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In developed countries, the aging of the population and the associated

increase in age-related diseases are causing major unresolved medical, social,

and environmental matters. Therefore, research on aging has become one

of the most important and urgent issues in life sciences. If the molecular

mechanisms of the onset and progression of neurodegenerative diseases

are elucidated, we can expect to develop disease-modifying methods to

prevent neurodegeneration itself. Since the discovery of induced pluripotent

stem cells (iPSCs), there has been an explosion of disease models using

disease-specific iPSCs derived from patient-derived somatic cells. By inducing

the differentiation of iPSCs into neurons, disease models that reflect the

patient-derived pathology can be reproduced in culture dishes, and are

playing an active role in elucidating new pathological mechanisms and as a

platform for new drug discovery. At the same time, however, we are faced

with a new problem: how to recapitulate aging in culture dishes. It has

been pointed out that cells differentiated from pluripotent stem cells are

juvenile, retain embryonic traits, and may not be fully mature. Therefore,

attempts are being made to induce cell maturation, senescence, and stress

signals through culture conditions. It has also been reported that direct

conversion of fibroblasts into neurons can reproduce human neurons with

an aged phenotype. Here, we outline some state-of-the-art insights into

models of neuronal aging in vitro. New frontiers in which stem cells and

methods for inducing differentiation of tissue regeneration can be applied

to aging research are just now approaching, and we need to keep a

close eye on them. These models are forefront and intended to advance

our knowledge of the molecular mechanisms of aging and contribute to

the development of novel therapies for human neurodegenerative diseases

associated with aging.
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Introduction: The need for an
in vitro neuronal aging platform

The global aging society has prompted a new era to
overcome aging-associated diseases in basic research fields.
Since the WHO proposed “healthy life expectancy” in 2000,
there has been a growing interest in living longer and healthier
lives in today’s super-aging society, especially in developed
countries. The trend toward rapid aging is particularly relevant
to the Sustainable Development Goals (SDGs), which relate
to eradicating poverty as well as ensuring healthy lives and
wellbeing at all ages (United Nations, 2015). As the economic
burden of age-related health problems increases, effective ways
to control them are being explored. The importance of taking a
bird’s eye view of the various domains and attempting to link and
integrate them across the board has also been pointed out. Thus,
the problem of elucidating the mechanisms and treatment of
human aging and age-related diseases has entered a new phase,
reflecting the imminent aging of society.

Aging is associated with physical deterioration and increases
the risk of developing various diseases and death (Harman,
1981). Although the mechanism of aging is still unclear, it is
partially clear today that this aging process has done with certain
regulatory mechanisms. Aging is associated with various factors
including genomic instability, telomere shortening, cellular
senescence, epigenetic changes, loss of protein homeostasis,
alterations in nutrient signaling, mitochondrial dysfunction,
stem cell depletion, and alterations in cell–cell interactions,
which manifest and promote aging traits (López-Otín et al.,
2013). The aging process is accompanied by alterations in
the molecular basis of aging, which in turn leads to the
breakdown of homeostatic mechanisms throughout the body
and accelerates the aging process by reducing tissue plasticity
and regenerative capacity. This is because that aging is
a universal process characterized by the accumulation of
biological changes (Haigis and Yankner, 2010; López-Otín
et al., 2013; Mattson and Arumugam, 2018). Approaches
for mechanistic elucidation of the onset and progression
in various neurodegenerative diseases, including Alzheimer’s
disease, Parkinson’s disease, and amyotrophic lateral sclerosis
(ALS) have led to the development of disease-modifying
therapies to prevent neurodegeneration itself (Kritsilis et al.,
2018; Hou et al., 2019; Bobkova et al., 2020; Gendron et al.,
2020). There are several potential candidates for disease-
modifying therapies for ALS, AD, and PD, including AAV-
mediated gene therapies and antibody-based approaches and
cell transplantation (Doi et al., 2020; Amado and Davidson,
2021; Tampi et al., 2021; Cummings et al., 2022; Rahimpour
et al., 2022; Shi et al., 2022; Takahashi and Mashima, 2022).
However, these approaches are yet under clinical trials or
debates, and not thoroughly validated in human.

Humans are extremely long-lived among primates.
Conventional aging research mainly attributes to a decline

in the force of natural selection with time and encompasses
many kinds of model organisms including yeasts, worms, flies,
and rodents. It has been suggested that there are evolutionary
and fundamental mechanistic differences between these
models and humans. Therefore, it seems that new and exciting
challenges in aging research should focus on human-specific
aging. Considering ways to fully understand human aging can
contribute to a new sustainable society aimed at longevity and
health (Johnson, 2015).

