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Abstract

Background

Exhaled aerosols from lungs have unique patterns, and their variation can be correlated to

the underlying lung structure and associated abnormities. However, it is challenging to char-

acterize such aerosol patterns and differentiate their difference because of their complexity.

This challenge is even greater for small airway diseases, where the disturbance signals are

weak.

Objectives and methods

The objective of this study is exploiting different feature extraction algorithms to develop a

practical classifier to diagnose obstructive lung diseases using exhaled aerosol images.

These include proper orthogonal decomposition (POD), principal component analysis

(PCA), dynamic mode decomposition (DMD), and DMD with control (DMDC). Aerosol

images were generated via physiology-based simulations in one normal and four diseased

airway models in G7-9 bronchioles. The image data were classified using both the support

vector machine (SVM) and random forest (RF) algorithms. The effectiveness of different

features was evaluated by classification accuracy and misclassification rate.

Findings

Results show a significantly higher performance using dynamic feature extractions (DMD

and DMDC) than static algorithms (POD and PCA). Adding the control variables to DMD

further improved classification accuracy. Comparing the classification methods, RF persis-

tently outperformed SVM for all types of features considered. While the performance of RF

constantly increased with the number of features retained, the performance of SVM peaked

at 50 and decreased thereafter. The 5-class classification accuracy was 94.8% using the

PLOS ONE | https://doi.org/10.1371/journal.pone.0211413 January 31, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Xi J, Zhao W (2019) Correlating exhaled

aerosol images to small airway obstructive

diseases: A study with dynamic mode

decomposition and machine learning. PLoS ONE

14(1): e0211413. https://doi.org/10.1371/journal.

pone.0211413

Editor: Roi Gurka, Coastal Carolina University,

UNITED STATES

Received: July 12, 2018

Accepted: January 14, 2019

Published: January 31, 2019

Copyright: © 2019 Xi, Zhao. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-2536-2708
https://doi.org/10.1371/journal.pone.0211413
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211413&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211413&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211413&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211413&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211413&domain=pdf&date_stamp=2019-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211413&domain=pdf&date_stamp=2019-01-31
https://doi.org/10.1371/journal.pone.0211413
https://doi.org/10.1371/journal.pone.0211413
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


DMDC-RF model and 93.0% using the DMD-RF model, both of which were higher than

87.0% in the previous study that used fractal dimension features.

Conclusion

Considering that disease progression is inherently a dynamic process, DMD(C)-based fea-

ture extraction preserves temporal information and is preferred over POD and PCA. Com-

pared with hand-crafted features like fractals, feature extraction by DMD and DMDC is

automatic and more accurate.

Introduction

Lung diseases, either being restrictive (inhalation) such as acute respiratory distress syndrome

(ARDS) and cystic fibrosis, or obstructive (exhalation) such as asthma and chronic obstructive

pulmonary disease (COPD), will affect the respiratory airflow and cause a disturbance to the

exhaled airflow pattern [1–3]. Exhaled aerosols can reveal a wealth of information about the

health of the lungs [4]. However, there are many challenges to correlate these images to the

underlying lung structural remodeling. The distributions of the exhaled aerosols are exceed-

ingly complex, which are determined by the airflow and aerosol dynamics. Exhaled aerosol

images from deep lungs generally cannot be differentiated by mere inspection. As a result,

how to extract useful features from these seemingly chaotic observables is crucial in developing

an effective algorithm to diagnose lung abnormalities based on exhaled aerosol images. In our

previous studies [5–9], fractal-based features, such as lacunarity, fractal dimension (FD), and

multifractal spectrum, have been explored for the quantification of aerosol images and subse-

quent machine learning of disease status. In combination with the random forest (RF) algo-

rithm [10, 11], the optimal accuracy was predicted at 87.0% for a five-class classification of

asthmatic diseases located in small airways (G8 bronchiole) [12].

Our hypothesis in this study is as follows. Instead of using FD (global or local) of the image

which may suffer information loss [13, 14], aerosol patterns formed by exhaled airflows,

together with their temporal dynamic processes, should better capture the progression of air-

way structural remodeling in deep lungs. Boser et al. [13] demonstrated that global FD could

not accurately describe the asthmatic lungs and local features of the diseased region should be

included. To avoid possible information loss, it is suggested that features, or eigenmodes, be

extracted directly from the images (i.e., pixel values). By projecting the aerosol images onto

low-dimensional eigenmodes, the underlying physics (fluid-particle transport equations) can

be approximated by a dynamical system with fewer degrees of freedom, which can be used for

the detection, monitoring, and when combined with targeted pulmonary drug delivery, treat-

ment of the lung diseases.

