
royalsocietypublishing.org/journal/rstb
Review
Cite this article: Carey SB, Aközbek L,
Harkess A. 2022 The contributions of Nettie

Stevens to the field of sex chromosome

biology. Phil. Trans. R. Soc. B 377: 20210215.
https://doi.org/10.1098/rstb.2021.0215

Received: 4 October 2021

Accepted: 26 January 2022

One contribution of 15 to a theme issue ‘Sex

determination and sex chromosome evolution

in land plants’.

Subject Areas:
genetics

Keywords:
sex chromosomes, dioecy, cytology, genomics

Author for correspondence:
Alex Harkess

e-mail: aharkess@hudsonalpha.org
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
†These authors contributed equally to this

manuscript.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5862304.
The contributions of Nettie Stevens to the
field of sex chromosome biology

Sarah B. Carey1,2,†, Laramie Aközbek1,2,† and Alex Harkess1,2

1Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
2HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA

SBC, 0000-0002-6431-0660; LA, 0000-0003-3341-3509; AH, 0000-0002-2035-0871

The early 1900s delivered many foundational discoveries in genetics, includ-
ing re-discovery of Mendel’s research and the chromosomal theory of
inheritance. Following these insights, many focused their research on
whether the development of separate sexes had a chromosomal basis or if
instead it was caused by environmental factors. It is Dr Nettie M. Stevens’
Studies in spermatogenesis (1905) that provided the unequivocal evidence
that the inheritance of the Y chromosome initiated male development in
mealworms. This result established that sex is indeed a Mendelian trait
with a genetic basis and that the sex chromosomes play a critical role. In
Part II of Studies in spermatogenesis (1906), an XY pair was identified in
dozens of additional species, further validating the function of sex chromo-
somes. Since this formative work, a wealth of studies in animals and plants
have examined the genetic basis of sex. The goal of this review is to shine a
light again on Stevens’ Studies in spermatogenesis and the lasting impact of
this work. We additionally focus on key findings in plant systems over the
last century and open questions that are best answered, as in Stevens’
work, by synthesizing across many systems.

This article is part of the theme issue ‘Sex determination and sex chromo-
some evolution in land plants’.
1. Introduction
For over a century, uncovering the genetic basis for the development of the sep-
arate sexes has been a lively area of research. How a single species develops two
strikingly different forms captivated early naturalists, like Carl Linnaeus and
Charles Darwin, but it was not until the early 1900s that sex was shown to
have a genetic basis. The pivotal study that provided this evidence was Studies
in spermatogenesis (1905) by Dr Nettie M. Stevens [1]. In this two-part piece,
Stevens showed, through careful cytological examination, that the inheritance
of the Y chromosome is correlated with male development in dozens of
insect species. Despite the importance of this work, and over 6000 peer-
reviewed articles on the topic of sex chromosomes since (Web of Science,
accessed 20 August 2021), Studies in spermatogenesis has been cited fewer than
100 times (Google Scholar, accessed 24 July 2021). Here, we aim to reilluminate
interest in this eloquent body of work and the decisive importance of Stevens’
research to the topic of sex chromosomes. We next discuss the outpouring of
studies on sex chromosomes in diverse plant systems after the publication of
Studies in spermatogenesis, and posit that the future of studying sex chromo-
somes should follow the lessons of past and current researchers by
examining many independent evolutions across kingdoms.
2. Nettie Stevens’ career
Nettie Maria Stevens was born on 7 July 1861 in Cavendish, Vermont, USA
(figure 1). Stevens started her education at Westford Academy (1872–1880)
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(a) (b)

Figure 1. Photographs of Dr Nettie M. Stevens. (a) Stevens looking through her iconic microscope (1909), Bryn Mawr College Special Collections, PA_Stevens_-
Nettie_005. (b) Alice Boring, Nettie Stevens and colleagues at a beach near Capo di Messina (1909), Bryn Mawr College Special Collections, PA_Stevens_Nettie_001.
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and Westfield State Normal School (now Westfield State
University; 1881–1883), to prepare for a career in teaching,
and for the next decade or so Stevens worked as a teacher
or librarian [2]. She saved enough money to continue her edu-
cation, and in 1896 she began at Stanford University (then
called Leland Stanford Jr University), earning both Bachelor
and Master degrees (1896–1900). It was during this time at
Stanford that Stevens’ cytological and histological research
took off while spending her summers working at the
Hopkins Marine Station. In 1901, she published her first
manuscript histologically describing ciliates, where through
her detailed observations across the life cycle, she identified
two new species [3].