Takahashi and Yamanaka (2006) and Takahashi et al.
(2007) reported a technology to produce induced pluripotent
stem cells (iPSCs) from somatic fibroblasts of mice and
humans. Since then, disease-specific iPSCs established from
patients’ somatic cells have been expected to be applied as a
differentiation model (Pang et al., 2011). Pathological analysis
of neurodegenerative disease models using iPSCs derived from
patients with neurodegenerative diseases has been reported,
thus iPSCs have become a powerful research tool (Liu et al.,
2012; Imaizumi and Okano, 2014, 2021; Okano and Yamanaka,
2014). iPSC models have the potential to elucidate pathological
conditions and develop new therapies. Patient-derived iPSCs
are cells that have been rejuvenated while retaining the genetic
background of the patient involved in the disease. By selectively
inducing differentiation of these cells into cells that are damaged
and degenerated by the disease, the cells may serve as an in vitro
model for reproducing the disease process in vivo. The majority
of successful cases of pathological modeling with iPSCs to date
have been of the inherited, early-onset-type diseases (Seibler
et al., 2011; Imaizumi et al., 2012; Soldner and Jaenisch, 2012;
Pomp and Colman, 2013; Engle et al., 2018; Doss and Sachinidis,
2019; Chang et al., 2020; D’Souza et al., 2021).

Nevertheless, there are still various problems in the analysis
using disease modeling with iPSCs. The first problem is its
juvenility compared to the in vivo tissue. In other words, iPSC-
derived cells in vitro can only reproduce a limited period
of development, seemingly the embryonic or early postnatal
period, when compared to the developmental timeline of a
human individual, and may not exhibit an adult phenotype
(Mariani et al., 2012; Nicholas et al., 2013). Therefore, it
is essential to develop a culture method that promotes
maturation and senescence in order to reliably and reproducibly
capture the phenotype of neuronal senescence in adults (Liu
et al., 2012). The next problem is that it is very difficult
to induce age-dependent changes in culture. Strategies that
have been implemented to induce cellular senescence include
overexpression of Progerin, shortening of telomeres using
chemical compounds, and the addition of toxic stress (Miller
et al., 2013; Dong et al., 2014; Vera et al., 2016). However, aging
is a very complex process that is very difficult to mimic in a
culture system, it is controversial whether any of these strategies
are sufficient to reproduce the complexity of senescence itself
in vitro. Although these strategies have contributed to latent
aspects of the disease phenotype, it is unclear whether they
have resulted in age-dependent changes or not. Thus, new
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fundamental technologies are expected to be developed that will
cause a paradigm shift in aging and regeneration.

Here, in this paper, we review the latest research on various
innovative methods to promote neuronal maturation, aging
in vitro. If, in the future, anyone can reproduce functionally
mature cells of the appropriate age, this could not only be an
important milestone for the understanding of the pathogenesis
of late-onset neurodegenerative diseases and thus assist to
identify a druggable target, but also contribute to elucidating the
big challenge in life science, such as the principle of aging. We
introduce an overview of the major papers reported so far, and
discuss what we should tackle toward the super aging society.

Things to keep in consideration
neuronal aging with induced
pluripotent stem cell

In current disease modeling approaches using iPSCs,
researchers are trying to rewind time from somatic cells to
their pre-birth state (to an approximately peri-implantation
epiblast stage), and from there to reproduce the aging process
to some extent in a culture dish. We would like to outline
what is rejuvenated during the establishment of iPSCs from
somatic cells by summarizing previous reports. Early embryos,
especially those at the one-cell to morula stage, have the
potential to give rise to any types of cells and can divide
indefinitely, but as development progresses and cell division is
repeated, they differentiate into cells with finite lifespans and
specific functions. These specific differentiations are inherently
irreversible. However, the technology to rejuvenate somatic cells
against this irreversible flow is the technology to create iPSCs.

Cellular rejuvenation: Erasing
age-dependent changes

In the iPSC reprogramming technology, overexpression
of Yamanaka factors [Oct4, Sox2, Klf4, and c-Myc (so-called
OSKM)] can transform terminally differentiated cells into a
pluripotent state (Takahashi and Yamanaka, 2006; Malik and
Rao, 2013) (Table 1). Among the four transcription factors,
Oct4 and Sox2 activate genes necessary for maintaining cell
pluripotency, while c-Myc and Klf4 are known to regulate
cell proliferation. Cooperative binding of transcription factors
orchestrates reprogramming (Jaenisch and Young, 2008; Soufi
et al., 2012; Chronis et al., 2017). Then, iPSC reprogramming
is carried out through the global remodeling of epigenetic
marks and many of the epigenetic marks are remodeled
during the iPSC reprogramming process, including DNA
methylation, histones’ post-translational modifications, and
topological chromatin remodeling (Doi et al., 2009; Lister
et al., 2011; Hansson and Chien, 2012; Hansson et al., 2012;

Buganim et al., 2013; Takahashi and Yamanaka, 2016). iPSC
reprogramming resets the epigenetic alternations that somatic
cells have acquired through development and aging, making
the body clock similar to that of embryonic stem cells (Rando
and Chang, 2012; Horvath, 2013; Kerepesi et al., 2021). In the
process, molecular traces associated with aging and maturation
are partially or fully erased during the process of pluripotency
induction. In other words, age-related epigenomic changes, such
as the DNA methylation state that human tissues acquire over
time, can be restored by reprogramming (Manukyan and Singh,
2012). These phenomena are difficult to control during aging
(Singh and Newman, 2018).

