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Abstract

Serine proteases are a key component of the inflammatory response as they are discharged from activated leuko-
cytes and mast cells or generated through the coagulation cascade. Their enzymatic activity plays a major role in
the body’s defense mechanisms but it has also an impact on vascular homeostasis and tissue remodeling. Here we
focus on the biological role of serine proteases in the context of cardiovascular disease and their mechanism(s) of
action in determining specific vascular and tissue phenotypes. Protease-activated receptors (PARs) mediate serine
protease effects; however, these proteases also exert a number of biological activities independent of PARs as they
target specific protein substrates implicated in vascular remodeling and the development of cardiovascular disease
thus controlling their activities. In this review both PAR-dependent and -independent mechanisms of action of ser-
ine proteases are discussed for their relevance to vascular homeostasis and structural/functional alterations of the
cardiovascular system. The elucidation of these mechanisms will lead to a better understanding of the molecular

forces that control vascular and tissue homeostasis and to effective preventative and therapeutic approaches.

Introduction
Inflammation is a process that delivers defensive tools to
injured tissues. Tissue injury implies changes to blood
vessels and disruption of normal histological features
with rapid recruitment of leukocytes; during this process
inflammatory mediators coordinate the response in a
manner that preserves both vascular integrity and circu-
lation while allowing extravasation of leukocytes, i.e.
their recruitment from circulation to the site of injury.
Such perturbation of vascular homeostasis results in bio-
logical and biochemical reactions that mediate phenoty-
pic changes both locally and systemically. A typical
example of localized phenotypic change is the injury-
induced vascular remodeling which ultimately leads to
neo-intimal hyperplasia. Systemically, inflammatory per-
turbation of homeostatic mechanisms affects the vascu-
lar tone, often sustaining a hypertensive phenotype.
Activated leukocytes are widely implicated in cardio-
vascular disease (CVD). Mononuclear cells are recruited
to sites of vascular injury thus contributing to foam cells
within atherosclerotic plaques [1]; macrophages infiltrate
adipose tissue producing a variety of chemokines and
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cytokines, a key process to the establishment of meta-
bolic syndrome [2]; furthermore, polymorphonuclear
cells (PMN) recruited to sites of vascular injury contri-
bute significantly to the development of neo-intimal
hyperplasia as they sustain mobilization of medial
smooth muscle cells that proliferate and migrate into
the neo-intima [3]. Leukocyte activation occurs in all
the conditions associated with an increased CVD risk:
infection, hypertension, hyperlipidemia, hyperglycemia,
obesity, and atherosclerosis [4]. Activated white blood
cells discharge into the surrounding milieu reactive oxy-
gen species (ROS) and a variety of proteolytic enzymes,
particularly serine proteases [5]. The inflammatory ser-
ine protease response is further strengthened by activa-
tion of the kallikrein system [6], the involvement of
mast cells with the release of chymase and tryptase [7],
and activation of the coagulating cascade which ulti-
mately leads to thrombin formation with locally elevated
levels of thrombin activity [8,9].

Sequencing of the human genome shows that more
than 2% of all human genes are proteases or protease
inhibitors, indicating the overall importance of proteoly-
sis in human biology [10]. The human degradome con-
sists of at least 561 proteases and homologs, which are
distributed into 186 metallo-, 178 serine-, 21 aspartic-,
148 cysteine-, and 28 threonine- proteases [11]. A
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number of studies have emphasized that in addition to
their direct proteolytic effect(s) proteases possess a vari-
ety of regulatory functions that are mediated through
intracellular signaling pathways, caspase-like enzyme
activity and/or regulation of specific cytokines and sig-
naling receptors. Therefore, proteases are now consid-
ered as multifunctional, hormone-like signaling
molecules that play a pivotal role in various physiologi-
cal and pathological processes [12]. Protease-mediated
signaling can proceed via specific protease-activated
receptors (PAR) and/or PAR-independent mechanisms.

In this review we will focus on serine proteases, which
have a direct effect on degradation of proteins of the
extracellular matrix including collagen, elastin, and
fibronectin [13]. Pro-inflammatory effects of serine-pro-
teases will be discussed particularly in light of their rele-
vance to CVD. We will also consider serine proteases’
specific targets whose induction and/or degradation has
a demonstrated impact on their biological activity and
the pathogenesis of cardiovascular disease.

Protease-activated receptors (PARs)

Most serine proteases transduce their signal(s) into the
cell by interacting with specific cell membrane recep-
tors. This mechanism controls a number of relevant cel-
lular effects of serine proteases. Protease-activated
receptors (PARs) are a unique class of transmembrane
G protein-coupled receptors (GPCRs) that play a critical
role in thrombosis, inflammation, and vascular biology.
Leger et al. [14] reported that all the four PARs
described to date are expressed in various types of cells
present in the vasculature and modulate the responses
to coagulation proteases during thrombosis and inflam-
matory states. PAR; and PAR, expressed in smooth
muscle cells and PAR;, PAR,, and PAR, expressed in
macrophages activate inflammatory and proliferative
pathways in atherosclerotic lesions [15]. Rodent platelets
lack PAR; and instead use PAR; to enhance thrombin
cleavage of the lower-affinity PAR, [14]. PAR, is mostly
a receptor for the tissue factor/factor VIla/factor Xa
complex and is also a preferred target of trypsin, but
not thrombin [16,17]. PAR; and PAR, signaling show
considerably different kinetics and indeed appear to
have distinct functions in platelet aggregation [14].
PAR; is a high-affinity receptor for thrombin by virtue
of a hirudin-like sequence that resides in its N-terminal
extracellular domain [18,19]. Signal transduction via
PAR; is fast and transient, and is followed by a pro-
longed signaling arising from PAR,, a receptor normally
more slowly activated by thrombin. For activation, PAR;
exo-domain harbors a hirudin-like sequence element
that interacts with thrombin. PAR, has an optimal clea-
vage sequence that provides high-affinity interactions
with the active site and uses an anionic cluster for slow
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dissociation from the cationic thrombin. PAR; also acts
as a cofactor for thrombin activation of PAR, which
provides a mechanistic basis to understand PAR;/PAR,
synergy [14]. Human platelets express both PAR; and
PAR,; which give rise to a coordinated thrombin
response and subsequent activation of the glycoprotein
GP IIb/IIla, a fibrinogen receptor, with formation of pla-
telet-rich thrombi.