Great advances were made in extracting features or eigenmodes from numerical simula-

tions and experimental visualizations. Proper orthogonal decomposition (POD) [15], principal

component analysis (PCA) [16], global eigenmodes [17], balanced modes [18, 19], and

dynamic mode decomposition (DMD) [20, 21] have given useful insights on the dynamics of

fluid flows. POD decomposes the dynamics into orthogonal modes. It provides a low-rank

basis and a hierarchy of features that are most predominant in the system. PCA is equivalent

to POD but removes the mean to increase the contrast. In machine learning and pattern recog-

nition PCA has been widely applied for modal decomposition and dimensionality reduction.

In recent years, DMD has attracted attention in various fields as an approach for the above
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purpose that works without explicit knowledge of the governing equations. Although DMD is

a data-driven decomposition technique like POD and PCA, it generates modes that are directly

linked with the transient dynamics of the data. In this sense, DMD is inherently suitable for

studying time-evolution observables that evolve on an attractor (i.e., healthy lungs) with tran-

sient oscillators (i.e., diseases of varying severities). DMD with control (DMDC) uses both the

snapshots and externally applied control to extract input-output characteristics and makes it

possible to design the controller for high-dimensional, complex systems [22]. Besides analysis

of fluid flow and vortex dynamics, successful applications of DMD and its variants have been

made in power systems [23], robotic control [24], neuroscience [25], image processing [26],

epidemiology [27], financial market [28, 29], and weather broadcasting [30]. Comprehensive

reviews of the theory and applications of DMD can be found in Schmid et al. [21] and Tu et al.

[31].

The objective of this study is to exploit different feature extraction algorithms in order to

develop a practical classifier to diagnose obstructive lung diseases using exhaled aerosol

images. There are three specific aims:

1. To explore the feature extraction algorithms such as POD, PCA, DMD, and DMDC in

characterizing the exhaled aerosol images and identifying underlying dynamics.

2. To compare the classification accuracy of the extracted features in both SVM and RF.

3. To conduct sensitivity and error analysis of the proposed classifiers in detecting small struc-

tural variations.

The remaining text is organized as follows. Study design and methods of data collection,

feature extraction and classification will be described in section 2. The results of physiology-

based simulations, eigenmode decomposition, and ten-fold cross-validations of classification

will be presented in section 3, and implication, significance, and limitations of the results will

be discussed in section 4.

Methods

Study design

Fig 1 depicts the workflow of this study that consists of three steps. First, a database consist-

ing of 405 exhaled aerosol images will be generated with physiology-based modeling and

simulations. The variables of interest include three respiration rates (27, 30, 33 L/min), five

airway models (one normal A0, 4 diseased A1-4), nine particle sizes (0.2, 0.4, 0.6, 0.8, 1, 2, 3,

5 10 μm), and three stochastically generated inlet profiles for each particle size. An averaged

inhalation flow rate of 30 L/min was chosen as the test condition in this study, which repre-

sents the light activity condition and has been often used for inhalation drug delivery in

adults. To assess the uncertainties from breathing, 10% uncertainties in the inhalation flow

rate (30±3 L/min) will be considered. Multiple particle sizes are considered because of their

different responses to structure variations, which altogether will provide a more accurate

characterization of the underlying disease. Second, Feature extraction from the aerosol

images will be performed using four different eigenmode algorithms: POD, PCA, DMD,

and DMDC. Thirdly, the extracted feature vectors will be deployed in two supervised

machine learning methods, SVM and RF, to classify the images according to disease levels

[32, 33]. A ten-fold cross-validation approach will be used for data classification and error

analysis. To obtain statistically significant results, the classification will be repeated 100

times.
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Normal and diseased airway models

The respiratory airway model of this study extended from the mouth opening to the ninth gen-

eration (G9) bronchioles (Fig 2a). The upper airway was originally reconstructed from CT

images of a 53-year-old male that comprised the oral cavity, pharynx, and larynx [34]. The

lung geometry was developed from an anatomical replica [35]. It had a functional residual

capacity (FRC) of 3.5 L [36] and was consistent with the morphometric dimensions (i.e.,

branch diameter, length, and angle) reported in Heistracher and Hofmann [37]. A total of 115

outlets were retained in the normal lung model, which was further modified to produce four

diseased models with varying severities (Fig 2a). Using HyperMorph 10.0 (Troy, MI), branches