Previous studies have shown that iPSC reprogramming
not only makes cells pluripotent, but also rejuvenates a
variety of age-related features such as nuclear morphology and
composition, nuclear membrane composition, heterochromatin
content, DNA damage accumulation, and telomere length
(Mahmoudi and Brunet, 2012). Global cellular characteristics
such as aging, proliferation, mitochondrial metabolism, and
accumulation of oxidative stress are also rejuvenated (Liu et al.,
2012). It has been suggested to have a tendency to differentiate
with a bias toward somatic epigenetic memory and the ability
to form teratomas (Kim et al., 2011; Buganim et al., 2013). The
mechanism by which reprogramming rejuvenates the cell fate
decision is still unclear, but the developmental resetting will be
a unique detriment to the further use of iPSCs as a research
material for late-onset disease modeling.

Juvenility

Methods for inducing differentiation of human iPSCs
(hiPSCs) into a variety of cell lineages have been rapidly
developed, and reproducible and robust protocols have been
established in various areas. Despite these early successes,
it has become apparent that differentiated cells from iPSCs
resemble those of early embryos rather than those of adult
tissues (Spence et al., 2011; Patterson et al., 2012; Nicholas
et al., 2013; Abdelalim and Emara, 2015; Batalov and Feinberg,
2015). The same situation was observed in the differences in
transcriptional and metabolic mechanisms, which have been
noted in hepatocyte-like cells derived from iPSCs compared to
adult primary hepatocytes (Baxter et al., 2015). Recent global
gene expression and network analyses have also demonstrated
this trend, suggesting the embryonic stage of iPSC-derived
cells. Moreover, gene networks associated with maturation and
aging are suppressed in familial and sporadic ALS disease
strains (Lister et al., 2011; Ho et al., 2016). These contribute
to the fact that while the gene expression profiles associated
with the induction of differentiation in early embryos are
still being elucidated, the details of induction associated with
late development, including postnatal development, are still
unresolved in each tissue (Bellin et al., 2012; Mertens et al.,
2018).
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TABLE 1 Summary of iN attempts in previous studies (review and mechanistical analysis papers were excluded).

References Cell iN induction factors Summary of results

Vierbuchen et al. (2010) Mouse fibroblasts Ascl1, Myt1l, Brn2 ∼19.5% Tuj-1 positive cells
Ambasudhan et al. (2011) Human fibroblasts miR-124, MYT1L, BRN2 ∼11.2% Tuj-1 positive cells
Pfisterer et al. (2011) Human fibroblasts ASCL1, MYT1L, BRN2, LMX1A, FOXA2 ∼20% Tuj-1 positive cells

∼1% TH positive cells
Yoo et al. (2011) Human fibroblasts miR-9/9* and miR-124 ∼5% Tuj-1 positive cells (only miRs)

NEUROD2, ASCL1, MYT1L ∼80% Tuj-1 positive cells (NEUROD2/ASCL1/MYT1L+miRs)
Liu et al. (2013) Human lung fibroblasts NEUROG2 ∼90% Tuj-1 positive cells (mostly cholinergic)
Pereira et al. (2014) Human fibroblasts ASCL1, MYT1L, BRN2 with SMAD inhibitors ∼42% Tuj-1 positive cells
Li et al. (2015) Mouse fibroblasts Forskolin, ISX9, CHIR99021, SB431542, I-BET151 ∼90% Tuj-1 positive cells

Tuj-1, a pan-neuronal marker; TH, a dopaminergic, adrenergic, and noradrenergic neuronal marker.

