX10-87 were all present in the two subsets.
We compared the performance of the selected features, obtaining a median accuracy of
83.5%, median sensitivity of 96.5% and 52.2% as the median specificity.
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2.6. Co-Expression Network, Functional Enrichment and Prognostic Significance in Classified
versus Nonclassified Subtypes

To gain insights into the molecular role of the selected lncRNAs, a co-expression
network was built up. In Table 6, the significantly correlated lncRNA/mRNA pairs are re-
ported, and the biological network is built up, as shown above, including genes significantly
correlated to lncRNA-co-expressed mRNAs.

Table 6. Co-expressed lncRNAs and genes.

lncRNA Gene r p-Value

lnc-AP1S2-2 GRPR 0.6863 <0.0001

lnc-SNX10-87 ALOX15 0.6841 <0.0001

lnc-SNX10-87 SEPTIN9 0.6841 <0.0001

lnc-SNX10-87 ERG 0.6795 <0.0001

lnc-SNX10-87 KCNH8 0.6795 <0.0001

lnc-SNX10-87 CDH7 0.6555 <0.0001

lnc-SNX10-87 CACNA1D 0.6539 <0.0001

lnc-SNX10-87 LAMC2 0.6372 <0.0001

lnc-SNX10-87 TTC7B 0.6349 <0.0001

lnc-SNX10-87 MCOLN3 0.6330 <0.0001

lnc-SNX10-87 KIF16B 0.6330 <0.0001

lnc-SNX10-87 FZD8 0.6286 <0.0001

lnc-SNX10-87 OGDHL 0.6286 <0.0001

lnc-SNX10-87 DACT2 0.6272 <0.0001

lnc-SNX10-87 CPNE2 0.6244 <0.0001

lnc-SNX10-87 ANKRD6 0.6234 <0.0001

lnc-SNX10-87 EML6 0.6161 <0.0001

lnc-SNX10-87 ABCC8 0.6059 <0.0001

lnc-SNX10-87 NKAIN1 0.6059 <0.0001

ADPGK-AS1 ADPGK −0.6047 <0.0001

lnc-SNX10-87 HDAC1 −0.6154 <0.0001

lnc-SNX10-87 KCNS3 −0.6166 <0.0001

lnc-SNX10-87 CD8B2 −0.6204 <0.0001

lnc-SNX10-87 HLA-DMB −0.6444 <0.0001

lnc-SNX10-87 ITPR3 −0.6802 <0.0001

The lncRNAs showing significant correlations at the established cut-off were lnc-
SNX10-87, ADPGK-AS1 and lnc-AP1S2-2 (Figure 8a). The functional enrichment analysis
of the network evidenced the pathways involved in G-protein-mediated events, VEGFA
pathways and integration of the metabolism (Figure 8b).

Furthermore, such lncRNAs resulted inbeing not significantly correlated to PFS in
patients receiving hormone therapy. However, when stratifying PCa patients accord-
ing to Gleason scores, it was observed that low-grade patients (Gleason scores ≤ 3+4)
have a significant higher median expression of lnc-ZMAT3-3 than high-grade patients
(p-value = 0.034) (Figure 8c).
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3. Discussion

In the present paper, through the application of a feature selection approach, a set
of lncRNAs was identified as able to discriminate ERG-positive from other molecular
subtypes and classified from not-classified. The chance to gain mechanistic insights on
the biological role of the selected lncRNAs was explored through a co-expression analysis
and the set-up of a biological network. Such an aspect was explored both by performing a
functional enrichment of the co-expression network and the build-up of the PPI network.
Moreover, the great amount of molecular data opened the chance to better stratify patients
in terms of prognostic/diagnostic predictions.

