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Abstract
There is great interest in the application of ‘artificial intelligence’ (AI) to pharmacovigilance (PV). Although US FDA is 
broadly exploring the use of AI for PV, we focus on the application of AI to the processing and evaluation of Individual Case 
Safety Reports (ICSRs) submitted to the FDA Adverse Event Reporting System (FAERS). We describe a general frame-
work for considering the readiness of AI for PV, followed by some examples of the application of AI to ICSR processing 
and evaluation in industry and FDA. We conclude that AI can usefully be applied to some aspects of ICSR processing and 
evaluation, but the performance of current AI algorithms requires a ‘human-in-the-loop’ to ensure good quality. We identify 
outstanding scientific and policy issues to be addressed before the full potential of AI can be exploited for ICSR processing 
and evaluation, including approaches to quality assurance of ‘human-in-the-loop’ AI systems, large-scale, publicly available 
training datasets, a well-defined and computable ‘cognitive framework’, a formal sociotechnical framework for applying AI 
to PV, and development of best practices for applying AI to PV. Practical experience with stepwise implementation of AI for 
ICSR processing and evaluation will likely provide important lessons that will inform the necessary policy and regulatory 
framework to facilitate widespread adoption and provide a foundation for further development of AI approaches to other 
aspects of PV.

Key Points 

Application of “artificial intelligence” (AI) to pharma-
covigilance (PV) might fruitfully begin with the process-
ing and evaluation of Individual Case Safety Reports 
(ICSRs) as the number of ICSRs that are processed, 
submitted, and assessed for safety signals continues to 
grow and ICSRs will likely remain an important part of 
PV for the foreseeable future.

The performance of current AI algorithms applied to 
processing and evaluation of ICSRs, while generally 
not sufficient for complete automation, can likely be 
applied to improve efficiency, value, and consistency if 
integrated into a system with a “human-in-the-loop” for 
careful quality control.

1  Introduction—The Need for AI 
in Pharmacovigilance

There is much excitement about the application of ‘artificial 
intelligence’ (AI) approaches to drug1 development and life-
cycle drug management, including pharmacovigilance (PV) 
[1]. The US FDA defines PV as “all scientific and data gath-
ering activities relating to the detection, assessment, and 
understanding of adverse events” [2]. FDA’s definition of 
PV is broad and includes the use of a wide range of scientific 
inquiry, such as Individual Case Safety Reports (ICSRs), 
pharmacoepidemiologic studies, registries, clinical phar-
macology studies, and other approaches. Although FDA is 
exploring the use of AI in many of these areas [1, 3–7], 
research in these areas is not yet mature enough to consider 
widespread implementation from a regulatory perspective. 
We focus here on the application of AI to the processing of 
data from multiple sources to identify adverse events (AEs) 
meeting regulatory reporting requirements, the preparation 
of these AEs as ICSRs, and their further reporting and evalu-
ation. We take this focus because of the following. * Robert Ball 
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1. New safety issues arise frequently after a drug is 
approved [8, 9] and ICSRs have a long, proven track 
record of identifying safety issues and remain the source 
of important new safety information [10].

2. There are an increasing number and variety of data 
sources that need to be evaluated for safety informa-
tion that result in a growing volume of ICSRs that are 
processed, submitted, and assessed for safety signals by 
industry and regulators (see Fig. 1), leading to increased 
costs and workloads for a limited supply of human safety 
experts. This general trend has been accentuated by 
increased reporting for products used for prophylaxis 
and treatment of coronavirus disease 2019 (COVID-19).

3. Submission of ICSRs is required by regulators globally 
and harmonization of approaches improves efficiencies 
and promotes standardization.

4. Despite the growing interest in identifying and assess-
ing safety signals based on analyses of population-based 
data sources [11–14], a full assessment of how these 
approaches will best fit in PV remains to be completed, 
therefore ICSRs will likely continue to play an important 
role as an early warning system of drug safety signals, 
especially for rare events, and will remain a substan-
tive component of the PV enterprise for the foreseeable 
future.