To solve this problem, several attempts have been performed
by manipulating neuronal inducing factor(s). A previous report
has shown that dual inhibition of SMAD signaling promotes
induction of neural differentiation (Chambers et al., 2009). In an
attempt to generate homogeneous neurons, Zhang et al. (2016)
succeeded in differentiating pluripotent stem cells into neurons
with an almost 100% yield in 2 weeks by overexpressing the
transcription factor Neurogenin-2 (NEUROG2), a bHLH-type
proneuronal factor (Liu et al., 2013). This strategy follows the
same theory used to induce cell initiation, which is to reset
the entire biological system by inducing overexpression of a
small number of transcription factors. Recently, microRNA-9/9∗

(miR-9/9∗) and microRNA-124 (miR-124) had been implicated
in efficient neuronal differentiation and functional maturity
(Sun et al., 2013; Lu and Yoo, 2018). More recently, we have
devised an induction method by combining NEUROG2 and
miR-9/9∗-124 overexpression that made iPSCs exhibit neuronal
disease phenotypes rapidly with a higher maturity (Ishikawa
et al., 2020). Another attempt was made by optimizing the
culture media, for example, the inhibition of Notch activity by
the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-
L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was used to
modulate the neuronal differentiation. It enabled marked
acceleration of differentiation, moreover, DAPT-mediated
Notch inhibition delayed G1/S-phase transition (Borghese et al.,
2010). However, the addition of DAPT itself may negatively
affect the recapitulation of the amyloid and Tau pathology,
so not seemingly being suitable for promoting the disease
phenotype of AD (Raja et al., 2016). The details of differentiation
methods have been summarized in several review articles (Engle
et al., 2018; Giacomelli et al., 2022).

Another strategies in in vitro cell culture techniques
increasingly seek to recapitulate complex tissue- and organ-
level phenotypes, such as spheroid-based organoids, three-
dimensional (3D) cell culture systems, and even microfluidic
devices (Lancaster and Knoblich, 2014; Camp et al., 2015;
Blokzijl et al., 2016; Choi et al., 2016; Qian et al., 2016; Hu
et al., 2018; Cho et al., 2021; Giandomenico et al., 2021;
Holloway et al., 2021; Luo and Li, 2021). Each method offers
its own advantages: spheroid can partially recreate the 3D
structure of physiological brain tissue but presents challenges in

controlling the size and composition in the culture. 3D scaffold
cultures promote the recapitulation of the intravital cellular
microenvironment, but at the expense of physiological relevance
to other aspects. Microfluidic cultures may be able to add
different cell types, promote microenvironment, and enhance
translatability. It has also been reported that long-term culture
of organoids for 10 months confirms complex mechanisms such
as spatiotemporally complex brain network activity as seen in
the EEG of preterm infants. Reports of long-term cultures of
these organoids are mimicking some of the key components
of the complex developmental programs inherent in living
organisms (Hu et al., 2018; Trujillo et al., 2019; Gordon et al.,
2021). However, there is a concern about the ethical aspects of
human brain organoid research based on the official ISSCR (the
International Society for Stem Cell Research) statements (Sawai
et al., 2019; Ide et al., 2021; Lovell-Badge et al., 2021). But iPSC-
based studies can help rapid-growing health care problems, for
example, the cellular basis of Maternal Zika Virus infection was
analyzed using an in vitro infection model of iPSCs-derived
organoids (Muffat et al., 2018). For more information, please
refer to the following reviews by respective experts (Passier et al.,
2016; Parr et al., 2017; Castelli et al., 2019; Seto and Eiraku,
2019; Chiaradia and Lancaster, 2020; Ooi et al., 2020; Fares et al.,
2021a,b; Holloway et al., 2021; Josephine Boder and Banerjee,
2021; Luo and Li, 2021; Qian and Tcw, 2021).

Strategies for manipulating the cell
age of induced pluripotent stem
cells-derived induced cells

Manifesting stress phenotype by
chemical compound

Exposing cells to stressing environments may contribute
to the development of specific diseases, such as oxidative
stress. This notion has been exploited to accelerate the
emergence of pathological phenotypes in vitro. Addition of
Hydrogen peroxide (H2O2), reactive oxygen species (ROS),
radiation, and other stimuli on cells increases DNA damage
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and endogenous ROS, inhibits neurite outgrowth, and causes
the aggregation of specific proteins and nucleotides (Seibler
et al., 2011; Dong et al., 2014). So, when disease-specific
iPSC-derived neurons exhibit almost no evident phenotype, it
seems a better way to add chemical stressors for promoting
disease phenotypes (Nguyen et al., 2011; Imaizumi et al.,
2012). There are many known phenotypes that stress-
induced cellular senescence. For more details, please refer
to several reviews, but this is done in vitro with drugs
and small molecule compounds to mimic stress in the
microenvironment. Therefore, it should be noted that this
is a different perspective from aging (Haigis and Yankner,
2010; Petrova et al., 2016; Noren Hooten and Evans, 2017;
Hernandez-Segura et al., 2018).