PARs have a unique mechanism of activation that dis-
tinguishes them from other seven transmembrane
GPCRs that are activated reversibly by small hydrophilic
molecules to elicit cellular responses [20]. PAR activa-
tion involves the proteolytic unmasking of the receptor’s
N- terminus to reveal a cryptic tethered ligand (TL) that
binds to and activates the receptor [21]. PARs, with the
exception of PAR;, are also activated by short synthetic
peptide sequences derived from the sequences of the
proteolytically revealed TL [19,22]. It is worth mention-
ing that proteases can also exert a negative regulation
through PARs by ‘disarming’ the receptor by cleavage at
a non-receptor activating site which results in removing
the TL. Minami and collaborators [23] have described
several steps following initial stimulation of PAR.
Thrombin activates PAR; by binding to a unique site in
the extracellular domain of the receptor, resulting in
cleavage between Arg4l and Ser42 and subsequent
exposure of a new N-terminus. The unmasked tethered
ligand (SFLLRN) interacts with the extracellular loop 2
of the receptor (amino acids 248 to 268), resulting in
receptor activation [24]. Once cleaved, PAR; transmits
the signal across the plasma membrane to intracellular
G proteins. The G proteins are in turn associated to a
number of signal intermediates that include mitogen-
activated protein kinases (MAPKs), protein kinase C
(PKC), phosphatidyl-inositol 3-kinase (PI3-K), and Akt.
In normal platelets, this process culminates in morpho-
logic changes of the cells, platelet-platelet aggregates,
control of release of platelet dense granules and a rapid
rise in intracellular calcium [25-27]. Thrombin signaling
results in changes in downstream transcription of genes
involved in cell proliferation, inflammation, leukocyte
adhesion, vasomotor tone, and hemostasis. In addition,
thrombin controls post-transcriptional changes such as
calcium influx, cytoskeletal reorganization, and release
of soluble mediators and growth factors into the extra-
cellular matrix [23].

In reviewing the role of PARs expressed in the vascu-
lar endothelium Leger et al. [14] emphasized that their
activation mediates responses involved in contractility,
inflammation, proliferation, and repair complementing
the functions of platelet PAR; by localizing the throm-
bus to the site of vascular injury. This process involves
calcium mobilization and secretion of Weibel-Palade
bodies, which harbor vWF multimers and the P-selectin
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adhesion molecule [28]. Activated PAR; thus mediates
the inflammatory process in the endothelium, causes
cytoskeletal rearrangements and induces cell contraction
and rounding [29,30]; this mechanism destabilizes cell-
cell contacts with subsequent increase in vascular per-
meability which facilitates the passage of molecules and
cells from the blood into sub-endothelial compartments
while tissue factor (TF) and collagen are exposed to the
vascular bed. Recent studies have indicated that PAR
activation by thrombin, factor Xa, and activated protein
C (APC) can either promote or protect against changes
in vascular permeability depending on the status of the
endothelium [31,32]. PAR; signaling can also play
opposing roles in sepsis, either promoting coagulation
and inflammation or reducing sepsis lethality due to
APC therapy. Recombinant human activated protein C
(hrAPC) was developed to reduce excessive coagulant
and inflammatory activity during sepsis. Basic and clini-
cal research studies have suggested that these pathways
contribute to the pathogenesis of this lethal syndrome
and are inhibited by rhAPC. Recent data showed that
treatment with hrAPC in septic patients may improve
muscle oxygenation and reperfusion and, furthermore,
hrAPC treatment may increase tissue metabolism [33].
Similar to thrombin, which is a serine protease of the
coagulation cascade that induces inflammatory
responses and controls endothelial barrier permeability,
APC, an anti-coagulant protease, also activates PAR;.
Unlike thrombin, however, APC elicits anti-inflamma-
tory responses and protects against endothelial barrier
dysfunction induced by thrombin. Thus, a mechanism
of protease-selective signaling by PAR; has been sug-
gested, called the PAR; paradox. Russo et al. [34] have
recently reported that thrombin and APC signaling were
lost in PAR; deficient endothelial cells, indicating that
PAR; is a major effector of protease signaling. They
reported that thrombin caused robust Rho-A signaling
but not Rac-1 activation, whereas APC stimulated a
marked increase in Rac-1 activation but not Rho-A sig-
naling, consistent with the opposing functions of these
proteases on endothelial barrier integrity. Using cells
lacking caveolin-1, an endothelial cell membrane protein
involved in receptor-independent endocytosis, these
Authors also found that APC selective signaling and
endothelial barrier protective effects were mediated
through compartmentalization of PAR; in caveolae by a
novel mechanism of PAR; signal transduction regula-
tion. Acute blockade of the APC pathway with a potent
inhibitory antibody revealed that thrombin/PAR; signal-
ing increases inflammation-induced vascular hyper-per-
meability. Conversely, APC/PAR; signaling and the
endothelial cell protein C receptor (EPCR) prevented
vascular leakage, and pharmacologic or genetic blockade
of this pathway sensitized mice to LPS-induced lethality.
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Hence, PARs may play a role in disease states character-
ized by decreased barrier function, including sepsis and
systemic inflammatory response syndrome, and their
pharmacological modulation may therefore ameliorate
serious clinical states.

Vascular smooth muscle cells (VSMC) represent sites
of PAR; over-expression in human atherosclerotic
arteries, including regions of intimal thickening [35]. In
vitro studies revealed that activation of PAR; triggers
mitogenic responses in VSMC and fibroblasts [36].
Moreover, a PAR; neutralizing antibody reduced intimal
hyperplasia in a catheter-induced injury model of reste-
nosis [37]. Finally, studies using PAR; deficient mice
and small molecule PAR; antagonists further implicated
PAR; in thrombosis and restenosis [38].

There are a number of evidences that the effect of
PARs on local vessel vaso-reactivity may vary greatly
depending on whether the endothelium is healthy or
rather in the context of an atherosclerotic lesion. Stimu-
lation of intact coronary arteries with thrombin or PAR,
agonist peptides elicited relaxation [39] while in athero-
sclerotic human coronary arteries stimulation of PAR;
failed to elicit relaxation and in some cases caused
marked contraction [40].