(red rectangle, Fig 2a) of G7-9 of the lower left lobe was deformed to generate airway obstruc-

tions (A1, A2, A3, A4) by progressively reducing the bronchiolar diameter. More details of the

HyperMorph can found in [12, 38]. Table 1 lists the dimensions of the deformed bronchiole in

terms of the diameter (mm) and cross-sectional area (mm2) at the constriction, as well as the

volume (mm3) of the disease-affected region (Fig 2a).

Aerosol image generation

Physiology-based fluid-particle computations were conducted to simulate the breath tests and

generate the exhaled aerosol images. Particle tracers were inhaled as a bolus and then exhaled

Fig 1. Diagram of lung diseases and study design. There are three steps in the proposed breath test: (1) physiology-based modeling and

simulations to generate a database of exhaled aerosol images, (2) image feature extraction using different eigenmode decomposition algorithms,

and (3) data classification (training and testing) using SVM and random forest methods.

https://doi.org/10.1371/journal.pone.0211413.g001

Fig 2. Diseased lung models and disturbed respiration. (a) One normal (A0) and four diseased bronchioles (A1-4) with increasing levels of

constriction due to inflammation, excessive mucus secretion, or tumorigenesis. Body-fitted computational mesh was generated for high-fidelity

physiology-based modeling and simulations. (b) The airflow was altered due to the airway constrictions.

https://doi.org/10.1371/journal.pone.0211413.g002
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to a mouth filter. A stochastic scheme was used to generate the initial aerosol profiles that con-

sisted of 30,000 particles [39]. The low Reynolds number (LRN) k-ω model was used to simu-

late the air flows [40]. This model can accurately capture flow transitions and has been widely

used in respiratory flows [41].

A well-validated Lagrangian approach was used to track the particle motion and fate. User-

defined functions such as the near-wall interpolation algorithm [42] were implemented. In

our previous studies, this model had provided close agreement with experimental data in the

upper respiratory tract for both submicrometer [43] and micrometer particles [44]. ANSYS

ICEM CFD (Ansys, Inc) was used to generate the computational mesh in the airway models. A

grid independence study was conducted with varying mesh densities [45]. The final mesh con-

sisted of 4.8 million cells with a height of 0.05 mm near the wall (Fig 2a).

Feature extraction of exhaled aerosol images

In this study, we have limited time-series data (five disease stages only), which, if stacked by

the disease stage, will make the data matrix extremely tall and skinny (i.e., with a high aspect

ratio). Using a standard mode decomposition method, this data set can only generate five

eigenmodes. This dramatic dimension reduction inevitably leads to severe information loss.

To alleviate this loss, the data matrix was rearranged by dividing the data into 27 groups (three

inhalation flow rates × 9 particle sizes), and in each group the five images were staked in the

disease-progression sequence (i.e., following the order of A0-A4). In this arrangement, the col-

umns of the matrix are continuous temporally within one group but have an abrupt change

between different groups. These groups, even though are not correlated in a time-series man-

ner, are correlated by inhalation rate and particle size. Therefore, both spatial and temporal

correlations are needed to fully represent the data. As SVD (singular value decomposition)-

based algorithms, both POD and PCA consider the spatial and temporal correlations, but in

an implicit manner (Fig 3a and 3b). By contrast, DMD explicitly considers the temporal evolu-

tion of the system via the correlation matrix A from the discrete-time dynamical equation

X’’ = A�X’, where X’’ = [A1, A2, A3, A4] and X’ = [A0, A1, A2, A3], as shown in Fig 3c. The dif-

ferences between POD and PCA is that POD deals with the original image matrix X, while

PCA deals with the modified image matrix X̂ ¼ ðX � �XÞ, where the averaged image was sub-

tracted from each image. In the DMD algorithm, there are three additional steps than POD,

which extract the time-evolution from X’ to X’’, as shown in Fig 3c. Compared to DMD,

the DMDC algorithm can also consider the control parameters Y that elicit the observables:

X’’ = AX’ + CY. Here the control parameters include particle size, flow rate, and airway con-

striction level. By organizing the discrete-time linear dynamical system as:

X@ � ½A C �
�
X0

Y

�

¼ GO ð1Þ

where G is the augmented operator matrix, O is the augmented data matrix that contains both

image information and control information.