The turn of the twentieth century was a transformative
time for cytogenetic studies. Gregor Mendel’s foundational
research on heredity in pea plants, establishing the laws of
segregation and independent assortment in reproductive
cells [4], had recently been rediscovered by Carl Correns,
Erich von Tschermak and Hugo de Vries [5–7]. Only a few
years later Walter S. Sutton and Theodor Boveri indepen-
dently showed that the behaviour of chromosomes during
meiosis could be the basis for such Mendelian inheritance
[8,9]. Though not all biologists were sold on the role of
chromosomes in heredity based on these works alone,
Stevens was quick to adopt these findings into her research.

Nettie Stevens continued her education at Bryn Mawr
(Pennsylvania, USA), which by many accounts was an ideal
place for biological research. Bryn Mawr was a relatively new
school at this time, established in 1885 as one of the Seven
Sister Schools, but had employed two well-known biologists
in succession: Edmund Beecher Wilson, who would later
author the acclaimed The cell in development and inheritance
(1896) [10] and Thomas Hunt Morgan, future Nobel Laureate
(1933) and ‘Father of Modern Genetics’. Though Wilson left
for Columbia University before Stevens started, Morgan
became Stevens’ doctoral advisor, and the three collaborated
closely. Soon after starting, in 1901, Stevens received the Bryn
Mawr President’s European Fellowship, which provided fund-
ing to research at Naples Zoological Station with Theodor
Boveri, who at the time was working on his contributions to
the chromosomal theory of inheritance. Stevens’ doctoral
thesis built on her Master’s work, expanding to new species
and varieties of ciliates, where she described microanatomy
and regeneration [11]. In 1903, Nettie Stevens received her PhD.

Over the next several years, Stevens continued her upward
trajectory and notability as a scientist. In 1903, Stevens applied
for and received a grant to specifically study sex determination
by chromosomes [12], the research published in Studies in sper-
matogenesis. In 1904, she became a postdoctoral research
assistant with the Carnegie Institute of Washington and then
returned to Bryn Mawr as a research associate. Her research
continued to focus on cytological analyses throughout
spermatogenesis, development and regeneration. Interestingly,
Stevens may have also been one of the first scientists to
discover B chromosomes, suggesting a possible relationship
between these and sex chromosomes [13,14]. In 1905, her
manuscript focusing on the germ cells of aphids won the
Ellen Richards Prize given by the Association for Maintaining
the American Woman’s Table at the Zoological Station at
Naples [15]. In 1910, Stevens was listed in the top 1000 ‘men
of science’, being one of 18 women recognized that year [16].
By 1912, Stevens was finally offered a research professorship
at Bryn Mawr, but before she began this new role, she died
of breast cancer at the age of 50 (4 May 1912).

Without a doubt, despite her life and career tragically
being cut short, Stevens made an extraordinary impact on
the field of biology. In the 11 years between Stevens’ first
publication and her passing, she published at least 38
manuscripts [2]. Stevens’ contributions have not been com-
pletely lost to time. In 1994, Stevens was inducted into the
National Women’s Hall of Fame and in 2017 Westfield State
University opened the Dr Nettie Maria Stevens Science and
Innovation Center. Stevens was a remarkably accomplished
scientist with many foundational discoveries, though her
best-known is about the role of sex chromosomes.
(a) Studies in spermatogenesis
The development of the sexes was an area of substantial
interest by the end of the ninteenth century. As Wilson
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described it, ‘The phenomenon of sex is so nearly a universal
one that it may be assumed to make some appeal to the inter-
est of biologists in every field of inquiry’ [17, p. 53]. Many
researchers began investigating the leading theories behind
sex determination, principally whether there is a genetic
underpinning or if external environmental factors are
involved. While today there are some species for which a
form of environmental sex determination has been identified
[18,19], most species with gonochory or dioecy have a genetic
basis.