As PARs and other GPCRs belong to the group of
transmembrane receptors, they modulate G protein sig-
naling on the inside surface of the receptor [25]. Several
studies utilized lipidated peptides based on the intracel-
lular loop sequences of the GPCRs of interest like pep-
ducins, which bind to the receptor-G protein interface
on the inner leaflet of the plasma membrane. These
molecules have been studied extensively in the context
of PAR; and PAR, signaling in platelets and in animal
models of thrombosis, inflammation, angiogenesis, and
migration and invasion of cancer cells [14,41-43]. PAR,
and PAR, mediate various vascular effects including reg-
ulation of vascular tone, proliferation and hypertrophy
of smooth muscle cells and angiogenesis. Since pro-
teases are activated under pathological conditions such
as hemorrhage, tissue damage, and inflammation, PARs
are suggested to play a critical role in the development
of functional and structural abnormality in the vascular
lesion [44,45]. Therefore, development of new strategies
for the prevention and therapy of vascular diseases can
be achieved by understanding the functional role of
PARs in the vascular system.

PAR-independent serine protease activity affecting the
cardiovascular system

Although many studies have explored the role of PARs
in protease signaling a number of alternative mechan-
isms can account for protease biological activity in con-
trolling the cardiovascular system. Here we will discuss
inflammatory serine proteases as they exert their
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Table 1 Summary of protein targets of inflammatory serine proteases
Serine Targets Function Role in References
protease cardiovascular
disease
Elastase E-cadherin, GM-CSF, IL-1, IL-2,  Degrades ECM components Promotes [13,46-50,57,78,89,90,92]
IL-6, 1L8, p38™APK TNFaq, Regulates inflammatory response atheromatous plaque
VE-cadherin Activates pro-apoptotic signaling formation
Promotes vascular
damage
Promotes ischemia
and reperfusion injury
Triggers endothelial
cell apoptosis
Cathepsin  EGF, ENA-78, IL-8, MCP-1, MMP-2, Degrades ECM components Initiates calcification [58-65,67,70,78,88]
G MT1-MMP, Chemo-attractant of leukocytes and fibrosis of aortic
PAI-1, RANTES, TGFB, TNFa Regulates inflammatory response valve
Promotes apoptosis Promotes tissue
remodeling
Induces VSMC
proliferation
Modulates
coagulation
PR-3 ENA-78, IL-8, IL-18, JNK, p38MAPK, Promotes inflammatory response Promotes vascular [78,85,89,90]
TNFou Activates pro-apoptotic signaling damage
Triggers endothelial
cell apoptosis
Thrombin FGF-2, Modulates activity of vascular growth  Promotes [14,23,31,98-101,118,122,123,173,174]
HB-EGF, factors, chemokines and extracellular ~ angiogenesis and
Osteo-pontin, proteins vascular remodeling
PDGF, VEGF Strengthens VEGF-induced Promotes coagulation
proliferation and platelet
Induces cell migration aggregation
Angiogenic factor
Regulates haemostasis
Kallikreins high molecular weight Modulate relaxation response Impact fibrinolysis and [132-136,140,141]
kininogen, pro-urokinase Contribute to inflammatory response vascular tone
Fibrin degradation Induce relaxation of
contracted aortas
Tryptase angiotensin |, fibrinogen, pro- Activate pro-urokinase Affect blood pressure [7,142-147]
and urokinase, Promote angiogenesis Promote angiogenesis
Chymase TGFB Modulate coagulation cascade Promote remodeling

of fibrotic tissue
Impact fibrinolysis and
vascular tone

biological activity on the cardiovascular system by tar-
geting cytokines, growth factors, membrane receptors,
and other vasoactive proteins with or without the invol-
vement of PARs (Table 1).

Neutrophil serine proteases

Elastase is the major serine protease contained in the
azurophile granules of polymorphonuclear cells (PMN,
or neutrophils). When discharged upon PMN activation
neutrophil elastase has a direct effect on the degradation
of extracellular matrix components, including collagen,
elastin and fibronectin [13]. In addition, elastase has a
pro-inflammatory effect. It degrades inter-endothelial
VE-cadherin and inter-epithelial E-cadherin, promoting
permeability through these cell layers [46,47]. Elastase
also stimulates the secretion of granulocyte-macrophage
colony-stimulating factor (GM-CSF), IL-6 and IL-8 from

epithelial cells [48,49] and at the same time is capable of
degrading the cytokines IL-1B, IL-1, IL-8, IL-2 [50]. This
effect further enhances leukocyte migration and propa-
gates inflammation.

The net effect of proteolytic activity depends on the
balance between a pro-inflammatory and an anti-inflam-
matory state. In various diseases an imbalance in the
ratio of proteases and their physiological inhibitors has a
role in the progression of the pathologic process. For
example, inherited deficiency of 1-proteinase inhibitor
(1-PI), the principal extracellular inhibitor of neutrophil
elastase, increases the risk of severe early-onset emphy-
sema [51]. Conversely, Ortiz-Muiioz et al. [52] have
recently shown the presence of ;-antitrypsin in high-
density lipoprotein (HDL) that possesses a potent anti-
elastase activity. The same Authors also reported that
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HDL-associated ;-antitrypsin was able to inhibit extra-
cellular matrix degradation, cell detachment, and apop-
tosis induced by neutrophil elastase in human VSMCs
and in mammary artery cultured ex vivo [52].

Thrombus formation at the surface of an atherosclero-
tic plaque in coronary or carotid arteries may cause
acute occlusion and subsequent complications such as
myocardial infarction or stroke leading to serious clini-
cal conditions. Such pathological events caused by rup-
ture of a thin-capped fibro-atheroma containing a lipid-
rich necrotic core lead to the exposure of plaque-asso-
ciated tissue factor to circulating coagulation factors,
platelet activation, and subsequently to the formation of
an occlusive thrombus [53,54]. The atherosclerotic pla-
que may be stable for a long time or rather prone ("vul-
nerable”) to disruption. A huge scientific effort is
justifiably under way in order to characterize the vulner-
ability of the atherosclerotic plaque.

Extracellular protease levels increase with the major
coronary risk factors. Smoking and Type 1 diabetes
increase plasma elastase levels [55,56]. Dollery et al. [57]
showed in human tissue that fibrous and atheromatous
plaques but not normal arteries contained significant
amounts of neutrophil elastase. Moreover, elastase
abounded in the macrophage-rich shoulders of athero-
matous plaques with histological features of vulnerabil-
ity. These Authors also showed by in situ hybridization
that elastase was highly expressed in macrophage-rich
areas, indicating local production of this enzyme.