5. While modifications to existing approaches to reporting 
ICSRs have been proposed [15], it is not likely that such 
changes alone will be sufficient to address the increased 
number of data sources to be evaluated and ICSRs to be 
submitted.

AI potentially plays an important role in improving the 
efficiency and scientific value of ICSRs. In this paper we 
review the landscape of approaches inside and outside of 
FDA that are being taken to address this issue.

While FDA has not adopted a formal definition of AI 
for PV, the FDA document on “Artificial Intelligence and 
Machine Learning (AI/ML) Software as a Medical Device 
Action Plan” [16] notes “Artificial intelligence has been 
broadly defined as the science and engineering of making 
intelligent machines, especially intelligent computer pro-
grams” [17]. While the Action Plan focuses on the applica-
tion of AI to medical devices, the scientific framework it 
articulates may also be usefully applied to AI for PV. Many 
technologies have been placed under the ‘AI’ umbrella; for 
PV, machine learning (ML) and natural language process-
ing (NLP) are two of the most common being applied. ML 
is defined as a “… technique that can be used to design and 
train software algorithms to learn from and act on data ...” 
[16] and NLP is defined as “the application of computational 
techniques to the analysis and synthesis of natural language 
and speech” [18]. We first describe the ICSR-related pro-
cesses and workflows where different AI approaches might 
be most fruitfully applied. We then describe a framework 
for considering the readiness of AI for ICSR processing and 
evaluation, followed by some examples of the application of 
AI to ICSR processing and evaluation in industry and FDA, 
with a comparison to the readiness framework, and iden-
tify outstanding scientific and policy issues to be addressed 
before the full potential of AI can be exploited for ICSR 
processing and evaluation and PV more generally.

Fig. 1  Individual case safety reports received by the US FDA adverse event reporting system (FAERS) have increased dramatically in the past 
two decades
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2  Pharmacovigilance Processes 
and Individual Case Safety Reports

An ICSR contains information on the patient, the AE, the 
suspect medical products, the reporter, and, for ICSRs sub-
mitted by industry, information on the company that holds 
the application or license for the drug [19]. According to 
FDA regulations, ICSRs might need to be generated “from 
any source, foreign or domestic, including information 
derived from commercial marketing experience, postmar-
keting clinical investigations, postmarketing epidemiologi-
cal/surveillance studies, reports in the scientific literature, 
and unpublished scientific papers” [20]. Case processing 
and evaluation begin once the company has made a deter-
mination that they must make an assessment of reportability 
of case information from any source. We outline case pro-
cessing and evaluation phases, with two principal divisions 
between the work conducted by the regulated industry and 
that conducted by FDA.

2.1  Case Processing

Case processing has been described as having four activi-
ties, including intake, evaluation, follow-up, and distribu-
tion, with many subprocesses for each activity [21]. Intake of 
cases potentially requiring submission to FDA includes iden-
tification of the four elements (“an identifiable reporter, an 
identifiable patient, an adverse reaction, and a suspect prod-
uct”) that, when present, indicate that an ICSR must be pre-
pared and submitted [22]. While these four elements are the 
minimum elements of an ICSR, an ICSR must also include 
all relevant information when such information is available 
[23]. Additional steps involve determination of important 
regulatory categories such as seriousness of the AE, whether 
the AE is already in the FDA prescribing information for the 
product (expectedness), and, for certain ICSRs (AEs from a 
study), likelihood of a causal association. These determina-
tions depend on information in the report, the product label, 
and the source of information [23]. Report follow-up to 
obtain missing information is also conducted and the report 
is transmitted to regulators. Currently, the principal means 
of standardization for transmitting ICSRs from industry to 
regulatory agencies is specified in the International Council 
for Harmonisation (ICH) E2B guideline [24]. Importantly, 
this standardization encompasses many data elements that 
are placed in structured fields, as well as an unstructured 
narrative description of the case that often contains valuable 
information not codified in the structured data.