The beeline that resulted in the identification of sex
chromosomes started in 1891, when Hermann von Henking
found in the firebug, Pyrrochoris apterus, that during meiosis
half of the sperm inherited 11 chromosomes and the other
half 12. Von Henking called this twelfth chromosome the
‘X-element’ [20]. Less than a decade later, in 1899, McClung
proposed the term ‘accessory chromosome’ for this element
[21] and in 1902 he presented a theoretical framework for
the involvement of this sperm accessory chromosome in the
sex of an organism,
77:20210215
A most significant fact, and one upon which almost all investi-
gators are united in opinion, is that the element is apportioned
to but one half of the spermatozoa. Assuming it to be true that
the chromatin is the important part of the cell in the matter of
heredity, then it follows that we have two kinds of spermatozoa
that differ from each other in a vital matter. We expect, therefore,
to find in the offspring two sorts of individuals in approximately
equal numbers, under normal conditions, that exhibit marked
differences in structure. A careful consideration will suggest
that nothing but sexual characters thus divides the members of
a species into two well-defined groups, and we are logically
forced to the conclusion that the peculiar chromosome has
some bearing upon this arrangement. [22]
Regarding the accessory chromosome, McClung (1902) also
writes that ‘Its careful and uniform division during the
mitoses of all the spermatogonia suggests anything but an
unimportant structure’ [22]. Studies focusing on identifying
accessory chromosomes in diverse systems swelled. Louise
Wallace identified a double accessory chromosome system
in the spider Agalena naevia [23]. Frederick Paulmier con-
sidered the accessory chromosome to be degrading and
disappearing from a species because he observed that it
fails to divide and is not equally represented in the final sper-
matocyte mitosis [24]. Likewise, Thomas Montgomery
thought the accessory chromosomes ‘… are in the process
of disappearance, in the evolution of a higher to a lower chro-
mosomal number’ [25]. Discussion on whether the accessory
chromosomes were involved in sex determination continued,
but the direct evidence for its role had yet to be shown.

Studies in spermatogenesis was published as a two-part
book, with the first part released in 1905 (figure 2) [1]. Impor-
tantly, Stevens tracked the behaviour of the accessory
chromosome across different orders of Coleoptera and
deduced its inheritance pattern through cell division. Part I
of Studies in spermatogenesis included chromosome squashes
from termites (Termopsis angusticollis), sand crickets (Stenopel-
matus spp.) and croton-bugs (Blattella germanica), and indeed,
in Stenopelmatus and B. germanica, Stevens found evidence of
the accessory chromosomes. But it is mealworms (Tenebrio
molitor) that Stevens described as the most interesting group
studied in her 1905 publication, for what she found differed
from that of the accessory chromosomes described by
McClung. She writes that ‘In both somatic and germ cells
of the two sexes there is a difference not in the number of
chromatin elements, but in the size of one, which is very
small in the male and of the same size as the other 19 in
the female’ [1]. Stevens reasons that,
Since the somatic cells of the female contain 20 large chromo-
somes while those of the male contain 19 large ones and
1 small one, this seems to be a clear case of sex-determination,
not by an accessory chromosome, but by a definite difference
in the character of the elements of one pair of chromosomes of
the spermatocytes of the first order, the spermatozoa which con-
tain the small chromosome determining the male sex, while those
that contain 10 chromosomes of equal size determine the female
sex. This result suggests that there may be in many cases some
intrinsic difference affecting sex, in the character of the chromatin
of one-half of the spermatozoa, though it may not usually be
indicated by such an external difference in form or size of the
chromosomes as in Tenebrio. [1]
One of the virtues of Nettie Stevens’ work is the diversity of
species where she observed the segregation of different sex
chromosome systems. Stevens published part II of Studies in
spermatogenesis in June of 1906, where she studied the sper-
matogenesis of 23 more species in Coleoptera, and in
August 1906 a footnote was added containing results for 19
more [26]. In this second part, Stevens found that 86% of
the species studied are characterized by having heterochro-
mosomes and the remaining had accessory chromosomes in
male germ cells [26]. On the accessory chromosomes (referred
to here as ‘odd chromosome’) Stevens writes,
The odd chromosome, so far as it has been studied, behaves pre-
cisely like the larger member of the unequal pair without its
smaller mate. In the growth stage it remains condensed and
either spherical or sometimes flattened against the nuclear mem-
brane. In the first maturation mitosis it is attached to one pole of
the spindle, does not divide, but goes to one of the two second
spermatocytes. In the second spermatocyte it divides with the
other chromosomes, giving two equal classes of spermatids dif-
fering by the presence or absence of this odd chromosome. [26]
In this section, Nettie Stevens uses the term ‘mitosis’ to
describe what is now known as meiosis I and II in the sper-
matocytogenesis, where primary spermatocytes (2n) divide
into secondary spermatocytes in meiosis I and spermatids
in meiosis II. Interestingly, the term ‘meiosis’ (from the
Greek μείωσις, ‘lessening’) was not coined until 1905 by cytol-
ogists John Farmer and John Moore, explaining the absence of
this term in Stevens’ analysis [27]. She demonstrates that
these divisions lead to the ‘odd chromosome,’ labelled as
‘x’ on her plates, segregating according to Mendelian prin-
ciples in meiosis I and II. Likewise, this Mendelian
behaviour was found for the pair of heterochromosomes
that she labels as ‘l’ (for large) and ‘s’ (for small), which
later became known as ‘X’ and ‘Y’ chromosomes.