Table 1. Dimension of normal and diseased airways.

A0 A1 A2 A3 A4

Minimum bronchiole diameter (mm) 3.74 1.88 1.13 0.87 0.25

Minimum cross-sectional area (mm2) 11.0 2.8 1.0 0.6 0.05

Affected bronchiole volume (mm3) 189.9 77.6 50.5 46.6 37.9

https://doi.org/10.1371/journal.pone.0211413.t001
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Once the eigenmodes are extracted, each image is projected to the coordinate system

spanned by the eigenmodes, which will be further used for disease classification. To evaluate

the effect of the retained number of eigenmodes, six tests were planned, which retained 3, 5,

10, 25, 75, and 100 eigenmodes, respectively.

Disease classification

Two machine learning algorithms, support vector machine (SVM) [46, 47] and random forest

(RF) [33], were selected to classify the normal and four diseased airway models (i.e., 5-class

classification) due to their superior performances [48]. A ten-fold cross-validation approach

was employed, in which the dataset was randomly divided into ten equal-sized subsets. In each

run, a subset was used for testing and other nine subsets were used for training. The procedure

was iterated ten times. In other words, each subset was used as the testing set once and as the

training set nine times. The classification accuracy was calculated as:

Accuracy ¼ 1 �
total number of misclassified samples

total number of samples
ð2Þ

To attain statistically averaged prediction accuracy, the ten-fold cross-validation test was

repeated 100 times, and the average accuracy was computed for final comparison. The R pack-

age “e1071” was utilized to train and test the SVM/RF classifiers. One-way analysis of variance

(ANOVA) was used to evaluate the classification variability in Minitab 17 (State College, PA).

Results

Physiology-based airflow and particle dynamics

The airway constrictions significantly alter the expiratory steam traces, as illustrated in Fig 2b.

Expiration air flows in the five models are further compared in Fig 4 in terms of cross-sectional

velocity contours and exhaled aerosol distributions. The presence of airway constriction causes

Fig 3. Schematic of image data processing using different SVD-based feature extraction algorithms: (a) POD, (b) PCA, (c) DMD, and (d)

DMDC. Here x1(A0) represents the aerosol image as a single-column vector (360,000 = 600×600) at test condition of 27 L/min and 0.2 μm

aerosol size generated in the normal lung model (A0).

https://doi.org/10.1371/journal.pone.0211413.g003

Correlating exhaled aerosol images to lung anomaly

PLOS ONE | https://doi.org/10.1371/journal.pone.0211413 January 31, 2019 6 / 22

https://doi.org/10.1371/journal.pone.0211413.g003
https://doi.org/10.1371/journal.pone.0211413


a dramatic decrease in flow rate and perturbations in the flow field. The decreased volumetric

flow rate will prevent particles from being inhaled and exhaled smoothly. The flow perturba-

tion is evident by the variation of velocity amplitude in slice 1 and of the color depth in slice 3

of Fig 4a. In slice 2, there are two apparent peaks in A0, while one peak gradually fades away in

the models of A1 to A4. The flow perturbance persists at least four bifurcations downstream of

the disease site (slice 4 in Fig 3a). It is noted that particle profiles depend on both local flows

and particle histories. Even though the downstream airflows may appear similar, the particle

profiles can still be different because of their time-integrative characteristics.

Fig 4b shows the distributions of 1-μm aerosol tracers exhaled only from the diseased site

under normal breathing conditions (30 L/min). Remarkable differences are noted among

these aerosol patterns. The number of particles exhaled from the constricted bronchioles

decreased gradually from A0 to A4. In the extremely constricted scenarios (A3-A4, 94.5–

99.5% constriction of the cross-sectional area at the disease site, Table 1), negligible or no par-

ticles were exhaled. Interestingly, the aerosol distributions in A1 or A2 were not simply diluted

versions of A0 but showed substantial variations in both pattern and intensity. This was

because that a locally remodeled structure not only alters the local flow pattern but also affects

the entire respiratory flow.