2.2  Case Causality Assessment

Case causality assessment—the determination of whether 
the drug is likely to have caused the reported AE—takes 
place at both the industry and FDA. Assessment of ICSRs 
for causality still relies primarily on expert judgment and 
global introspection [25, 26]. Although FDA requires 
companies to have “written procedures for the surveil-
lance, receipt, evaluation, and reporting of postmarketing 
adverse drug experiences” [23] and has defined best prac-
tices [27] and workflows [28] for its own work, the ICSR 
case assessment workflow is not fully standardized to a level 
required for computation [29]. More importantly, any effort 
to standardize the workflow for purposes of computation 
must acknowledge the need for expert judgment and flex-
ibility. This requirement means that understanding both the 
individual tasks that are performed and how they are then 
assembled into a cognitive framework for assessment to sup-
port human efforts, in multiple and difficult-to-describe sce-
narios, are necessary for AI approaches to be applied [30].

3  Framework for Considering the Readiness 
of Artificial Intelligence (AI) 
for Pharmacovigilance

Several factors must be considered when deciding whether 
an AI algorithm might be ready for implementation. 
Algorithm performance (e.g., validity, generalizability, 
absence of bias, and robustness in real-world settings 
with changing inputs) is arguably the essential first step, 
but documentation, transparency, explainability (i.e., the 
reasons for an algorithm's prediction), quality control with 
real-world data collection and monitoring, and algorithm 
change control are all needed. AI best practices around 
data management, feature extraction, training, interpret-
ability, evaluation, and documentation are still in develop-
ment and harmonization of the numerous efforts around 
best practices, including through consensus standards 
efforts, leveraging already existing workstreams, and 
involvement of other communities focused on AI/ML, 
will be needed [16]. There is still a need to standardize 
terminologies used in AI frameworks, with similar con-
cepts being represented using different words depending 
on the context. AI for PV will have to be aligned with 
these emerging best practices for the field to reach a state 
of maturity [31].

While it is beyond the scope of this paper for a complete 
discussion of all of these issues, a discussion of some of 
the core aspects of algorithm performance will be help-
ful as a first step in assessing the readiness of current AI 
algorithms for ICSR processing and evaluation. The key 
factors in algorithm performance are the metrics chosen 
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to measure that performance and the implications of the 
values of those metrics for implementation. Some standard 
metrics of AI algorithm performance are shown in Fig. 2. 
Recall (sensitivity), precision (positive predictive value 
[PPV]), and F1 score are commonly used metrics. The F1 
score is a summary measure of recall and precision and 
we will use it in this paper as a means for illustration and 
comparison, but it is not necessarily the metric of choice 
for all purposes. For example, recall (sensitivity) might be 
a very important metric to use in the context of identifying 
AEs that meet the criteria for reporting to a regulator, as 
we discuss later.

As a practical matter, the lower bound of an AI system’s 
F1 score is not hard and fast and will depend on the abil-
ity of the AI system to add sufficient value to be worth 
implementing in the context in which it is being operation-
alized. On the other hand, full automation, or use of the 
AI system’s output without human review, would require 
an F1 score approaching 1.0. How close to an F1 score of 
1.0 system performance needs to be depends on the risks 
associated with erroneous classification. For example, if 
misclassification by the algorithm was to lead to missing 
an important safety signal, a near perfect F1 score would 
likely be required. Some general criteria for qualitatively 
assessing whether an AI system is performing at least as 
well as human experts and might be a candidate for full 
automation include whether human experts see no obvi-
ous patterns in an analysis of any erroneous classifica-
tion, and, in human review of algorithm outputs, whether 
any perceived errors are not obvious misclassifications 

and are similar to the differences of opinion that might 
arise among human experts. The exact manner by which 
a determination of readiness for full automation can be 
achieved remains an open question, but human expert 
quality assessment will likely be required for the foresee-
able future.

We shift now to a discussion of a few published examples 
from the literature to illustrate how the above framework 
might be applied.