The implications of her observations and deductions are
elegant and profound: these odd chromosomes (x) or hetero-
chromosomes (l or s) follow Mendel’s laws of inheritance,
and the presence (or absence) of these chromosomes corre-
sponds to sex determination. The logic behind this is
eloquently noted in her discussion, when she states that ‘It
is therefore evident that an egg fertilized by a spermatozoon
(1) containing the small member of an unequal pair or (2)
lacking one chromosome, must develop into a male, while
an egg fertilized by a spermatozoon containing the larger
element of an unequal pair of heterochromosomes or the
odd chromosomes must produce a female’ [26]. In 1905, the
same year as part I of Studies in spermatogenesis was
published, E. B. Wilson also published a study on the sex
chromosomes in Hemiptera [28]. In his piece, Wilson also
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Figure 2. Key events for visualizing sex chromosome research in plants over time. Purple circles indicate empirical findings and yellow squares technological
advances that have set the foundation for discovery in sex chromosome research. The timeline begins with Stevens’ discovery of sex chromosomes, followed
by the wave of cytological research that followed her, including the first descriptions of a heteromorphic sex chromosome pair in a liverwort (1917) and in angios-
perms (1923). With the development of PCR and modern sequencing techniques, the identification of sex chromosomes diverged from traditional cytological
techniques and moved toward marker-based as well as whole-genome approaches. This has led to a new renaissance of sex chromosome research not unlike
the one Stevens began in 1905. An expanded timeline can be found in electronic supplementary material, table S1. NGS, next-generation sequencing.
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showed that males possess an unequal pair of chromosomes,
the smaller of which he called the ‘idiochromosomes’. Wilson
added a footnote to his 1905 piece acknowledging Stevens’
findings.
The discovery, referred to in a preceding footnote, that the sper-
matogonial number of Anasa is 21 instead of 22, again goes far to
set aside the difficulties [of McClung’s hypothesis] here urged.
Since this paper was sent to press I have also learned that Dr
N. M. Stevens (by whose kind permission I am able to refer to
her results) has independently discovered in a beetle, Tenebrio,
a pair of unequal chromosomes that are somewhat similar to
the idiochromosomes in Hemiptera and undergo a correspond-
ing distribution to the spermatozoa. She was able to determine,
further, the significant fact that the small chromosome is present
in the somatic cells of the male only, while in those of the female
it is represented by a larger chromosome. These very interesting
discoveries, now in course of publication, afford, I think, a strong
support to the suggestion made above; and when considered in
connection with the comparison I have drawn between the idio-
chromosomes and the accessory show that McClung’s hypothesis
may, in the end, prove to be well founded. [28, p. 403]
While Wilson’s research was published a few months before
Stevens’, some give Stevens the credit for the discovery of sex
chromosomes because her conclusions were firmer [12].
Regardless of whether the discovery for the role of sex
chromosomes should be shared between Stevens and
Wilson, as the two independently arrived at these results in
1905, Stevens was certainly the first to concretely show that
the Y chromosome was involved in sex determination. Her
work provided a molecular and cytological framework for
supporting the earlier hypothesis put forth by Carl Correns
after crossing the dioecious vine Bryonia that sex was,
indeed, a Mendelian trait [29]. McClung had incorrectly
asserted that the accessory chromosome was a male determi-
ner [22]. Wilson maintained environmental roles [29]. In
Stevens’ own words,
Wilson suggests as alternatives to the chromosome sex according
to Mendel’s Law, (1) that the heterochromosomes may merely
transmit sex characters, sex being determined by protoplasmic
conditions external to the chromosomes; (2) That the heterochro-
mosomes may be sex-determining factors only by virtue of
difference in activity or amount of chromatin, the female sex
chromosome in the male being less active. [26]
Over the next several years, more studies in spermatogenesis
were undertaken by Stevens and her colleagues. Stevens was
the first to identify the heterochromosomes of Drosophila mel-
anogaster (then called Drosophila ampelophila) and other flies
[30,31]. Even more heteromorphic pairs were found in ear-
wigs (Forficula auricularia) [32] and guinea pigs [33].
Stevens’ rigorousness and tenacity to uncover the role of
sex chromosomes were apparent, and her depth of knowl-
edge of the field unmatched. Upon learning about lagging
chromosomes, Stevens carefully re-examined aphids, reveal-
ing the lagging member was in fact a heterochromosome,
revoking her previous findings that these species lacked
evidence for any [34]. But, not in all species could heterochro-
mosomes be identified; such was the case in mosquitoes [35].
At Bryn Mawr, Stevens advised doctoral student Alice
M. Boring (figure 1), who notes in her dissertation that
while at Woods Hole in 1905, Stevens suggested Boring
study the spermatogenesis of many more species of insects
[36]. Indeed, Boring’s PhD research focused on the sper-
matogenesis of 22 species, finding that all had the ‘odd
chromosomes’ [36]. Later Boring would study chicken
spermatogenesis, where a clear pair of neither heterochromo-
somes nor accessory chromosomes could be identified [37].
Over a decade after Stevens’ death, Boring found Stevens’
notes on her independent examinations of chicken [38]. As
it turns out, the lack of heterochromosomes found in chicken
spermatogenesis is because they have a ZW system, which
was shown by Michael F. Guyer’s studies in oogenesis
in 1916 [39].