The exhaled aerosol distributions from all bronchioles are shown in Fig 5 for different test

conditions. In each test case, particles collect in a unique pattern on the mouth outlet and can

Fig 4. Numerically predicted airflow and aerosol dynamics during exhalation in models with varying levels of constriction: (a) cross-

sectional velocity contours, and (b) distribution of exhaled aerosols that were from the diseased bronchioles only. The airway constriction

disturbs the expiratory airflow. As a result, different exhaled aerosol profiles are expected due to these flow disturbances. The four locations in

(a) was defined in Fig 2b.

https://doi.org/10.1371/journal.pone.0211413.g004
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be seen as the “fingerprint” of the lung. A complete list of aerosol images can be viewed in S1

Animation and S1 Fig. Both similarities and disparities in the particle patterns were observed

among the five models. Exhaled aerosols are very complex and irregular in pattern. Some of

them are not readily distinguishable by mere inspection. Because of the close similarities, it is

a significant challenge to quantitatively characterize the images and correlate these exterior

images to the interior lung diseases. An automated technique is needed that can not only

quickly quantify the images, but also adequately captures the key features of these images.

Image data preprocessing

Data preprocessing was conducted in preparation to extract low-dimensional high-contrast

features among disease stage in preparation for later data classification. The mean image is

shown in Fig 6a that was averaged from the 405 images of the data set. This averaged image

represents the overall (or background) features of the dataset with all details filtered out. There

are several dominant background features, such as the three vortices denoted by arrows 1–3

(Fig 6a), a sprout-shaped pattern in the middle (label 4) and a hairpin-shaped aerosol streak

on the top (label 5, Fig 6a). Such features are supposed to associate with the bifurcating struc-

ture of the lungs and the converging nature of the exhaled flow.

To isolate the specific features that are associated with diseases, each image was subtracted

by the averaged image in hope to increase the contrast among images (Fig 5b–5f). For instance,

Fig 5. Comparison of exhaled aerosol patterns among normal (A0) and diseased (A1-A4) models for different flow

rates and particle sizes: (a) Q = 27 L/min, dp = 1 μm, (b) Q = 30 L/min, dp = 1 μm, (c) Q = 33 L/min, dp = 1 μm, and

(d) Q = 30 L/min, dp = 0.4 μm.

https://doi.org/10.1371/journal.pone.0211413.g005
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apparent differences were observed between the first two images (Fig 5b vs. 5c), as marked in

the dotted circles and rectangles. More subtle differences can also be spotted among images;

however, more effective detection could be achieved by eigenmode extraction and machine

learning, as discussed in the following sections.

Feature extraction

POD and PCA. In this study, the proper orthogonal decomposition (POD) analysis was

based on the singular value decomposition (SVD) of the original aerosol images (i.e., A), while

the principal component analysis (PCA) was based on the image variance from the mean (i.e.,

A-Avg).

Fig 7a shows the singular values of the (A-Avg) dataset as well as the first three PCA modes.

All singular values are positive and ordered in descending amplitude. As a result, the first three

modes are the most dominant features of the dataset, each associated with a unique attribute/

hallmark/facet /characteristic/property/aspect captured by the PCA algorithm. Even though

the dataset had already been subtracted from the averaged image, dominant features still show

up in the three PCA modes, such as vortices, sprouts, and hairpins (Fig 7a). Considering the

complex patterns of the particle distributions, the three PCA modes were not as interpretable

as other machine learning examples, such as face recognition or surveillance video processing

[26], where dominant features can be readily associated with our familiar cognations. The

first PCA mode consists of streaks of concentrated particles and seems like the skeleton of the

exhaled aerosol images. Particle patterns become increasingly dispersed in the second and

third modes (F2, F3 in Fig 7a), presumably capturing finer characteristics of the images. In

addition, by viewing the images frame by frame, a relatively continuous variation of image

Fig 6. Data preprocessing: (a) averaged image of the whole database, and the images after subtracting the average for (b) A0, (c) A1, (d)

A2, (e) A3, and (f) A4. The particle size for (b)–(f) is 1 μm and the inhalation flow rate is 30 L/min.

https://doi.org/10.1371/journal.pone.0211413.g006
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pattern can be detected (S1 Animation), indicating a relatively smooth transition through dif-

ferent disease stages.