4  Examples from Industry

A major area of interest of the pharmaceutical industry is 
in case processing [32, 33]. Current areas of AI activities 
in assessment, proof of concept, or development for pro-
duction stages include digital media screening; extracting 
and classifying data from source documents; checking for 
duplicate reports; case validation (e.g. minimum reporting 
requirements); triage and initial assessment (e.g. serious-
ness, expectedness); data entry (e.g. structured fields accu-
rately populated with available information); medical assess-
ment, including causality; narrative writing; and coding AE 
concepts into standardized terminology [32].

Published examples of applications of AI by the pharma-
ceutical industry include ICSR processing [21], determina-
tion of seriousness [34], and causality assessment [35]. In 
the case processing example, F1 scores ranged widely from 
0.36 for identifying the ‘AE verbatim’ (defined as the “ver-
batim sentence(s), from the original document, describing 
the reported event(s)”) as part of the process for determin-
ing whether an AE is present in the original document, to a 
high of 0.91 for ‘reporter occupation’ across multiple algo-
rithms and tests [21]. The seriousness classifier achieved 
F1 scores for categorization ranging from 0.76 to 0.79 [34]. 
Comparison of MONARCSi and Roche safety professionals’ 
assessments of causality had an F1 score of 0.71 [35]. It is 
important to note that FDA has not endorsed any specific 
approach to applying AI to case processing and evaluation 
or any quantitative metric of algorithm performance; these 
examples are provided because they illustrate the approaches 
being taken and the performance of the algorithms.

5  Application of the Readiness Framework 
to Case Processing

As an example of how the general framework for consider-
ing the readiness of AI for ICSR processing and evaluation 
might be applied, we focus on the potential automation of 
the identification of cases required to be submitted to FDA. 
At the highest level, scientifically rigorous procedures must 
be in place to ensure that processes for AE identification 

Fig. 2  Standard metrics of AI algorithm performance. AI artificial 
intelligence, TP true positive, FP false positive, FN false negative, TN 
true negative
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have both high sensitivity and high specificity. Without high 
sensitivity, AEs would not be identified and thus potentially 
important safety signals would be missed. Without high 
specificity, ICSRs would be generated for events that are not 
AEs, but are identified as such by the AI system, a situation 
that would potentially result in submitting more reports than 
necessary and creating noise that would make safety signal 
detection more difficult.

As mentioned earlier, the published performance of dif-
ferent AI algorithms for key aspects of the case identification 
process does not achieve the threshold likely needed for full 
automation (F1 scores approaching 1.0). The performance 
is sufficiently good that it might justify implementation to 
improve the efficiency of case processing in certain situa-
tions. The decision to implement a less than perfect AI algo-
rithm should be made by the organization that manages the 
process according to its own analysis, but an overarching 
consideration is that important quality checks will be needed 
to ensure the performance of the combined human–AI sys-
tem is at least as good as the human-only system it is replac-
ing. This approach to using AI to support, rather than sup-
plant, human experts is sometimes referred to as augmented 
intelligence [30] and includes a ‘human-in-the-loop’. In the 
example of AI for automation of the identification of cases 
required to be submitted to FDA discussed earlier, human 
review of an AI algorithm’s output would be needed to 
ensure no true AEs are missed, and no ‘non-AEs’ are sub-
mitted. In addition, with ML approaches, it is anticipated 
that the algorithm will be periodically retrained on new data 
or new algorithms will be developed. Each time an algorithm 

is retrained, a formal validation of system performance will 
be required. The performance of any given system should 
be evaluated in the ‘real world’ within the workflow where 
it is to be employed.

6  FDA’s Experience

FDA has its own interests in applying AI to its PV processes 
to improve the efficiency and scientific value of its analyses 
of ICSRs. In addition to the nearly two million reports to 
the FAERS that FDA receives each year from industry, FDA 
processes into FAERS several hundred thousand reports that 
the public submits directly to FDA. Thus, FDA shares some 
of the challenges faced by the industry for case processing.