Across these foundational research pieces and more,
many different terms were used to describe what we now
refer to as sex chromosomes, an issue raised by researchers
of the time. ‘Since the discovery of peculiarly modified
chromosomes in certain of the insects a great variety of
names has been proposed for them, and most of these
suffer from a quite unnecessary length. My own earlier
terms "heterochromosome" and "chromatin nucleolus" were
cumbersome, and "accessory chromosome" and "heterotropic
chromosome" sin equally in this regard, while "special
chromosome" and "idiochromosome" are no way self-
explanatory.’ [40]. In 1906 Wilson first used the term ‘sex
chromosome’ [41] and by 1909 used ‘X’ and ‘Y’ to delineate
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between the heteromorphic pair [17]. Confusion about the
term ‘sex chromosome’ and what it represents continues
today (for a discussion on definitions, see [42]). By casting
such a wide net of species diversity, scientists from each of
these independent and complementary studies had stumbled
upon the foundation of the modern diversity of sex chromo-
some systems, including XX/XO (dosage) systems where
chromosome number changes between males and females,
XX/XY systems where the heterogametic sex chromosome
pair is found during spermatogenesis in males, and ZZ/
ZW systems where the heterogametic pair is found in females
during oogenesis.
 tb

Phil.Trans.R.Soc.B
377:20210215
3. The prismatic sex chromosomes of plants
Undoubtedly, Nettie Stevens’ research transformed animal
genetics. The ground-breaking impact it had on plant gen-
etics, however, is equally significant even if less obvious.
Shortly after Studies in spermatogenesis was published, studies
focusing on potential sex chromosome systems in plants
burgeoned. Unlike animals, separate sexes, or dioecy, is
rarer in angiosperms, occurring in approximately 6% of
species with 34 clades—such as Diospyros (700 species) and
Pandanus (600 species)—and sometimes entire families (e.g.
Myristicaceae), accounting for roughly 43% of the dioecious
angiosperms [43]. Even with its uncommonness, dioecy has
evolved hundreds of independent times in angiosperms,
while in other plant lineages, such as those of the bryophytes
and gymnosperms, it appears to be more common [44]
(figure 3). Despite being seemingly disadvantageous for a
sessile organism, dioecy is still the dominant reproductive
strategy for critical fruit (fig), nut (pistachio), vegetable
(asparagus), ornamental (gingko) and special products
crops (hops, hemp) among many other species valuable to
forestry, conservation, and bioremediation efforts [47].
While botanists, farmers and horticulturalists had always
been acutely aware of this trait, Stevens’ work was the first
to provide a foundation for exploring its genetic basis
in plants.

A rush of cytological studies emerged as botanists re-
examined the karyotypes of dioecious species (electronic
supplementary material, table S1). Some of the earliest
records of this frenzy come from 1909, when Eduard
Strasburger and Mary G. Sykes observed the absence of