Cathepsin G is another serine protease of PMN azuro-
phile granules that hydrolyses several types of proteins.
Cathepsin G exerts potent pro-inflammatory properties
[58]. It plays a role in the degradation of extracellular
matrix components and cytokines and also as a chemo-
attractant for leukocytes, including T cells. Cathepsin G
has a potent elastolytic activity and thus plays a key role
in tissue remodeling [59,60]. Cathepsin G cleaves and
activates G protein-coupled receptors (GPCRs) as a
mechanism to modulate coagulation and tissue remodel-
ing at sites of injury and inflammation (see above).
Cathepsin G also induces activation of the matrix
metallo-proteinases MMP-2 and MT1-MMP. In fact,
myocytes treated with an MMP-2 inhibitor display
reduced ERK-1/2 phosphorylation and attenuated apop-
tosis induced by cathepsin G. In addition, inhibition of
MT1-MMP by either TIMP-2 or neutralizing MT1-
MMP antibodies blocks cathepsin G-induced MMP-2
activation and ERK-1/2 phosphorylation [61]. A decrease
in apoptosis has also been observed in a model of cathe-
psin G~ mice [62]. Cathepsin G-mediated cell detach-
ment and apoptosis have also been demonstrated in
cultured cardiomyocytes [63]. Our group and others
have shown the role of MT1-MMP in cathepsin G-
induced MMP-2 cleavage and epidermal growth factor
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receptor (EGFR) trans-activation [61,64]. Cathepsin G-
induced cardiomyocyte apoptosis involves an increase in
EGFR-dependent activation of protein tyrosine phospha-
tase SHP2 (Src homology domain 2-containing tyrosine
phosphatase 2) which promotes focal adhesion kinase
dephosphorylation and subsequent cardiomyocyte anoi-
kis, the apoptotic response of cells to the absence of
cell-matrix interactions [64].

The chemokine RANTES (Regulated upon Activation,
Normal T-cell Expressed and Secreted) is strongly
induced by viral and bacterial infections and plays a role
in allergic diseases, asthma exacerbation, interstitial
pneumonia, allograft rejection and in some types of can-
cers. Recently, RANTES has been shown to induce
VSMC proliferation in an animal model of graft arterial
disease [65]. Interestingly, the RANTES specific allele is
associated with the presence and severity of coronary
artery disease [66]. Cathepsin G mediates the regulation
of RANTES signaling pathway. In fact, Lim et al. [67]
showed that cathepsin G promotes post-translational
processing of RANTES into a variant lacking N-terminal
residues, called 4-68 RANTES, which exhibits less effi-
cient binding to the chemokine receptor CCR5 and
lower chemotactic activity [68]. In this study, it was also
shown that the cathepsin G inhibitor Eglin C abrogated
cell-mediated production of 4-68 RANTES. Further-
more, neutralizing cathepsin G antibodies also abrogated
RANTES digestion in neutrophil cultures. These find-
ings demonstrate that cathepsin G proteolytic activity
operates a tight control of RANTES.

Cathepsin G enzymatic activity can lead to generation
of angiotensin II which in turn induces the expression
of monocyte chemoattractant protein-1 (MCP-1) [69],
and also triggers an angiotensin II-dependent profibrotic
response mediated by transforming growth factor-beta 1
(TGF-B1). In addition to its pro-fibrotic effect, cathepsin
G-mediated TGF-B1 formation also initiates calcification
of the aortic valve [70]. Hence, cathepsin G-mediated
TGF-B1 formation may be associated with both fibrosis
and calcification of the aortic valve, two important
mechanisms of valvular disease. It has also been
reported that cathepsin G expression is significantly
increased in human stenotic aortic valve and that this is
associated with the formation of atheroma of the carotid
artery [71].

Reperfusion of ischemic tissues induces an inflamma-
tory response [72,73]. This process is associated with
cytokine and chemokine production and expression of
adhesion molecules, neutrophil infiltration and subse-
quent tissue damage [74,75]. Studies using animal mod-
els have shown that neutrophil depletion before
reperfusion or blockade of neutrophil infiltration into
the ischemic tissue results in attenuating the injury asso-
ciated with ischemia-reperfusion [76,77]. Cathepsin
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G~ mice have normal development of neutrophils but
an abnormal wound healing response. These mice also
present a reduced tissue injury in a model of renal
ischemia-reperfusion; cathepsin G thus appears to be a
critical factor for sustaining neutrophil-mediated acute
tissue pathology and subsequent fibrosis [62].

Tumor necrosis factor-alpha (TNF-a) is one of the
major cytokines involved in the inflammatory response.
Proteolytic cleavage of the membrane-bound pro-form
of TNF-a is a requirement for its biological activity.
Elastase and cathepsin G are both involved in the shed-
ding of membrane-bound TNF-a. Elastase and Protei-
nase-3 (PR-3), another protease contained in the
azurophile granules, are both able to process TNF-a in
vitro into its soluble, active form [78] whereas serine
protease inhibitors suppress the secretion of TNF-a
from activated macrophages [79,80].

The ADAM (A Disintegrin And Metallo-proteinase)
family of peptidases are involved in a process called
‘shedding’, i.e the cleavage and release of a soluble ecto-
domain from membrane-bound pro-proteins. ADAM
metallopeptidase with thrombospondin type 1 motif, 17
(ADAMTS17) is the main physiological TNF-a proces-
sing enzyme. However, studies conducted with cultured
fibroblasts isolated from ADAMTS17”" animals have
shown that both elastase and cathepsin G release soluble
TNF-a (diminishing the levels of the membrane-bound
form and increasing the levels of biologically active,
soluble TNF-a). In contrast to cathepsin G, elastase is
also able to further degrade, and thus inactivate, soluble
TNEF-a, although at higher concentrations [81,82]. Thus,
these proteases modulate the levels of soluble TNF-a
contributing to control its pro-inflammatory activity in
the tissue.

The cytokine IL-18 plays a role in inflammatory states
like sepsis, arthritis and inflammatory bowel disease
[83,84]. Its inactive precursor pro-IL-18 is generally
cleaved by caspase-1 to its active form. In vitro, PR-3
activates IL-18 independently of caspase-1 activity. This
has been elegantly confirmed using a caspase-1-deficient
mouse model [85].