The identification of the three annotated lncRNAs LINC02418, Lnc-OR1D5-1 and
Lnc-PXDN-3 discriminating the ERG-positive subtype of prostate cancer vs. others and
the analysis of the co-expressed protein-coding genes and these lncRNAs revealed novel
promising pharmacological targets in specific subtypes of prostate cancer. The first of them,
LINC02418, we found overexpressed in the ERG-positive subtype of prostate cancer and,
also, differentially expressed between colorectal cancer (CRC) tissues and noncancerous
tissues [39] and upregulated in NSCLC (non-small cell lung cancer) tissues [40]. Both
authors reported an active role for this lncRNA in tumorigenesis and in a CRC (colorectal
cancer) model, and interestingly, Zhao demonstrated that LINC02418 upregulated maternal
embryonic leucine zipper kinase (MELK) expression by acting as a ceRNA, which absorbs
miR-1273g-3p [40,41]. MELK is involved in cancer cell survival and invasiveness and
has been already suggested as a novel potential therapeutic target in prostate cancer [42].
Thus, in ERG-positive high-grade tumors (Gleason greater than 4+3) [42–44], expressing a
high level of LINC02418, the MELK inhibitor OTS167 could be a promising therapeutic
opportunity, because it is already utilized in clinical trials for the treatment of breast cancer
and onco-hematological pathologies [45]. Another speculation, to hypothesize a novel
therapeutic strategy in positive ERG prostate cancer patients, was based on the analysis
of the co-expressed protein-coding genes and lncRNAs. The upregulation of the Wnt
pathway and its inhibition emerged as a promising strategy against prostate cancer [46],
although thinking about the most appropriate approach is imperative for the pervasive
role of the Wnt pathway in normal tissue homeostasis. Several approaches have been
taken into account for inhibiting the Wnt pathway, such as LGK974, a drug that targets
the Wnt-specific acyltransferase porcupine, and the tankyrase inhibitor XAV939 [46], and
the growing interest in the inhibition of the Wnt pathway in prostate cancer models
confirms the validity of the therapeutic hypothesis. Another pathway deregulated in
ERG-positive patients and correlated with the upregulation of the three lncRNAs is the
purine pathway, with mainly NT5C and AMPD3 as correlated genes which opens up the
possibility to utilize purine and pyrimidine antimetabolites [47] for anticancer treatments
of such patients. In prostate cancer, pemetrexed, which inhibits the three enzymes used
in purine and pyrimidine synthesis, has been used in combination with drugs, such as
docetaxel, showing only modest clinical activity [39]. It is our opinion that a better selection
of patients, stratified not only by degree of disease (Gleason value) but, also, by genomic
alteration, could lead to better results in clinical trials.

Moreover, a positive prognostic role for LINC00668 and lnc-SAYSD1-1 was highlighted.
In particular, we found that the overexpression of these two lncRNAs is significantly
correlated with low-grade ERG-positive patients. LINC00668 is a lncRNA known for
its role in cell cycle alterations. Its overexpression has already been described as a poor
prognostic factor in gastric carcinoma [48], in breast cancer progression [49] and in the
progression of colorectal cancer (CRC) [50]. If a role as a miR188-5p sponge is hypothesized
in CRC, in gastric carcinoma, it could play a role in cyclin-dependent protein kinase
inhibitors (CKIs) by means of epigenetic regulation. Both effects are contemplated in the
lncRNA functions [51,52]. Our evidence on LINC00688 is in contrast with those reported
in gastric, breast and colon cancers [48]. Therefore, further investigation is needed to verify
the role of this lncRNA in ERG-positive prostate tumors, in which it is reported that the
expression of cell cycle-related genes is negatively regulated by ERG [53]. Likewise, the lnc-
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SAYSD1-1 also bioinformatically allows to distinguish the ERG-positive from all the other
subclasses of prostate cancer with a Gleason score ≤ 3+4. However, to date, no data have
been reported on this lncRNA; therefore, we can only speculate about a possible biological
role. This lncRNA maps chromosome 6 and partially overlaps the opposite strand with
the DNAH8 gene (NM_001206927.2). The overexpression of this gene promotes androgen
receptor activity and is associated with prostate cancer progression [54]. Therefore, we can
speculate that lncSAYSD1-1 could be a cis-NAT (natural antisense transcripts) [55], and the
overexpression of DNAH8 could be controlled primarily by the action of lnc-SAYSD1-1
through microRNA (miRNA) mechanisms. This would explain an overexpression of lnc-
SAYSD1-1 in an early stage of the tumor, such as that represented by Gleason ≤ 3+4, while
the absence in subjects suffering from cancer with Gleason ≥ 4+3 could be understood as a
positive prognostic factor.