Accelerated neuronal aging:
Overexpression of Progerin

In this section, we will discuss the attempt to challenge
the recapitulation of aging phenotypes in vitro. Miller et al.
(2013) developed an in vitro preparation that is useful
for measuring the extent to which transient expression of
Progerin is associated with this “aging” molecular profile.
A very unique study to induce aging using iPSCs was the
first to examine the expression of early aging-related protein
variants in iPSC-derived induced neural cells (Brennand,
2013; Miller et al., 2013). The causative gene of Hutchinson-
Gilford Progeria Syndrome (HGPS), a form of premature
aging syndrome, is known to be Lamin A (LMNA), which
encodes a nuclear membrane component protein. LMNA
and Lamin C are two types of A-type lamins. LMNA
and Lamin C are produced by selective splicing after the
transcription of the LAMA gene. LMNA interacts with
nuclear chromatin and is involved in nuclear degradation
and remodeling during cell division, as well as telomere
dynamics. The cause of HGPS is a mutation in the LAMA
gene, called Progerin. Progerin production is thought to
induce structural and functional changes in the nuclear
membrane, leading to premature aging. Ectopic expression
of Progerin causes DNA damage, telomere shortening,
p53-dependent changes in gene expression regulation, and
induction of cellular senescence and cell death. Also, the
expression of Progerin can be used to induce an increase in
aging indicators such as γH2AX foci, ROS accumulation,
and a loss of H3K9me3 in neurons. More recently, Coyne
et al. (2020) showed that ALS-related nuclear pathology
including nuclear envelope dysfunctions can be reproduced
in an optimized condition of motor neuron induction for
accelerating neuronal maturation without the overexpression
of Progerin. Therefore, respective disease-specific mechanisms
may also trigger the recapitulation of neuropathology
in vitro.

Shortening telomere length

Another way to induce aging is to make changes to
telomeres, one of the hallmarks of aging. It is well-known that
telomeres shorten with aging due to the principal mechanism
in eukaryotic genomic DNA replication, except cells in early-
stage embryos and germ cells expressing Telomerase (TERT),
which encodes an enzyme that causes telomere elongation
(Allsopp et al., 1995; Greider, 1996; Hug and Lingner, 2006;
Rocca et al., 2019). Telomerase activity and telomere length
have been suggested to directly affect the tissue regenerative
capacity and aging of stem cells (Blasco, 2007). Telomere length
measurement is increasingly recognized as a clinical gauge for
age-related disease risk (Mather et al., 2011; Fasching, 2018).
There are still many aspects of the effects and mechanisms of
telomere shortening that remain largely unknown. Rejuvenation
of telomeres with various lengths has been found in iPSCs.
Mechanisms of telomere length regulation during induction
and proliferation of iPSCs remain elusive, although iPSCs
show the TERT expression similar to that of ESCs (Ly, 2011;
Wang et al., 2012; Le et al., 2014; Fu et al., 2018). Several
aspects of telomere biology may be responsible for altered
telomere dynamics in iPSCs, and unique reports have focused
on these phenomena. The chemical compound BIBR1532
was discovered as a potent and selective telomerase inhibitor
capable of inducing senescence in human cancer cells (Pascolo
et al., 2002). In 2016, Vera et al. (2016) found BIBR1532
could shorten the telomeres of iPSCs-derived neurons. They
confirmed aging-related traits such as generation of ROS and
DNA damage in neurons with shortened telomeres. However,
BIBR1532 compatible with continued iPSC culture was proved
as insufficient to induce detectable telomerase inhibition,
which resulted in unsuccessful recapitulation of age-related
phenotypes in their conditions (Pandya et al., 2021). Thus,
these effects are unclear in the models of neurodegenerative
diseases, and the full impact of this treatment on post-mitotic
cells remains to be systematically scrutinized.

Neuropathological phenotypes that
are currently challenging to model

Although various disease phenotypes have been
recapitulated in culture dishes, neuropathological phenotypes
have mainly been analyzed with the qualified and very limited
resources of human autopsy brains animal disease models.
Impaired proteostasis of proteins has been noted as a feature
associated with aging and neurodegenerative processes (Daniele
et al., 2018). Protein degradation is mainly regulated by both
the ubiquitin-proteasome and autophagy-lysosome systems
(Komatsu et al., 2007; Kurtishi et al., 2019). Age-related
reduction of the ubiquitin proteasome system in the aging brain
promotes the accumulation of protein aggregates (Klaips et al.,
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2018). It has been suggested that the aggregation of abnormal
proteins in the brain is one of the mechanisms that induce
the neurotoxicity observed in neurodegenerative diseases
(Daniele et al., 2018), such as the neurofibrillary tangle caused
by hyperphosphorylated tau aggregation in AD brains (Masters
et al., 1985; Perry et al., 1987), the formation of Lewy bodies
in PD brains (Litvan et al., 1998), or Skein-like inclusions or
Busina bodies in ALS (Leigh et al., 1991; Okamoto et al., 2008).
Previous research showed evidence that partially replicated the
early-stage disease’s pathophysiology by utilization of iPSCs
derived neuronal cells in vitro (Sances et al., 2016; Cobb et al.,
2018; Chang et al., 2020; Klimmt et al., 2020; Baena-Montes
et al., 2021; Fares et al., 2021a,b; Giacomelli et al., 2022). If late-
stage pathophysiology with such findings can be reproduced
in culture dishes, the scope of research may be expanded to
find ways to reduce or reverse neurodegenerative pathology by
manipulating new therapeutic pathways (Figure 1).