In addition to the cytokines mentioned above neutro-
phil serine proteases can cleave a number of ligand-
binding cytokine receptor ectodomains. This cleavage
appears to modulate the cellular response by inactivat-
ing the receptor or prolonging the cytokine half-life
[86,87] with subsequent down-regulation of the inflam-
matory response. It should be noticed that proteolytic
cleavage of cytokines like IL-8 and ENA-78 by PR-3 and
cathepsin G leads to a more active form of the chemo-
kines. Therefore, neutrophil serine proteases, by activat-
ing specific receptors and releasing or inactivating a
number of cytokines, modulate the dynamic state of
cytokines at the site of inflammation.
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The potential effects of cathepsin G in cardiovascular
disease may also derive from its control of the fibrinoly-
tic system. While investigating cathepsin G biological
effects on human endothelial cells we discovered that
cathepsin G induced suppression of tissue-type plasmi-
nogen activator (tPA) activity and that this effect was
mediated by release of its physiological inhibitor plasmi-
nogen activator inhibitor 1 (PAI-1) from the endothelial
extracellular matrix [88]. Interestingly, in the same study
we discovered that cathepsin G was able to release PAI-
1 from platelets, thus strengthening its potential role as
a thrombogenic factor.

The complexity of the impact of leukocyte-derived
proteases processing of specific substrates on intracellu-
lar signaling pathways has several repercussions on the
vascular cell phenotype. Yang et al. [89] found that
release of PR-3 and elastase by activated neutrophils
during acute inflammation may result in vascular
damage by triggering endothelial cell apoptosis. This
group also reported that the release of neutrophil and
monocyte proteases, such as PR-3 and elastase, can
facilitate the passage of these white blood cells through
the endothelial cell layer with the concomitant activa-
tion of pro-apoptotic signaling pathways such as the
stress-activated mitogen-activated protein kinases
(MAPKSs). Accordingly, inhibition of the MAPK JNK
blocked PR-3-induced apoptosis, and also inhibition of
p38MAPK blocked PR3- and elastase-induced apoptosis,
indicating that these pathways are required for activa-
tion of apoptosis by these proteases [90].

The inhibition of neutrophil elastase ameliorates
ischemia and reperfusion injury as shown in a mouse
liver model. Treatment with an elastase inhibitor
decreased local neutrophil infiltration and diminished
apoptosis as determined by terminal deoxy-nucleotidyl
transferase-mediated dUTP nick-end labeling (TUNEL)
staining and caspase-3 cleavage. Thus, targeting neu-
trophil elastase represents a useful approach for pre-
venting ischemia and reperfusion injury [91] which
suggests potential applications for the therapy of cardi-
ovascular diseases. In addition, an in vitro study using
isolated PMN from venous blood of healthy volunteers
showed that also C-reactive protein (CRP) degradation
products generated by NE promoted neutrophil apop-
tosis and cell death. Therefore, cleavage of CRP by
neutrophil elastase may have a role in modulation of
inflammatory injury (see below for more data on CRP)
[92].

However, it should be pointed out that studies on dif-
ferent cell types, i.e. epithelial cells, have shown that
there is a dual cellular response to elastase in acute
inflammation that includes the activation of both pro-
apoptotic and pro-survival pathways, the balance of
which ultimately determines the cell’s fate [93].
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Thrombin and growth factor signaling

The cardiovascular system’s development and mainte-
nance are tightly controlled by the concerted activities
of a variety of vascular growth factors. These include
vascular endothelial growth factor (VEGF), fibroblast
growth factors (FGFs), heparin-binding epidermal
growth factor (HB-EGF) and platelet-derived growth
factors (PDGFs) which all act via specific cell membrane
receptors known as receptor tyrosine kinases (RTKs);
their activation triggers multiple intracellular signaling
pathways [94]. The impact of these growth factors on
angiogenesis and vascular remodeling has been widely
documented and several approaches aimed to interfering
with these processes by selectively inhibiting the growth
factor activity directly or indirectly have shown a vari-
able degree of success [95-97]. Interestingly, thrombin, a
serine protease activated upon tissue injury and inflam-
mation, modulates the activity of most vascular growth
factors, which in part explains its angiogenic properties.
In fact, thrombin not only releases VEGF from tumor
cells but also strengthens VEGF-induced proliferation of
vascular endothelial cells via upregulation of VEGF
receptors expression [98]. The thrombin-induced shed-
ding of HB-EG from the cell membrane controls VSMC
proliferation by transactivating the EGF receptor [99];
interestingly, the intracellular response triggered by
thrombin via this mechanism induces a biphasic activa-
tion of the ERK-1/2 pathway which seems to be
mediated by MMPs [100]. Thrombin also modulates the
expression of PDGF, a growth factor implicated in the
stabilization of angiogenic vessels through pericyte
maintenance as well as in the development and progres-
sion of intimal hyperplasia, a process synergistically sup-
ported in concert with basic FGF (FGF-2) [101,102].
Thrombin strengthens the biological activity of FGF-2
which mediates its effects, particularly on VSMC
[103-109]. Our group has characterized several effects of
FGEF-2 on vascular cells, including its critical role in
inducing endothelial cell migration via activation of the
MAPKs ERK-1/2 [110,111]. As our recent findings have
unraveled a novel mode of interaction between throm-
bin and FGF-2 (see below) we will discuss these two
molecules in further detail.

FGE-2 is the prototypic member of a family of small
proteins with pleiotropic effects [112]. The fgf~2 human
gene is expressed in different molecular weight forms
generated by alternative translation from a single mRNA
transcript. Translation of the 18 kDa form or low mole-
cular weight (LMW) FGF-2 is initiated from a classical
AUG codon, whereas the 22, 22.5 and 24 kDa forms,
collectively known as high molecular weight (HMW)
FGEF-2, are translated from alternative CUG codons
upstream of the AUG [113,114]. The HMW forms of
FGF-2 are therefore colinear extensions of 18 kDa FGF-
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2 [115,116]. Within the cell HMW FGF-2 is predomi-
nately localized to nuclei and nucleoli, whereas LMW
FGF-2 is mostly cytoplasmic; importantly, both forms
are also detected into the extracellular environment
although the mechanism of their release remains poorly
understood. Selective expression of HMW FGEF-2 is
induced by stress conditions such as heat shock and oxi-
dative stress, and by specific cytokines and growth fac-
tors (reviewed in Yu et al. [116]). The different FGF-2
forms have been implicated in various pathological pro-
cesses, including vascular remodeling and arterial reste-
nosis, neuronal regeneration after injury and tumor
growth [116,117].