Another interesting result from our bioinformatics analysis is that LINC00920 is
overexpressed in ERG-positive patients that showed a better survival in terms of PFS to
hormonal treatment, suggesting a role for this lncRNA as a predictive factor. The Lnc00920
has been reported to positively impact pathways related to the cell cycle, cell division,
apoptosis and cell movement [56] by sequestering FOXO1, which functionally suppress
the androgen receptor expression [57]. Then, we can hypothesize that, in low-grade ERG-
positive tumors, the higher the expression of Lnc00920, the better the response to hormonal
treatment, because Lnc00920 may remove the FOXO1-dependent suppression of androgen
receptor expression [58].

Then, patients were stratified into two groups: prostate cancer with a known ge-
nomic alteration vs. unknown, and the co-expression analysis showed that three lncRNAs:
lnc-SNX10-87, lnc-AP1S2-2 and ADPGK-AS1 have significant correlation values with
other coding genes. As regards the lnc-SNX10-87 alias of LOC100506289 (uncharacter-
ized LOC100506289), it is an RNA gene affiliated with the lncRNA class and localized on
chr7:26551822-26557200 [59]. To date, nothing has been reported on the possible predictive
or prognostic role of this specific lncRNA in prostate cancer. However, we found its co-
expression with several protein-coding genes, among which, in particular, was the histone
deacetylase 1 (HDAC1) gene, whose protein is a component of the histone deacetylase
complex, a key element in the control of cell proliferation and differentiation [59]. It has
been reported that HDAC activity is highly increased in metastatic cells compared with
noninvasive cancer cells [60]. In particular, HDAC1 is upregulated in hormone refractory
prostate cancer, and the overexpression of HDAC1 leads to an increase in prostate cancer
cell proliferation [61,62]. Recently, histone deacetylase (HDAC) inhibitors have emerged
as a promising new class of anticancer agents that act through a variety of mechanisms,
including growth inhibition, cell cycle arrest, differentiation and apoptosis, in cancer cell
lines. We suggest that these drugs may have a role in the treatment of prostate cancer
patients with unknown genetic alteration. Their effectiveness has already been demon-
strated in in vitro and in vivo prostate cancer studies [52,61,62]. Among these MHY219
was shown to inhibit the migration of human prostate cancer cells in the study conducted
by De et al. [61]. Moreover, histone deacetylase inhibitors have been evaluated in castration-
resistant prostate cancer (CRPC) or chemotherapy-resistant prostate cancer due to their
effects on the expression of the androgen receptor gene. Recent clinical trials of vorinostat
(ClinicalTrials.gov Identifier codes: NCT00330161 and NCT01174199), Entinostat (Clinical-
Trials.gov Identifier code: NCT03829930), romidepsin and panobinostat (ClinicalTrials.gov
Identifier codes: NCT00878436, NCT00493766 and NCT00663832) have provided cautious
optimism towards improved outcomes using these novel therapeutic agents for CRPC
patients [63]. In addition, a phase II study of SB939 in patients with recurrent or metastatic
castration-resistant prostate cancer concluded in February 2020 (ClinicalTrials.gov Iden-