FDA further believes that experts’ time is best spent on 
complex tasks that have public health impact, rather than 
on extracting and organizing the information from ICSRs 
that is needed to make an assessment, especially important 
clinical information that is contained mostly in unstructured 
narrative text. Given the number of ICSRs that FDA receives 
each year, FDA’s research and development activities have 
focused on applying AI to address this challenge as part 
of the causality assessment of ICSRs. Figure 3 highlights 
some of the key elements that are included in an ICSR cau-
sality assessment. The elements included in the assessment 
are superficially straightforward and include identification 
of the key features involved in the assessment, namely the 
drug, AE outcome, their temporal relationship, and alterna-
tive explanations for the AE besides a causal relationship 

Fig. 3  Elements of the cognitive 
framework for ICSR causality 
assessment. AE adverse events, 
ICSR Individual Case Safety 
Reports
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with the drug being assessed. While there are challenges 
in automating the extraction of the details about these fea-
tures from ICSR narratives (e.g., the signs and symptoms 
needed to apply a case definition), the larger issue is that 
the cognitive processes for feature integration are complex, 
primarily conducted through global introspection, iterative 
in nature (as reflected by the circular arrows at the center 
of the figure), and not defined in sufficient detail to make 
computable. Table 1 categorizes the efforts FDA has taken 
over the past decade to apply AI to this complex process [29, 
36–61]. As can be seen in the description of the efforts, most 
have involved automating the extraction of the key features 
from ICSR narratives using NLP, with a few attempting to 
develop predictive ML algorithms that attempt to automate 
the cognitive processes for feature integration. While these 
efforts have resulted in successful development of discrete 
algorithms, algorithm performance does not yet achieve lev-
els required for full automation.

For example, a common step in evaluating a series of 
ICSRs to determine whether they support a causal rela-
tionship between a drug and AE is the development of a 
‘case definition’ describing the clinical features that are 
consistent with a particular AE. This case definition is 
then compared with clinical information in the ICSRs. 
The first application of AI to PV at FDA involved using 
NLP and ML to classify AEs identified in ICSRs as pos-
sible anaphylaxis after H1N1 influenza vaccination [36]. 
The best performing anaphylaxis classification algorithm 
had an F1 score of 0.758 compared with human experts 
[36].

In a second example, the best performing algorithms 
for the identification of assessable reports (i.e., those con-
taining enough information to make an informed causal-
ity assessment) achieved F1 scores above 0.80 [29]. This 
was accomplished by training the algorithm on reports 
classified as either ‘assessable’ or ‘unassessable’ (i.e., 

non-informative for causality assessment). Algorithms 
attempting to address other aspects of causality assess-
ment did not perform as well, suggesting that identifica-
tion of low-value reports might be a first step in applying 
AI to causality assessment of ICSRs.

Integrating these imperfect algorithms into the exist-
ing workflow and into information technology (IT) sys-
tems is an ongoing challenge. In the production setting, 
extraction of key features (e.g., age) from the ICSR nar-
rative has been implemented; integration into traditional 
workflows and IT systems of more complex algorithms, 
such as identifying and removing duplicate ICSRs based 
on both structured fields and narrative text, is underway. 
Development of a general platform that breaks down the 
case evaluation process into computable steps and would 
allow for insertion of improved algorithms for a given 
task (e.g., automating the application of a case definition) 
is an active area of research [59], along with applica-
tion of AI-based language models to ICSR narratives to 
improve extraction of key features and their relationships 
[60, 61].

7  Approaches to Quality Assurance 
of “Human‑in‑the‑Loop” AI Systems

If an AI algorithm does not achieve performance levels 
required for full automation, the key challenge of including 
a ‘human-in-the-loop’ is to ensure quality without reduc-
ing the efficiency gained from the AI algorithm. Stated 
otherwise, the human expert should not do the work that 
the machine can do well and efficiently, and the machine 
should not do (poorly) the work that the human expert can 
do well. General considerations for the characteristics of 
quality assurance that might be applied to a human-in-
the-loop approach to an imperfect AI system include (1) a 

Table 1  Key FDA efforts applying AI to PV from 2011 to the present

AEs adverse events, AI artificial intelligence, ICSRs individual case safety reports, ML machine learning, NLP natural language processing, PV 
pharmacovigilance