The serine protease thrombin is a key regulator of
vascular integrity and homeostasis; it is a key enzyme of
the coagulation cascade, angiogenic factor, inflammatory
mediator, platelet agonist and regulator of vascular cell
functions [118]. Generation of thrombin through activa-
tion of the tissue factor-dependent coagulation cascade
is also well described in malignancy [119]. Accordingly,
thrombin has been shown to promote tumor growth
and metastasis, an effect in part attributed to its angio-
genic activity [120,121] and its induction of chemokines,
growth factors and extracellular proteins [122,123].
Most of thrombin effects are mediated by activation of
specific protease-activated receptors (PARs) and their
downstream intracellular signaling [124] (see above).

Thrombin effects on vascular cells have been demon-
strated to depend on FGF-2; FGF-2 is also released by
thrombin from the heparan sulfates that act as molecu-
lar storage for its bioavailability in the extracellular
matrix [103,106,107,109,125]. While investigating the
vascular response of a vein utilized as bypass graft in
the arterial circulation (vein graft arterialization), we
observed a dramatic and rapid increase in vein graft-
associated thrombin activity [9]. Because this finding
was paralleled by an apparent increase in LMW FGF-2
and disappearance of HMW FGF-2 in the vein graft
(Fig. 1), we investigated the effect of thrombin on FGF-2
expression in various vascular cell cultures. Adding
thrombin to the culture medium resulted in loss of cell-
associated HMW FGF-2 and concomitant accumulation
of LMW FGF-2. The rapid kinetics of this effect (5 min)
suggested that it was not the result of a translational
control by thrombin. In fact, using FGF-2”" mouse
endothelial cells engineered to express solely the human
HMW FGEF-2 we demonstrated that thrombin cleaves
HMW FGEF-2 into an 18 kDa-like form of FGF-2 (ELF-
2). Importantly, we showed that cleavage of HMW FGF-
2 into ELF-2 mediates thrombin mitogenic and pro-
migratory effects on endothelial cells independent of
PAR activation [126] (Fig. 2). Thrombin cleavage
of HMW FGF-2 thus represents a rapid mechanism of
post-translational control of FGF-2 activity. Therefore,
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Figure 1 Western blotting analysis of FGF-2 expression in canine arterialized vein grafts (AVG) or in control femoral veins (C)
harvested at the indicated times after grafting showed disappearance of HMW FGF-2 at 8 h and the presence of a band in the 18

AVG

one must conclude that thrombin induces FGF-2 activ-
ity by both translation-dependent and -independent
mechanisms. Both LMW and HMW FGEF-2 are mas-
sively exported from the cell upon cell death, injury or
sub-lethal damage (reviewed in Yu et al. [116]). Accord-
ingly, release of all forms of FGF-2 occurs significantly
in injured endothelial cells [126]. In vivo vascular injury
is accompanied by localized endothelial and smooth
muscle cell damage as well as thrombin generation.
These conditions are therefore ideal for thrombin-
HMW FGF-2 interactions in the extracellular
environment.

The kallikrein-related peptidases

Kallikrein-related peptidases constitute a family of 15
(chymo)-trypsin-like proteases (KLK 1-15) that are
secreted as inactive zymogens and can exhibit either
trypsin- or chymotrypsin-like activity upon activation
[127-129]. Kallikreins are abundantly expressed in many
tissues as well as in circulation and are upregulated in
disease. Increased levels of human kallikreins have been
detected in ovarian and breast cancer patients [130,131]
as well as at sites of inflammation [132,133]. Human
kallikrein 14 (KLK 14) is the main physiological regula-
tor of PAR, in many settings, in addition to other serine
proteases like trypsin, factor VIIa/Xa, and tryptase.
Oikonomopoulou et al. [134,135] comprehensively
described the role of tissue kallikreins on PARs. Based
on the fact that activation of either PAR; or PAR,, but
not PAR,, induces an endothelium-dependent nitric

oxide-mediated aorta relaxation [136,137] an aorta ring
relaxation assay using rat or mouse vascular tissue was
performed to determine whether human kallikreins
could activate PARs in intact tissues. These Authors
found that human KLK 5, 6, and 14 caused relaxation of
rat aorta that had been pre-constricted with phenylephr-
ine. Human KLK 14 ability to induce relaxation of pre-
contracted aortas was further investigated using wild-
type vs PAR,-null mice. In endothelium-intact murine
aorta preparations human KLK 14 caused a relaxation
response that was comparable to that of acetylcholine.
Conversely, KLK 14 failed to cause relaxation in pre-
constricted tissues obtained from PAR,-null mice in
which the relaxation response could still be observed in
the presence of PAR; activators (TFLLR-NH, or throm-
bin). Thus, signaling via human, rat, and murine PARs
can be regulated by kallikreins. Interestingly, kallikreins,
and specifically human KLK 14, contribute to the
inflammatory response [137-139].

As in the case of other serine proteases kallikreins
can cleave a number of protein targets of interest for
the cardiovascular system. One major example of such
a mechanism is certainly the cleavage of high molecu-
lar weight kininogen operated by both plasma and tis-
sue kallikreins off the platelet surface [140]. As the
cleavage of membrane-bound high molecular weight
kininogen by kallikrein releases the potent vasodilator
bradykinin this mechanism has an obvious impact on
vascular tone.
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Figure 2 Schematic of the different human FGF-2 forms: high molecular weight (HMW, 24, 22.5, 22 kDA) or low molecular weight
(LMW, 18 kDa) expressed upon alternative translation from a unique mRNA. The HMW forms (black plus grey bars) are colinear extensions
of LMW FGF-2 (black bar only), and are inactive or inhibitory on vascular cell migration. Upon tissue injury and cellular damage, thrombin cleaves
all HMW FGF-2 forms exported in the extracellular environment in at least three different bonds (indicated as a unique white dotted line)
upstream of the initiating methionine of 18 kDa FGF-2 thus generating an eighteen kDa-like FGF-2 form (ELF-2) that induces vascular cell

Another interesting target of plasma kallikrein is pro-
urokinase. Ichinose et al. [141] reported that the zymo-
gen of this plasminogen activator can be converted by
plasma kallikrein into a disulfide bond-linked two-chain
form that degrades fibrin, its physiologic substrate;
interestingly, these same Authors showed that thrombin
converted pro-urokinase into a two-chain form that was
not activatable by kallikrein or other serine proteases.
Mast cell serine proteases
Mast cells are mostly known for their role in allergic
reactions during which vasoactive substances like hista-
mine and cytokines as well as proteases are massively
released [142]. Mast cells also play a role in the clear-
ance of foreign bodies, including bacteria. Although
cathepsin G can be expressed by mast cells, tryptase and
chymase are the major serine proteases stored in their
granules [7].