tifier: NCT01075308) [64]. Another lncRNA in the top 10 best-selected features by the
stratification of prostate cancer patients with known genomic alteration vs. unknown is
lnc-AP1S2-2. This lncRNA sequence is 454 nucleotides long and located on chrX:16153220-
16165121 and has been annotated by four databases (NONCODE, LNCipedia, LncBook
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and GeneCards) and described by two different groups of researchers [65,66]. We found
a co-expression network between lnc-AP1S2-2 and the gastrin-releasing peptide receptor
(GRPR) gene, which has been extensively investigated as a molecular target in experimental
anticancer therapy [67]. An important characteristic of GRPR is that it is overexpressed
in prostatic tumor cells, but only low levels of receptors were found on normal prostate
tissues [68–71]. Moreover, several authors studied the correlation between GRPR over-
expression in PC tissues and the tumor grade or stage, leading to different results. In
particular, a significant positive correlation between the GRPR expression and Gleason
score in 51 PC patients in contrast to no correlation with the patient’s age, serum PSA
level, pathological stage or lymph node status was demonstrated by Nagasaki et al. [72].
Beer et al. [68], who analyzed the expression of GRPR both in benign and in malignant
prostate samples from 530 PC patients, found a significant inverse correlation with GRPR
and a higher Gleason score, PSA value and tumor size, so GRPR was more highly overex-
pressed in lower-grade cancer and smaller-sized tumors. A positive association between
the GRP expression and relapse or advanced tumor stages was reported by Constantinides
et al. [73]. With the aim to develop a personalized management of PC patients, several
ligands of GRPR, such as radiolabeled bombesin analogs (ClinicalTrials.gov Identifiers:
NCT02440308 and NCT03724253) [72] able to guide the diagnosis, as well as treatment
of PC, are being tested in clinical trials. However, larger prospective clinical trials are
needed to strengthen the correlation between preclinical studies in mouse tumor models
and the preliminary in vivo performance in cancer patients [71]. ADPGK-AS1, an antisense
lncRNA gene mapped on chr15:72783884-72792963, was found differentially expressed
in patients with known genomic alteration vs. unknown ones. Although nothing has
been yet reported in the literature on the role of this lncRNA in the development and
progression of prostate cancer, there is evidence of its role in the progression of pancreatic
and gastric cancers. In particular, Song et al. [72] found that ADPGK-AS1 is involved
in pancreatic cancer progression through activating zinc finger E-box-binding homeobox
1(ZEB1)-mediated epithelial–mesenchymal transition. Huang et al. [72] demonstrated
that ADPGK-AS1 could promote gastric cancer progression via sponging miR-3196 and,
therefore, upregulating the KDM1B gene, providing a novel prognostic biomarker and
therapeutic target for GC patients. Moreover, ADPGK-AS1 was found co-expressed with
the ADP-dependent glucokinase gene (ADPGK), codifying for ADPGK, which catalyzes
the ADP-dependent phosphorylation of glucose to glucose-6-phosphate and may play a
role in glycolysis, possibly during ischemic conditions [72].