The image dataset spanned by the three PCA modes is shown in Fig 7b. Each point repre-

sents one image, which was obtained by taking the first three columns of PCA modes F and

multiplying them by the image vector. The most obvious clusters were observed to related

with the flow rate. The normal case (A0) was clearly separated from the diseased cases A1-4

with a large margin. Separations among A1-4 were also achieved, but with much smaller mar-

gins. One exception is between A2 and A3, where very small differences were predicted. For

comparison purposes, the image dataset based on POD modes was plotted in Fig 7c. It can

be seen that less distinctive clusters were predicted among the four diseased cases A1-4, even

though the normal case was satisfactorily separated.

DMD. Fig 8a shows the singular values, the cumulative energy, and the first three DMD

eigenmodes. The singular value profile is similar to that in Fig 7a. However, the DMD eigen-

modes appear very different from those of PCA (Fig 8a vs. Fig 7a). Contrast to the relatively

well-defined aerosol skeletons in PCA modes, the DMD modes are more dispersed, which

makes their differences almost indiscriminate to human eyes. In addition, the cumulative

energy profile in Fig 8a shows that the first three DMD modes account for less than 30% of the

bulk information of the dataset. As a result, more modes (or features) should be retained to

increase classification accuracy.

Fig 7. Feature extraction and dimension reduction using principal component analysis (PCA): (a) singular values for the high-contrast

variance images from the mean (X-Avg). The first three PCA modes (Fi, i = 1, 2,3) are also shown. Dataset projected onto the first three PCA

modes are shown in (b). In comparison, values projected onto the first three POD (proper orthogonal decomposition) modes are shown in (c).

https://doi.org/10.1371/journal.pone.0211413.g007
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Fig 8b shows the characteristics of the dynamic eigenvalue using the DMD algorithm, with

each dot corresponds to one mode. As shown in Fig 8b, most of the dynamic modes fell inside

the unit circle in the complex plane; only a small number of modes locating on or close to the

unit circle. The distance from the origin to the dynamic mode signifies the temporal behavior

of the corresponding mode, growing with time (disease progression in this study) if the dis-

tance is larger than one while decaying if smaller than one. The unit circle pattern of λi suggests

Fig 8. DMD eigenvalues and energy spectrum of the exhaled aerosol images: (a) discrete eigenvalues λ relative to the unit circle (blue dashed

line) and (b) the transformed eigenvalues calculated as ω = log(λ)/(2π). The phase velocity ωi is normalized by 2π to reveal the frequency

information. The DMD spectrum is shown in (d) and the projection of dataset onto the first three DMD modes are shown in (e).

https://doi.org/10.1371/journal.pone.0211413.g008
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that most modes are stable [6], which is reasonable for the present sequentially converging

flow during exhalation, while those dynamic modes fallen on or close to the unit circle might

result from the recursive usage of a selective group of flow rates and particle sizes. Eigenvalues

in the interior of the unit circle are corresponding to strong damping, which leads to a stable

system. Fig 8c shows the transformed eigenvalues calculated as ω = log(λ)/(2π). The read part

of ωi indicates the variation amplitude of the i-th eigenmode in response to the input (i.e., dis-

ease stages).

Three peaks of mode amplitude can be observed at frequencies f0, f1, and f2 in the DMD

spectrum (Fig 8d). It is not surprising to find that f0 is associated with the variation of the inha-

lation flow rate (repeating every three cases), f1 with the disease stage (repeating every five

cases), and f2 with the particle size (repeating every nine cases).

The image dataset spanned by the first three DMD modes is shown in Fig 8e. Surprisingly,

less defined clusters were observed in comparison to those spanned by POD or PCA modes.

This may result from the spatial non-orthogonality of the DMD modes may introduce a poor

quality of approximation of the dataset when only a subset of modes with the largest amplitude

is retained. It is noted that DMD eigenvalues are complex valued so that the dynamics have

growth/decay (real part) as well as an oscillation (imaginary part). This ability to capture

growth/decay of spatial patterns is important when analyzing time-varying signals and pro-

gressive behaviors. In this study, Fig 8e shows the real components only.