While mast cell-derived serine proteases have been
shown to activate PAR, [143] their proteolytic activity
has been also shown to target specific proteins widely
implicated in cardiovascular physiology and pathology.
Tryptase has been shown to convert pro-urokinase
into its active form [144], and chymase promotes the
release of TGF-B, a pro-fibrotic growth factor and
potent angiogenesis inducer, from the endothelial
extracellular matrix [145]. Mast cell serine proteases
have also a potential impact on vascular tone and
blood coagulation. In fact, chymase has been shown to
cause the in vitro conversion of angiotensin I into
angiotensin II, a protein implicated in vasoconstriction
and post-infarction remodeling of the heart [146].
Conversely, tryptase may impact blood coagulation by
depleting fibrinogen via its proteolytic degradation
[147].
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Other protein targets of serine proteases that affect the
cardiovascular system

Besides thrombin proteolysis of HMW FGF-2 (see
above), studies from the early 70’s had revealed that the
hormone-like action of trypsin, another serine protease,
is due to its effect on the insulin receptor [148,149]
which generates a truncated insulin alpha-subunit recep-
tor with an intrinsic signaling activity [150]. Lafleur
et al. [151] have also reported a mechanism of thrombin
signaling in human endothelial cells which does not
appear to involve PAR;, PAR,, or PAR,. These Authors
demonstrated that thrombin efficiently cleaves the 64
kDa form of membrane-type 1 matrix metalloproteinase
(MT1-MMP) in the presence of cells. Thrombin also
rapidly increased cellular MT1-MMP expression and
activity.

In the following paragraphs we will discuss two pro-
teins whose implication in cardiovascular disease has
been clearly established but for which the impact of
their interaction with inflammatory cells and proteases
on their activity in the cardiovascular system remains to
be elucidated.

C-reactive protein (CRP)

CRP, an acute phase reactant, has been recognized in
recent years as an important cardiovascular risk factor
and independent predictor of cardiovascular events
[1,152]. CRP is considered a protein actively involved in
atherogenesis, probably via the amplification of the vas-
cular inflammatory response. CRP modulates neutrophil
function [153,154] and up-regulates TNF-a, IL-6, IL-1f
[155], MCP-1 [156], and tissue factor production by
monocytes [157,158] as well as low density lipoprotein
(LDL)-uptake [159], probably contributing to foam cell
formation in atherosclerotic plaques. Using a model of
vein grafting into arterial circulation our group reported
that CRP levels increased peaking 24 hours after surgery
in serum as well as within the vein graft [160]. In situ
hybridization and Northern blotting analysis, however,
showed no CRP mRNA in either the arterialized vein
graft (AVG) or control veins whereas a strong positive
hybridization signal was detected in the liver. Early
increases in AVG-associated CRP levels after arterializa-
tion are nonetheless indicative of inflammatory pro-
cesses. Whether or not neutrophil release of serine
proteases plays an active role in localizing circulating
CRP to the vein graft remains to be determined.

It has been suggested that CRP may act as an athero-
thrombotic agent as it inhibits endothelial NO synthase
[161] and prostacycline [162], induces expression of
plasminogen activator inhibitor-1 [163], and promotes
tissue factor activity in monocytes [157]. Accordingly, a
recent study reported increased thrombosis after arterial
injury in transgenic mice over-expressing human CRP
[164].
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Osteopontin

Osteopontin is an aspartic acid-rich, N-linked glycosy-
lated secreted phosphoprotein also known as extracellu-
lar matrix cell adhesion protein. Osteopontin plays a
pivotal role in cell adhesion, chemotaxis, prevention of
apoptosis, invasion, and migration of various mesenchy-
mal, epithelial, and inflammatory cells. Osteopontin is
over-expressed in renal and cardiovascular cells during
tissue remodeling and in inflammatory cells associated
to different clinical conditions [165]. Scatena et al. [166]
described osteopontin as a multifunctional molecule
highly expressed in chronic inflammatory and autoim-
mune diseases, and thus believed to exacerbate inflam-
mation linked to atherosclerosis [167]. Specifically,
plasma osteopontin levels correlate with the presence
and extent of coronary artery disease [168] and high
levels of the protein have been found in patients with
restenosis after percutaneous coronary intervention
[169]. Furthermore, Golledge et al. [170] have shown
that serum and tissue concentrations of osteopontin are
associated with abdominal aortic aneurysm. These
observations suggest that osteopontin may play a role in
plaque formation and vascular disease progression. Sev-
eral protease cleavage sites have been identified in the
osteopontin molecule that may be important in regulat-
ing its activity [171]. Osteopontin was characterized as a
substrate for several MMPs [172] but it also contains a
domain that requires cleavage by the serine protease
thrombin to be functional [173]. A functional serine-
valine-valine-tyrosine-glutamate-leucine-arginine
(SVVYGLR) domain has a cryptic structure in intact
osteopontin and its cleavage by thrombin or matrix
metallo-proteases is required in order to be functional
[173]. Osteopontin structure/function studies mapped
its activities to the SVVYGLR heptapeptide motif in the
thrombin-liberated N-terminal domain (SLAYGLR in
mouse osteopontin). In vitro studies showed that the
SVVYGLR cryptic domain exposed after thrombin clea-
vage is able to induce adhesion and migration [174],
which highlights its importance in the inflammatory
process. Osteopontin levels were found significantly ele-
vated in rheumatoid arthritis patients and appeared to
correlate with the serum levels of inflammation markers
[175]. An in vivo study in a mouse model of rheumatoid
arthritis using a neutralizing antibody directed specifi-
cally to the SLAYGLR domain (within the osteopontin
N-terminal domain in rodents) showed that adding the
synthetic heptapeptide SVVYGLR sequence greatly
reduced proliferation of normal synovial cells leading to
bone erosion and infiltration of inflammatory cells. The
SVVYGLR peptide has also been shown to induce
angiogenesis both in vitro and in vivo [176]. Giachelli et
al. [177] elucidated the role of osteopontin in inflamma-
tion and reported that neutralizing antibodies to
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osteopontin blocked macrophage infiltration. Later, this
group showed that neutralizing osteopontin reduced
neointima formation [165] and Lai et al. [178] demon-
strated in a mouse model that the osteopontin peptide
SVVYGLR activates vascular pro-MMP9 and superoxide
signaling. These data demonstrate the potential role of
the osteopontin SVVYGLR sequence in signaling, and
the importance of the regulatory mechanisms that con-
trol inflammatory diseases as well as the potential bene-
fit in selective inhibition of osteopontin SVVYGLR
signaling as a strategy to reduce inflammatory vascular
remodeling [179].