Transdifferentiation (iNs; direct
converted neuronal cells from
dermal fibroblasts)

At present, the neurons that reliably reflect age-
dependent changes are iNs derived from dermal fibroblasts
by transdifferentiation. Direct reprogramming, the induction
of neuronal cells from fibroblasts, was first reported in 2010.
By using lentiviruses to introduce three factors, Brn2, Ascl1,
and Myt1l, selected from 19 transcription factors that act
specifically on neuronal cells, they succeeded in inducing
neuronal cells (iN cells). The key to this reprogramming
is the pioneer factor Ascl1, although the overexpression of
Ascl1 alone induced iN cells with a relatively low efficiency
(Vierbuchen et al., 2010). In addition, the importance of Ascl1
in epigenomic variation and transcription factor binding
during iN cell induction has been suggested (Wapinski et al.,
2013). Various research groups have developed efficient
iN methods by introducing defined transcription factors
including ASCL1, miRNAs, or short hairpin RNAs (shRNAs),
resulting in the direct change of the cell fate (Pfisterer et al.,
2011; Yoo et al., 2011; Lu and Yoo, 2018). It has been
reported that small molecule cocktails could also promote
iN production (Liu et al., 2013; Pereira et al., 2014; Li et al.,
2015).

Notable works in these studies include overexpression
of miR-9/9∗ and miR124, which are specifically expressed
in neurons, and multiple transcription factors have been
combinatorially used (Yoo et al., 2011; Sun et al., 2013;
Ishikawa et al., 2020; Nemoto et al., 2020). Since epigenetic
remodeling has been suggested to be involved in the acquisition
of pluripotency, it is believed that multiple transcription factors
and epigenetic regulation are required to truly implement cell
fate transformation. miR-9/9∗ and miR124 have been reported

to induce dramatic chromatin reconfiguration and topologically
open neuronal subtype specific loci (Abernathy and Yoo, 2015;
Takahashi and Yamanaka, 2016; Abernathy et al., 2017). Some
targets for neuronal maturation have been reported (Lu et al.,
2021). It is reported that iN cells from Alzheimer’s disease
patients exhibited impaired neuronal maturation (Mertens et al.,
2021). Researchers also succeeded in establishing protocols for
the generation of several disease-relevant neuronal subtypes
(Liu and Yoo, 2019; Cates et al., 2021; Church et al., 2021).

In recent years, the nuclear pore complex and
nucleocytoplasmic communication have received much
attention as factors and targets of protein changes in aging.
Interestingly, a decrease in the expression of RANBP17, one
of the nucleocytoplasmic transport factors observed in aging,
has been reported to maintain this age-dependent trait as it
has been observed in iNs (Mertens et al., 2015). It has been
found that the epigenome in neurons induced by this method
retains the same age-related traits as that of postmortem brain
samples. Further identification of a cocktail of factors that will
faithfully convert fibroblasts into mature, functioning neurons
comparable to those in vivo is a critical challenge.

One of the major problems to be overcome with iN is the
limited number of cells that can be obtained: in contrast to
the inexhaustible cell resource of iPSCs. The original resource
of iNs is fibroblasts, and their expandability is usually limited
to 20–30 passages mainly due to the telomere shortening by
mitosis without TERT expression. This makes it somewhat of
a hindrance when hundreds of millions of cells are needed for
experiments such as high-throughput screening. Other concerns
include the efficiency of induction and whether there are any
intermediates that can clonally proliferate during iN conversion.
We hope that new technological innovations will solve these
problems in the future.

Alternatively, attempts for directly deriving multipotent
neural stem cells/neural progenitors from somatic fibroblasts
have been made (Kim et al., 2011; Han et al., 2012; Ring
et al., 2012; Lu et al., 2013; Yoshimatsu et al., 2021). However,
these cells, so-called induced neural stem cell/neural progenitors
(iNSC/iNPs), tend to acquire a more posterior (caudate) fate
along with expansion, therefore this feature is not favorable
for obtaining neurons with an anterior fate, such as cortical
excitatory and inhibitory neurons.

In addition, the rejuvenation effect by the direct
reprogramming into iNSC/iNPs has not been thoroughly
investigated, it is possible that aged features are partially erased
during reprogramming. Regarding this issue, aging marks are
not generally investigated in respective studies owing to the
solid definition of “cellular aging” is not fully established. Thus,
this consensus is necessary in cell biology and neuroscience
research fields (Figure 2).