Finally, in order to define if these lncRNAs could have a role as prognostic or predictive
biomarkers, in our analysis, we found that only lnc-ZMAT3-3 is statistically higher in
patients with Gleason scores ≤ 3+4 in the “not-classified” group. Thus, it could be a
positive prognosticator, meaning that its levels decrease as the disease progresses. However,
nothing has been reported in the literature on the role of this lncRNA in cancer. There is no
other hypothesis we can formulate, due to the chromosomal position providing little food
for thought and the absence of data currently present in the literature. However, this could
be a stimulus for future in vitro studies.

In conclusion, high-throughput data allowed to explore the unknown biology of tu-
mors, increasing the burden of hypothesis-generating information. The feature selection
approach used in the present study shed light on the chance to identify lncRNAs as poten-
tially predictive biomarkers in terms of prognostication and druggable targets. Prostate
cancer is a malignancy that, given its high molecular heterogeneity, could benefit from
such a bioinformatic approach, targeting future studies on the selected robust lncRNAs.

4. Materials and Methods
4.1. TCGA-PRAD Data Retrieval and Preprocessing

TCGA biolinks package [74] was used to retrieve clinical data and HT-Seq count
transcriptome data. Ensembl ID was converted into HUGO gene symbols by BiomaRt R
package [75]. lncRNA expression data was extrapolated by the LNCipedia v5.2 conversion
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table [76], thus obtaining two raw read count matrices: one for mRNAs and another for
lncRNAs. Molecular subtype information was retrieved by the TCGA query_subtype
(tumor = “TCGA-PRAD”) function. Thus, a data frame including patient IDs and the class
variable was prepared. Such a variable was ERG-positive and others (including not-ERG
molecular subtypes) in the first analysis and classified/not-classified in the second analysis.

4.2. DaMiRseq Pipeline
4.2.1. Preprocessing: Filtering by Expression, Normalization, Sample Filtering and Data
Adjusting

Firstly, lncRNA expression matrix and variable information was used to create a
summarized experiment (SE). The SE underwent an expression-filtering step, setting up
a cut-off of at least 10 read counts in at least 70% of samples. Hyper-variantlnc RNAs
were identified by calculating the coefficient of variation and excluded. The remaining
features underwent normalization through a variance stabilizing transformation (“vst”).
Sample–per-sample correlation was estimated, filtering out samples with a coefficient
of correlation <0.9. Data adjustments were performed by the identification of surrogate
variables (sv). They were identified with the “Fraction of Explained Variance” (fve) method
with a cut-off of explained variance of 0.95 and used for data adjustment. The correlation
between the sv and variables was verified in order to remove sv with unwanted significant
correlations. As stated by Chiesa et al. [77], the correlation between sv and the “class”
variable should always be not-significant.

4.2.2. Feature Selection and Evaluation of Classification Performances

The aim of this step was to identify a set of robust features able to discriminate
samples by the “class” label. DaMiR. F Select function of the package allowed to have an
expression matrix with only informative features. Moreover, highly correlated features
were also removed, setting up a correlation cut-off of 0.85. Then, the remaining features
were ranked by their importance, and the first 10 were selected as the best predictors.
To gain accuracy metrics, a Bootstrap resampling strategy was applied to the dataset
(number of iterations = 100). The classification performances of the selected features, in
terms of accuracy, sensitivity and specificity, were explored using a meta-learner—namely,
“Ensemble”—that combines the RF, SVM, NB, LDA, LR and kNN classifiers.

4.3. Co-Expression Analysis and Network

Co-expression analysis was performed through the Hmisc R package to calculate the
Pearson correlation and relative p-values. An expression matrix, including mRNAs and
selected lncRNAs, was created and vst normalized. Then, correlations with r > |0.6| and
p-value < 0.05 were selected. Moreover, for the network construction, genes significantly
correlated to lncRNA-linked mRNAs were also included for the network build-up. Net-
work was visualized by Cytoscape v3.8.0. The network was then functionally enriched by
theClueGO app of Cytoscape, including KEGG, Gene Ontology and Reactome databases.

4.4. Protein–ProteinInteraction (PPI) Network and Cluster Identification

The PPI network was set up using STRING database and Cytoscape engine retrieval.
Such a network was further analyzed through the MCODE [78] algorithm. Briefly, the
MCODE (“Molecular Complex Detection”) algorithm is a graph-clustering algorithm
able to identify highly connected regions in the PPI network. It was used as the app of
Cytoscape software.

4.5. Statistical Analyses

PFS Kaplan-Meier curves were compared with a log-rank test by the Survival R
Package. Expression values were compared through a Wilcoxon test. ggplot2 R package
was used for graphs. Results were considered significant when p-value < 0.05.
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PCa Prostate cancer
PSA Prostate Specific Antigen
lncRNA Long non-coding RNA
CRPC Castration resistant prostate cancer
ADT Deprivation Androgenic
MDS plot Multidimensional scaling plot
RF Random Forest
SVM Support Vector Machine
NB Naïve Bayes classifiers
LDA Latent Dirichlet allocation
LR Linear Regression
kNN k-nearest neighbors algorithm
PPI protein–protein interaction
PFS Progression-Free Survival
CRC colorectal cancer
CKIs protein kinase inhibitors
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