heteromorphic sex chromosomes inMercurialis annua, Bryonia
dioica and Spinacia oleracea [48–50]. It took until 1917, more
than decade after Stevens’ discovery of sex chromosomes,
for Charles E. Allen to confirm the presence of heteromorphic
sex chromosomes in the liverwort Sphaerocarpos [51]. A slew
of cytological studies followed (figure 3), suggesting the pres-
ence of heteromorphic sex chromosomes in 68 plants and
their absence in 46 plants by 1940 [52]. In 1958, Mogens Wes-
tergaard proposed a standard to temper the continuous
outpouring of scantly supported claims of heteromorphic
sex chromosome pairs. He argued that observations of such
pairs are only valid if the heteromorphic pair is observed in
the meiotic cycle of the heterogametic sex and not the homo-
gametic sex, and if the sex chromosomes are also observable
in the somatic cells of both sexes [53], as was done in Stevens’
Studies in spermatogenesis [1]. Since this time, only 19 species
have been confirmed to have heteromorphic sex chromo-
somes, such as Cannabis, Humulus, Silene, Trichosanthes and
Rumex. Species are being added and removed from this list
as the meaning of ‘heteromorphic’ continues to evolve in
genomic literature [42]. In the decades following Wester-
gaard’s review, the diversity of species studied on sex
chromosomes in plants decreased as Silene, Spinacia and
Asparagus spp. emerged as model systems.

Sex chromosome research has always been limited by the
capabilities of microscopic or genomic technologies. The
absence of heteromorphic sex chromosomes in many dioe-
cious species presented a distinctive challenge that would
not be taken on until the advent of modern sequencing tech-
niques in the early 2000s (figure 2). Yet, the cytologists of
Stevens’ day did not lack an abundance of surprising
and often bewildering observations of heteromorphic sex
chromosomes. As with many animals, plants also exhibit a
wide variety of karyotypes that do not follow the standard
XY or ZW systems. Hitoshi Kihara and Tomowo Ono first
described the XX/XY1Y2 system in Rumex acetosa in 1925
[54]. Soon after, Öjvind Winge elaborated on the polytypic
qualities of Humulus species, which are well-known for
their markedly variable cytotypes [55]. Unusual systems con-
tinued to intrigue researchers into the late 1900s, such as the
sex-associated floating translocation complexes in Viscum,
where four, six and sometimes eight chromosomes form
multivalent rings at meiosis [56]. The UV systems are simi-
larly variable, with many homomorphic and heteromorphic
pairs found by C. E. Allen [57], as well as multiple systems
like the U1U2/V found in Frullania dilatata [58,59]. Methods
for the visualization of sex chromosomes have dramatically
improved since the days of Stevens’ Carl Zeiss Jena 8261
compound monocular microscope (figure 1; Bryn Mawr
College Special Collections). Today, modern technologies,
such as PacBio HiFi sequencing, have opened the door to
more robust assembly of repeat-rich sex chromosomes and
made research on homomorphic sex chromosomes, sex-
determining regions (SDRs) and pseudo-autosomal regions
more accessible than ever before [60].