Furthermore, other primary cells, i.e., white blood cells and
urine-derived cells have been used for directly deriving neurons
through reprogramming (Zhang et al., 2016; Tanabe et al., 2018;
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FIGURE 1

A graphical schematic of current iPSC-based approaches for reproducing “aging” in vitro. Starting from iPSCs (once rejuvenated), because
iPSC-derived neurons themselves show juvenile phenotypes, multiple approaches including overexpression of Progerin, telomere manipulation,
and supplementation of stress molecules were attempted so far. Although a recent report succeeded in reproducing age-related nuclear
pathology of ALS (Coyne et al., 2020), most attempts were unsuccessful for recapitulating neuropathological features (i.e., neurofibrillary
tangle), age-related DNA damage response and methylation, and mitochondrial aging features, which are listed as “Currently infeasible
phenotypes” in vitro.

FIGURE 2

Comparison of iPSC- or fibroblast-based approaches for disease recapitulation. In many aspects such as genomic DNA methylation, damage
and epigenetic factors, and cellular metabolic status are different in neurons depending on the resources of induction.
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Xu et al., 2019). Since the collection of blood or urine is
clinically general and less invasive than skin biopsy, these cells
can be a good resource once robust and highly reproducible
iN reprogramming methods are established. Preliminarily, we
have collected blood and urine from patients with neurological
diseases for elucidating the neuropathology through iN
reprogramming (unpublished). Furthermore, we are assessing
the aged status of the iN cells in multimodal aspects. We believe
these approaches would also help enhance the robustness of
neurological disease research.

Insights from related fields

Since neurodegeneration and aging are closely related, a
variety of factors have been reported so far (Castelli et al., 2019;
Bobkova et al., 2020). In this section, we would like to give an
overall perspective of some of the areas of particular interest
in the related fields. Several master genes involved in neural
differentiation and brain aging have been identified. In the past,
neuron-restrictive silencer factor/repressor element 1 silencing
transcription factor (NRSF/(REST) was originally identified as
a transcription factor that represses several neuron-specific
genes in non-neuronal cell types. In addition to its repressive
action, REST also functions in sympathetic nervous system cells
during the neurite outgrowth phase of early neurogenesis. The
expression of REST is negligible in young and mature neurons,
but high in aged neurons, indicating that REST is responsible
for the overall regulation of age-dependent neuronal changes
(Lu et al., 2014). This factor protects neurons from oxidative
stress and also from amyloid β (Aβ) aggregation stress, which
is a major problem in AD. In the elderly, the level of REST
expression in the brain is high in healthy aging individuals, but
it tends to be clearly lower in AD patients. In other words,
REST seems to be a master regulator of neurogenesis as well
as a regulator of the aging brain (Lunyak and Rosenfeld, 2005).
Recently, Meyer et al. (2019) from the Yanker’s group, generated
iPSCs from cells of sporadic AD patients and healthy controls,
and comprehensively analyzed gene expression in these iPSC-
derived neural cells. These results suggest that it is possible to
influence aging by increasing the expression level of REST and
decreasing the activity of excitatory neurons (Meyer et al., 2019).
REST expression also disappeared from nucleus of neurons
in PD, another leading neurodegenerative disease (Kawamura
et al., 2019). In patients with Huntington’s disease, Huntingtin
(HTT) is mutated. The mutant HTT protein loses its ability to
bind to REST, which results in translocation of REST into the
nucleus, and suppresses the expression of neural-related genes,
including Brain derived neurotrophic factor (BDNF) by binding
to neuron-restrictive silencer element (NRSE) (Zuccato et al.,
2003). Furthermore, with regard to REST, nuclease-sensitive
regions in nucleasomes, so-called liberated regions, have been

identified in both hiPSCs and mouse embryonic stem cells
(mESCs). In mESC, it has been found that there are many
binding sites for REST and CCCTC-binding factor (CTCF) in
the liberated regions. Thus, it is becoming clear that REST is a
transcription factor of interest as a target for neuronal aging.