DMDC. Fig 9 shows the DMDC eigenvalues and energy spectrum of the exhaled aerosol

images. Adding the control variables (i.e., particle size, flow rate, and airway constriction

level) that caused the data discontinuity between different test conditions, the distribution of

eigenvalues became more uniform than that of the DMD method. The highly damped eigen-

values in Fig 8b were eliminated in Fig 9a. This can also be noted in the reduced range of the

real component of ω, i.e., from (-1.2, 0) in Fig 8c to (-0.5, 0) in Fig 9b. The DMDC was found

to give rise to a very similar energy spectrum as the DMD (Fig 9c vs. 8d), with three domi-

nant frequencies that are associated with inhalation flow rates, airway constriction levels,

and particle sizes, respectively. With only three eigenmodes, the dataset projections do not

show apparent clustering expect for the A0 class (Fig 9d), which is similar to the observation

in Fig 8e. Considerable overlapping was found among data of A1, A2, A3, and A4. However,

it is noted that the accuracy of classification can also be affected by the remaining less domi-

nant features, especially when the first three features do not sufficiently capture the bulk

information of the dataset, or when the classification is sought according to not-so-obvious

differences.

SVM- and RF-based classification

Fig 10 shows the box plot of five-class (A0-4) classification accuracy using different combina-

tions of feature extraction and classification algorithms. These plots were obtained statistically

from the classification results using ten-fold cross-validation that was repeated 100 times. To

study the effect of feature vector effects, two cases were compared, with one retaining 25 eigen-

modes and the other retaining 100 eigenmodes (Fig 10a vs. 10b). Several interesting results are

noted when viewed from different perspectives. First, RF notably outperformed SVM for all

feature-extraction algorithms considered here. Second, the DMD- and DMDC-based feature

extraction performed much better than the POD- and PCA-based feature extraction when

using the RF classification algorithm (Fig 10a and 10b, upper panel). With SVM, however, no

significant difference in classification accuracy was observed among the four feature-extrac-

tion algorithms (Fig 10a and 10b, lower panel). Thirdly, retaining more features increased the

variance (or uncertainty) in the classification results, as evident by the presence of outliers in

Correlating exhaled aerosol images to lung anomaly

PLOS ONE | https://doi.org/10.1371/journal.pone.0211413 January 31, 2019 12 / 22

https://doi.org/10.1371/journal.pone.0211413


Fig 10b in contrast to the absence of outlier in Fig 10a. This might have resulted from the

inclusion of noise or correlated features that contaminated the disease-associated signals.

In many situations, it is not trivial to identify a subset of modes that have the strongest

impact on flow and particle dynamics. The variation of prediction accuracy with the number

of retained eigenmodes is shown in Fig 11. Considering that both feature extraction and classi-

fication method determined the prediction accuracy, their effects were compared separately,

in Fig 11a and 11b for the feature extraction effects, and in Fig 11c and 11d for the classifica-

tion algorithm effects. From Fig 11a, with SVM the best prediction accuracy was found at 50

features; increasing the number of features beyond 50 decreased the prediction accuracy. In

contrast, the performance of RF either becomes asymptotic or continues to increase with more

retained features (Fig 11b). With RF, the DMD and DMDC algorithms (i.e., dynamic-based)

performs significantly better POD and PCA (i.e., static) when the number of retained eigen-

modes is more than 10 (Fig 11b). Moreover, the DMDC performs slightly, but persistently,

better than DMD (Fig 11b). Considering the classification algorithm effects (Fig 11c vs. 11d).,

RF gave rise to constantly higher accuracy than SVM in this study, irrespective of the feature

algorithms. In contrast to a relatively slow and constant increase of accuracy with the number

Fig 9. DMDC eigenvalues and energy spectrum of the exhaled aerosol images: (a) discrete eigenvalues λ relative to the unit circle (blue

dashed line) and (b) the transformed eigenvalues calculated as ω = log(λ)/(2π). The DMDC spectrum is shown in (c) and the projection of

dataset onto the first three DMDC modes are shown in (d).

https://doi.org/10.1371/journal.pone.0211413.g009

Correlating exhaled aerosol images to lung anomaly

PLOS ONE | https://doi.org/10.1371/journal.pone.0211413 January 31, 2019 13 / 22

https://doi.org/10.1371/journal.pone.0211413.g009
https://doi.org/10.1371/journal.pone.0211413


of retained eigenmodes in RF, the accuracy in SVM varies more dramatically, which increases

quickly from 3 to 50 in rank and drops precipitously thereafter (Fig 11c vs. 11d).