The potential role of osteopontin over-expression or
deficiency in atherosclerotic lesion formation has also
been explored. Osteopontin is highly expressed in ather-
osclerotic lesions, especially in association with macro-
phages and foam cells [167,180,181]. On the other hand,
Matsui et al. [182] generated osteopontin-null mice,
crossed them with apolipoprotein (apo) E-deficient mice
and found that female mice with osteopontin®’~/apoE”"
and osteopontin” /apoE”" genotype had significantly
smaller atherosclerotic and inflammatory lesions as
compared to osteopontin®/*/apoE”" mice. They also
found that the vascular areas with deposition of miner-
als in 60-week-old male osteopontin” /apoE™”~ mice
were significantly increased as compared to those
observed in osteopontin®/*/apoE”" mice. This report
was consistent with findings that mice deficient in both
matrix Gla protein, a vitamin K-dependent calcium-
binding protein that plays a role in calcification balance,
and osteopontin had increased calcification in their
arteries compared to mice that were wild-type for osteo-
pontin and homozygous for matrix Gla protein defi-
ciency, suggesting an inhibitory effect of osteopontin on
vascular calcification [183]. However, osteopontin circu-
lating levels correlate with both mitral valve disease sec-
ondary to rheumatic fever [184] and the presence and
calcification levels of stenotic aortic valves [185]. These
data further highlight the role of osteopontin in inflam-
mation, but also suggest that in spite of relatively high
concentrations in circulation, osteopontin biological
activity might be controlled by its post-translational
modifications. Proteolysis of osteopontin could therefore
play a key role in controlling the biological role of this
multifunctional protein in the context of heart valve dis-
ease [167,186,187] as well as of other pathologies.

Conclusions

The inflammatory response to tissue injury is character-
ized by recruitment and activation of immune cells with
localized release of reactive oxygen species, serine pro-
teases, and activation of the enzymes of the coagulation
cascade. Such response although pivotal for the
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organism’s defense may also lead to secondary effects
not always beneficial to the homeostasis of the vascular
bed and of the injured tissue. This might be particularly
true when inflammation evolves from an acute response
to a chronic condition. As a result, a number of bio-
chemical modifications of the extracellular environment
due to discharge of reactive oxygen species and activa-
tion of proteolytic enzymes in turn affects a number of
molecular targets by either activating them or by sup-
pressing their biological activity. Here we have focused
on serine proteases involved in this process and their
role in modifying proteins that are relevant to cardiovas-
cular disease. The discovery over two decades ago that
serine proteases such as thrombin can affect the vascu-
lar cell phenotype by activating specific cell membrane
receptors, PARs, with a consequent cascade of intracel-
lular signaling events shed a new light on our under-
standing of their mechanism of action. Nonetheless,
serine proteases also target key players of the vascular
homeostasis including growth factors implicated in
angiogenesis and intimal hyperplasia such as FGFs,
EGFs, PDGFs and VEGFs, and inflammatory mediators
that impact vascular and tissue remodeling such as che-
mokines, CRP, and osteopontin. It is therefore reason-
able to conclude that serine proteases affect the
cardiovascular system by both PAR-dependent and
-independent mechanisms. Thrombin cleavage of the
HMW forms of FGF-2 is a paradigmatic example of
post-translational control of a growth factor which may
have profound repercussions on tissue and vascular
remodeling secondary to injury. The elucidation of these
mechanisms bears a potentially significant impact on
the clinical approach targeting the activity of serine pro-
teinases; for example, specific tools affecting certain bio-
logical effects of thrombin without altering its
involvement in the coagulation cascade could be of
paramount importance in the peri-operative care of car-
diovascular interventions (Fig. 3). The lessons learnt by
the use of wide spectrum serine protease inhibitors such
as aprotinin in cardiovascular practice represent a sort
of cautionary tale as a more refined targeting of serine
proteases should be preferred over a generalized sup-
pression of protease activity whose increased effective-
ness on bleeding and/or inflammation might come with
a series of dreadful and fateful side effects for the
patient [188]. In this light, an increased knowledge of
the mechanisms of action of the various serine proteases
holds the key to finely targeted therapeutic tools.

Tissue remodeling secondary to injury represents a
major mechanism that alters vascular homeostasis and
proteases, particularly those associated with activated
leukocytes and with the coagulation cascade, play a key
role in this process. Understanding their biology and
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Figure 3 Thrombin can act through PAR activation and/or by targeting specific protein substrates present in the vasculature such as
osteopontin and HMW FGF-2. PAR activation occurs when thrombin cleaves the seven transmembrane GPCR generating a tethered ligand (TL,
small gray bar) that triggers a cascade of intracellular signaling events. Thrombin can also cleave a number of alternative substrates. Osteopontin
cleavage exposes its functional domains: integrin-binding sites with RGD and SVWWYGLR domains (grey bar) plus the C-terminal CD44-binding
domain (marbled grey bar) critical for cellular recognition/interaction. HMW FGF-2 cleavage by thrombin leads to generation of vasoactive ELF-2
(see text and Figs. 1 and 2). Cleavage of either protein results in modifications of their biological activity which may have profound
repercussions on cardiovascular homeostasis. Elucidation of these mechanisms may lead to specifically inhibit and/or control thrombin activity

their effects on specific targets will afford a comprehen-
sive approach to control their activity and a brighter
outcome to prevent and/or cure the pathologies asso-
ciated to their unwanted effects.
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