In recent years, accumulating evidence has emerged that
reduced nucleo-cytoplasmic transport (NCT) and damage to
the nuclear membrane and nuclear pores are associated with
neurodegenerative diseases and physiological aging (Pujol et al.,
2002; D’Angelo et al., 2009; Freibaum et al., 2015; Rubin
and Taatjes, 2015; von Appen et al., 2015; Woerner et al.,
2016; Schlachetzki et al., 2020; Coyne and Rothstein, 2022).
Basically, Alterations in NCT regulation have also been reported
as one of the hallmarks associated with aging (Broers et al.,
2006; Scaffidi and Misteli, 2006). It has also been suggested
that the NCT capacity of specific transport pathways or
substrates (nuclear or extra-nuclear transport) changes with
cellular senescence (Wente and Rout, 2010). NCTs are a class
of proteins with nuclear localization signals and nuclear export
signals, respectively. The amount of importing α and β family
members, which are NCT factors, decreases with aging. As
mentioned above, Progerin is known to accumulate in normal
aging, and in HGPS, a diseased form of premature aging,
abnormal nuclear membrane morphology occurs. It is also
reported that the amount of Ras-related nuclear protein (Ran), a
low molecular weight G protein that plays an important role in
active nuclear-cytoplasmic transport, is decreased in the nucleus
of fibroblasts from HGPS patients, and the nuclear-cytoplasmic
concentration gradient is disrupted (Kelley et al., 2011). NCTs
are known to become leaky with aging (D’Angelo et al., 2009). In
neurodegenerative diseases, there is growing evidence to suggest
that NCT changes contribute to pathophysiology, particularly
in ALS. The differences in disease-related conditions may also
be related to the fact that nucleocytoplasmic transport proteins
and nucleoporins are specific cell types. Various reports on
neurodegenerative diseases suggest that age-related decline in
overall nuclear integrity, including nuclei and NCTs, may
contribute to the development of neurodegenerative diseases.
We refer to several reviews (Bitetto and Di Fonzo, 2020; Coyne
and Rothstein, 2022).

Loss or dysfunction of mitochondrial function in brain
aging and age-related diseases has been noted in many
studies and is one of the key aging-related phenotypic
features (Klaips et al., 2018; Mattson and Arumugam, 2018).
Since mature neurons are non-proliferative cells, age-related
changes can accumulate in vivo and eventually cause loss of
mitochondrial function. Aging has been shown to impair a
variety of mitochondrial functions, including mitochondrial
dynamics, transport, mitophagy, and energy homeostasis
(Canto et al., 2015; Panchal and Tiwari, 2019; Cabral-Costa
and Kowaltowski, 2020; Messina et al., 2020). One important
class of proteins governing the effect is the Sirtuin family,
which interacts with other aging-related accumulable proteins.
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Sirtuins are an evolutionally conserved family of Nicotinamide
Adenine Dinucleotide (NAD) histone deacetylases and play
a critical part in aging and longevity control in diverse
model organisms including yeasts, worms, flies, mice, and
humans (Imai et al., 2000; Satoh et al., 2017; Jardim et al.,
2018). NAD is a pivotal metabolite involved in cellular
bioenergetics, genomic stability, mitochondrial homeostasis,
dynamics, adaptive stress responses, and cell survival (Li and
Sauve, 2015). Moreover, multiple NAD-dependent enzymes are
involved in synaptic plasticity and neuronal stress resistance.
NAD homeostasis appears to be of paramount importance to
health span and longevity, and its dysregulation is associated
with neurodegenerative diseases (Katsyuba and Auwerx, 2017;
Lautrup et al., 2019). Complementary strategies to NAD, such
as the use of anti-CD38 antibody inhibitors to reduce NAD
consumption, or the intermediate precursors of NAD such as
NMN (nicotinamide mononucleotide) or NR (nicotinamide
riboside) have been taken to translational research worldwide
(Martens et al., 2018; Yoshino et al., 2018, 2021; Irie et al., 2020;
Reiten et al., 2021; Brakedal et al., 2022).

Conclusion

As outlined in this paper, various facts have been revealed
by a variety of innovative technologies in recent years, but
the different pathological phenotypes of the elderly are very
complex, mainly caused by various factors that accumulate over
a biological time span in human beings. Therefore, elucidating
the molecular basis of age-related neurodegenerative diseases
should be a major challenge for future life science research. Since
it is impossible to directly observe live human brain at a cellular
level, iPSCs are undoubtedly a very attractive research material
due to the unlimited expansion potential that is advantageous
for high-throughput drug screening. However, studies using
iPSCs face a new problem in that the accumulation of age-
dependent changes in a dish is necessary to reproduce the
disease phenotypes, especially late-onset ones, although the cells
were once rejuvenated by iPSC reprogramming. There may
be a trade-off between rejuvenation and aging induction, but
there is a need to synergize differentiation and aging induction
to create a new platform for in vitro research on human
aging. On the other hand, iN technology may overcome the
reprogramming-associated rejuvenating effects, however, it also
suffers from its fundamental problem such as limited expansion
of the original cells. Therefore, we infer iN can be applied to
personalized medicine which only requires a small number of
cells. We believe that better understanding of the properties
and limitations of iPSCs and iNs would lead to future research
breakthrough(s). Understanding these concepts, limitations,
and expectations will allow us to maximize the potential of these
technologies to understand and treat neurodegenerative diseases
and even intervene in the aging process itself.
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