Developed NLP for clinical feature extraction and ML classification for a specific case definition (e.g., anaphylaxis) [36–40]
Applied NLP with statistical clustering algorithm/network analysis to identify reports of similar medical condition [41–45, 49]
Used NLP to extract temporal information [46]
Extraction of demographic information and clinical concepts [36, 47, 48]
Applied NLP and ML to summarize key features of ICSRs [50–52]
Use of ML to predict which ICSRs are most useful for causality assessment [29, 54, 55]
Extract and code AEs from drug product label/package insert [56–58]
Developed deduplication algorithm for ICSRs [53]
NLP extraction and visualization of clinical data (e.g., temporality) to support cases series analyses for causality assessment [59]
ML algorithm to identify unassessable cases (e.g., ICSRs containing insufficient information to support causality assessment) [29]
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risk-based approach in which effort is proportional to the 
implications of misclassification on the overall evaluation 
goals; (2) incorporation of the reliability of the AI algo-
rithm’s performance through carefully applied principles 
of algorithm development or formal confidence metrics; 
and (3) selection of quality assurance techniques such 
as sampling, simultaneous independent algorithm appli-
cation, and incorporating the AI algorithm in a general 
evaluation process that includes other means of quality 
assurance.

To illustrate the challenge and areas where further 
research might be helpful to turn these general considera-
tions into concrete approaches, consider the example of an 
AI algorithm that predicts whether a report has valuable 
information needed for making a causality assessment. 
Efficiency can be gained if such an algorithm's predic-
tion and an appropriate threshold would identify many 
potentially low-value reports that would not need human 
expert review. One approach to ensure quality (i.e., in 
this example, correct classification of high-value reports) 
would be to set the threshold so there are no high-value 
reports falsely classified as being low-value (the algorithm 
would have perfect PPV for identifying low-value reports). 
Typically, there is a trade-off between PPV and sensitivity, 
therefore having a perfect PPV would likely lead to a lower 
sensitivity for identifying low-value reports. This would 
result in some low-value reports being incorrectly clas-
sified as high-value reports and fewer low-value reports 
excluded from human review, thus undermining the effi-
ciency gains (i.e., in this example, sparing the human 
expert from reviewing low-value reports) from the AI 
algorithm. On the other hand, if the threshold was adjusted 
so the algorithm had a lower PPV and likely a higher sen-
sitivity, some high-value reports would be incorrectly 
classified as being low-value, therefore the efficiency of 
the entire process would be improved (i.e., the human 
expert has fewer low-value reports to review) but at the 
cost of lower quality because high-value reports would 
be missed unless additional quality assurance procedures 
were in place.

In this scenario, quality might be assured by human 
expert assessment of a random sample of the excluded 
reports. To maintain efficiency, the size of the sample could 
not be large, therefore such a random sampling process 
would likely not find all high-value reports misclassified 
as low-value. Thoughtful design of the sampling process 
(e.g., oversampling reports with algorithm scores close to 
the threshold, reports with algorithm scores for which the 
algorithm’s predictions are known to be less reliable using 
a confidence metric, or with drugs or AEs of particular 
concern or relative rareness) might be considered. Simulta-
neous use of an independent rule-based algorithm specifi-
cally designed to identify important reports (e.g., reports of 

anaphylaxis, drug-induced liver injury, Stevens–Johnson 
syndrome) might provide additional assurance. Embedding 
the specific human-AI system in a more general evaluation 
process that uses other techniques to ensure the overall goals 
of the process are not compromised might also be an option. 
For example, applying such an algorithm only to evaluations 
with large numbers of reports of a drug–AE combination 
being evaluated would reduce the chance that a small num-
ber of misclassified high-value reports would change the 
overall conclusions of the case series evaluation. Additional 
research is needed to determine which of these, or other 
techniques, might best address the challenge of a human-in-
the-loop approach.