In the last several decades, genomic approaches have
shed light on many previously unexamined or unidentified
plant sex chromosome pairs (figures 2 and 3). The first
plant genome reference for the hermaphroditic species Arabi-
dopsis thalianawas published in 2000 [61], and quickly several
sex chromosome assemblies followed, including for papaya
and the common liverwort [62,63], with whole-genome
references eventually to follow [64,65]. Today over 100 dioe-
cious angiosperm genome references, at various levels of
contiguity, are available on NCBI (figure 3). Yet, only a frac-
tion of these references have been used to examine the sex
chromosomes.

Genomic analyses of plant sex chromosomes have
addressed many theories developed for this kingdom.
Because of the thousands of independent origins of plant
sex chromosomes and few heteromorphic pairs identified
cytologically (figure 3), the age of most evolutions was
thought to be recent. The expectation is that heteromorphic
pairs have had sufficient time for degeneration, or gene
loss, to have occurred on the sex-specific chromosome to
suggest older origins [66]. Such is the case in the older, cyto-
logically heteromorphic pairs of Humulus lupulus [67],
Phoenix dactylifera [68] and Silene latifolia [69]. In some cases,
given enough time, the Y (or W) can be completely lost, tran-
sitioning to the XO (or ZO) system seen in studies of the
‘accessory chromosomes’ [42]. Though, curiously, to our
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Figure 3. Dioecious angiosperm orders studied to date. The heatmap shows the number of species in log scale and is mapped onto the topology from Angiosperm
Phylogeny Group IV [45] using ggtree v. 3.0.4 [46]. (a) dioecious species within each order [44], (b) species with heteromorphic sex chromosomes identified through
cytological approaches, (c) dioecious species with at least one genome reference in the NCBI Assembly database (accessed 30 August 2021).
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knowledge, no plant species has been reliably identified as
having a dosage (e.g. XO) system. Instead, homomorphic
sex chromosomes are expected to have more recent origins,
with little to no gene loss on the Y (or W). Consistent with
this, many species studied have recent origins of sex chromo-
somes, within the last 5 million years, such as in Asparagus
officinalis [70], M. annua [71] and S. oleracea [72], and so few
(critical) genes have been lost from the Y that individuals
with a YY karyotype remain viable [73–76]. However, some
plant sex chromosomes defy these expectations. The moss
UV sex chromosomes evolved hundreds of millions of years
ago but are homomorphic in Ceratodon purpureus [77] and
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in Cannabis sativa the sex chromosomes share an origin with
H. lupulus [67]; however, they are instead homomorphic.

The size of the non-recombining region also does not cor-
relate with age in species studied to date [43], which may
relate to haploid gene expression. Unlike animals, the plant
life cycle consists of two separate generations, one haploid
and the other diploid (i.e. alternation of generations), which
has consequences for sex-specific development and sex
chromosome evolution [76]. Because plants express genes in
pollen or other haploid gametophyte stages, the non-recom-
bining region of the sex chromosomes is expected to
degenerate slower than is seen in animals [78,79]. Indeed,
Mank suggests haploid expression in plants may represent
the biggest difference known for sex chromosomes between
these two kingdoms [80]. The S. latifolia sex chromosomes
evolved over 10 million years, and while some genes have
been lost on the SDR, the rate of loss is 60% lower than
that of animals with a similar time since suppressed recombi-
nation occurred [81,82]. Estimates of divergence between XY
genes in Rumex hastatulus suggest a minimum age of 9
million years [83], and while some genes have also been
lost on the Y [84], pollen-expressed genes are significantly
less likely to be lost than those expressed in diploid tissues
[83,85]. The haploid C. purpureus UV sex chromosomes con-
tain over 3400 genes each, half of which were shown to be
expressed in the gametophytes [77]. In addition to haploid
gene expression, the lack of degeneration could be due to
the small size of the SDR seen in many plants, as degener-
ation is predicted to be faster when many genes are under
selection [86,87].

Plant sex chromosomes are not without consequences
from suppressed recombination. A consistent pattern found
is an enrichment of transposable elements (TEs) and other
repeats [77,88–90], which often accumulate in regions of
low recombination [91]. In fact, in several species TE expan-
sions have instead driven the Y chromosome to be larger
than the X, such as in Coccinia grandis [92] and S. latifolia
[93]. This pattern is counter to the smaller-Y heteromorphy
found in the insects studied in Stevens’ day. While many Y
chromosomes in animals are also riddled with repeats, in
well-studied species most of the genes have been lost [94–
97]. Moving beyond analyses of single species, comparisons
between sister species with a shared evolution of sex chromo-
somes, such as in Coccinia [98], will provide greater insight
into these degenerative processes.

The genes underlying the transition to dioecy, and sub-
sequently the evolution of sex chromosomes, are also an area
of interest in plants. Given many dioecious species are econ-
omically important, or closely related to ones that are,
uncovering the genes that control reproductive structures is
useful to breeding programmes. Additionally, these genes
amass critical insight into how sex chromosomes evolve. In
theory, the transition from hermaphroditic flowers to dioecy
can occur through two mutations: one affecting female ferti-
lity, or carpel development, and another affecting male
fertility, or stamen development [53,99]. Recent evidence in
several plant species supports this two-gene model, such as
in Actinidia deliciosa [100], A. officinalis [101] and P. dactylifera
[102]. Contrastingly, a few systems have strong evidence of a
single gene initiating female versus male development, as
shown in persimmons and poplars [103,104]. Complementary
to the many independent evolutions of dioecy, in each of these
species examined, different genes have been identified as sex-
determining and they function at varying parts of floral devel-
opment (see reviews in [43,105]). Studies of additional
independent origins of sex chromosomes in plants may
indeed identify more novel genes involved in carpel and
stamen pathways. Undisputedly, there is a veritable array of
sex chromosomes found in plants (figure 3 and electronic sup-
plementary material, table S1) and every species examined
garners new insight on these fascinating parts of the genome.
4. The future of sex chromosome studies is
through a multi-kingdom lens

Across the species Nettie Stevens studied, she found many
that contained what she expected to find after their first dis-
covery in mealworms: a heteromorphic XY pair. As we can
see in the plants described, many also fitted the theoretical
mould, but there are always exceptions that make us question
the ‘rules’ at play for sex chromosomes [106]. In Stevens’ 1911
manuscript she writes, ‘At present, the all-important ques-
tions seem to me to be: What is the meaning of the
differentiation of heterochromosomes in one form and not
in others closely related? What has been the history of such
differentiation where we have an unpaired heterochromo-
some or an unequal pair of heterochromosomes?’ She adds
‘… But in no case are we able to say when or how or why
certain spermatogonial chromosomes became specially
differentiated as heterochromosomes.’ [35].

Today these questions remain at the heart of most studies
on sex chromosomes. What drives gene gain and loss from the
SDR, andwhat is the tempo at which these processes tick? The
insights from plant sex chromosomes have highlighted differ-
ences that exist between them and animal systems, though
there are ample similarities [80]. Yet, there are many indepen-
dent evolutions across plants from which we can uncover
more. Future studies could focus on the many existing
genome references where the sex chromosomes have not
been closely studied (figure 3). Nearly half of the dioecious
orders do not have even a single dioecious genome reference,
let alone ones at the genus or species level, highlighting the
need for more genomic efforts focused on dioecious species
(figure 3). Attention onmore animal species is just as pressing,
as well the other kingdoms that we have not focused on here,
such as protists and fungi. Most critically, to answer these
ongoing questions that have been posed for nearly as long as
sex chromosomes have been known, we need to take a note
from Stevens’ brilliant career and examine many isolates and
many species across kingdoms.
There appears to be so little uniformity as to the presence of the
heterochromosomes, even in insects, and in their behavior when
present, that further discussion of their probable function must
be deferred until the spermatogenesis of many more forms has
been carefully worked out. [1]
Data accessibility. The R script and materials to generate figure 3 can be
found at https://github.com/sarahcarey/angiosperm_dioecy.
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