8  Challenges

With the exception of the US Vaccine Adverse Event 
Reporting System (VAERS), large-scale, publicly avail-
able datasets of ICSRs with complete information, includ-
ing narrative descriptions of AEs, are not available because 
of the need to protect personal health information. Only 
small ICSR datasets annotated by human experts for the 
purposes of causality assessment are available due to the 
expense of annotating and anonymizing the data. Develop-
ing a mechanism for sharing datasets with narrative text 
and appropriate annotations would accelerate progress in 
applying supervised ML to ICSR processing and evalua-
tion, as well as facilitate harmonization and building trust 
among stakeholders.

Human expert processes for causality assessment of 
ICSRs use information that is both internal and external 
to the report. The development of a well-defined ‘cognitive 
framework’ that can be made computable and fit into exist-
ing workflows will be needed to further the application of 
AI to ICSR processing and evaluation. Direct engagement 
with human PV experts to describe in detail how they do 
their work and the development of transparent and explain-
able ML algorithms that identify the key features and their 
interrelationships in achieving certain goals could con-
verge on a detailed description of the PV cognitive frame-
work that has long eluded the field. Currently, statistical 
disproportionality analyses [62] and case-series evalua-
tions are largely separate activities. The development of 
a computable cognitive framework might identify ways 
in which traditional statistical methods can be integrated 
with NLP and ML algorithms to more rigorously identify 
unusual patterns [41, 44] in case series.

Successful implementation of information technology 
systems requires an understanding of the complex inter-
relationships among hardware, software, information con-
tent, and the human–computer interface [63]. The imple-
mentation of systems purporting to introduce AI into the 
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workplaces of a highly regulated industry brings additional 
dimensions to an already difficult challenge. One approach 
to addressing this challenge, which has been applied to 
health information technology for health care delivery, is 
the development of a formal sociotechnical framework that 
integrates technology and evaluation with people, work-
flow, communication, organizational policies, and external 
rules and regulations [63]. Applying such a framework 
to fully understand all the steps needed to integrate AI 
into existing PV processes across the PV enterprise, from 
patients and providers to pharmaceutical companies to 
regulators and back to providers and patients, would be a 
useful next step in creating a roadmap for implementation.

A related challenge is that PV professionals have tradi-
tionally been recruited primarily from clinical disciplines, 
with limited training in quantitative and computational 
approaches to data analysis. Both in industry and regula-
tory agencies, the education of PV staff who are not spe-
cialists in AI, and targeted recruitment of AI specialists to 
support AI application for PV, will be critical components 
of bringing about successful implementation of AI systems 
for PV.

9  Summary

Some aspects of ICSR case processing and assessment have 
been shown to be amenable to NLP and ML to augment 
human expertise. Implementation of some approaches is 
underway and has been described in the published litera-
ture. The likelihood that AI systems will reach a level of 
performance likely necessary for full automation (with an 
F1 score approaching 1.0) in the near term is low. Including 
a ‘human-in-the-loop’ will likely not only be necessary but 
also desirable for the foreseeable future. Experience with 
automation in aviation [64] suggests that thinking of automa-
tion as supporting rather than supplanting human expertise 
provides many benefits. Such benefits include better accept-
ance, reduced risks of errors, improved understanding of the 
process human experts actually use, and improved human 
expert performance [64]. Fully articulating a sociotechni-
cal framework for AI in PV would likely further elucidate 
similarities and differences between PV and other fields, 
such as aviation, that have successfully introduced AI and 
aid in identification of additional measures that might be 
taken in implementing AI for PV. ICSR evaluation remains 
an art as much as a science. A potential advantage of efforts 
at automation is that existing inconsistencies in assessment 
processes will be revealed, leading to general improvements 
in decision making.

Key policy and regulatory approaches await more scien-
tific study and development of best practices in AI generally, 
and for its application to ICSR processing and evaluation. 

Practical experience with stepwise implementation will 
likely provide important lessons learned that will inform the 
necessary policy and regulatory framework that will facili-
tate widespread adoption of AI for ICSR processing and 
evaluation in the future. This experience will provide a valu-
able foundation for further development of AI approaches to 
other aspects of PV.
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