The misclassification rates are compared among the four feature-extraction algorithms (i.e.,

POD, PCA, DMD, and DMDC) in Fig 12 with 25 features retained. No misclassification was

found between A0 and [A1, A2, A3, A4] and between A1 and [A3, A4] for any test in this

study. For both classification algorithms, the highest misclassification rate occurred between

A2 and A3, which ranged from 12–20% using RF (Fig 11a) and around 30% using SVM. (Fig

12a). The second highest misclassification occurred between A3 and A4 for both classification

algorithms considered (Fig 12). In combination with the RF classifier, DMD-based features

significantly reduced misclassification for A2-A3. Furthermore, adding the control parameters

to DMD completely eliminated the A3-A4 misclassification in the scenario of ten-fold cross-

validation repeated 100 times. Surprisingly, with SVM negligible benefits were achieved for the

DMD and DMDC over the POD and PCA algorithms, as evident in Fig 12b. It is noted that

the summation of the misclassification rates in each case equals (1 –prediction accuracy) of

that case. For instance, the total misclassification for the POD-RF case with 25 retained fea-

tures is 25.9% (= 0.7% +20.7% + 1.5% +3.0% in Fig 12a), which is equivalent to the prediction

accuracy of 74.1% (1–25.9%) as shown in Fig 10a.

Discussion

In this study, a machine learning framework with static and dynamic feature selections to clas-

sify obstructive lung diseases was presented. The impact of feature selection algorithms on

classification performances was evaluated using two classification methods (SVM and RF).

Results show that a classifier with features the include transient dynamics (DMD and DMDC)

Fig 10. Box plot of the five-class (A0-4) classification accuracy using different combinations of feature extraction and classification

algorithms with a different number of retained features: (a) 25 eigenmodes, and (b) 100 eigenmodes.

https://doi.org/10.1371/journal.pone.0211413.g010
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significantly outperformed that with static features (POD and PCA), which is consistent with

the fact that disease growth is an inherently dynamic process. Also, including control parame-

ters that are responsible for the dynamical system changes further improved the classification,

but with a much smaller magnitude. On the other hand, RF gave rise a persistently higher clas-

sification accuracy than SVM, irrespective of the features. While the RF performance con-

stantly improved with the number of retained eigenmodes, the SVM performance peaked at

50 features and decreased when more features were included. The best 5-class classification

accuracy in this study was 94.8% using the DMDC-RF model, followed by 93.0% using the

DMD-RF model with 100 features.

The reasons that DMD- and DMDC extracted more informative features than POD and

PCA were speculated as follows. DMD and DMDC considered the temporal features associ-

ated with the disease progression from A0 to A4 and thus should better capture the phase

transformation than the static feature extraction algorithms (POD and PCA). In contrast,

POD and PCA extracted orthogonal coherent structures from the correlation matrix of the

image ensemble; the averaging process to form the correlation tensor would lead to informa-

tion loss of the disease progression. Moreover, the resulting spatial modes might not be tempo-

rally independent of each other [49], which could also compromise the performance of these

two algorithms (POD and PCA).

Fig 11. Prediction accuracy of the supervised learning algorithms for the datasets of different sampling resolutions. (a) and (b) show the

box plot of the five-class classification accuracy with RF and SVM, respectively. (c) compares the performances between RF and SVM in the

five-class classification. (d) compares the performances between RF and SVM in the two-class (binary) classification.

https://doi.org/10.1371/journal.pone.0211413.g011
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The newly proposed DMDC-RF algorithm outperformed the fractal-RF algorithm by 7.8%.

In the previous studies [9, 12], fractal dimensions were used as features to characterize the

aerosol images at varying image resolutions. The optimal accuracy of the fractal-RF algorithm

for five-class classification was 87.0% with each image represented by a 144 (12×12 image reso-

lution) feature vector [12]. Even though fractals have been demonstrated to be good at charac-

terizing complex patterns, they will inevitably lose some information, and it is unclear how

such information loss will affect the data discrimination. In this study, features were extracted

directly from the images in their raw form (i.e., pixel values) via SVD (singular value decompo-

sition)-based dimension reductions to identify the most dominant coherent structures, there-

fore minimized the loss of information. The second improvement resulted from dynamic

mode decompositions that naturally attended to the transient dynamics inherent in the disease

progression. New features could be revealed that were otherwise missed by the static feature

selection algorithms such as POD and PCA. The third improvement came from the inclusion

of control parameters, which put more weight on features that were important for classifica-

tion and suppressed irrelevant features.

Results of this study demonstrated high sensitivity of the proposed method to airway varia-

tions. The five categories (A0-A4) were defined according to the airway constriction level in

one bronchiole, with the minimum bronchiolar diameter ranging from 3.74 mm in A0 to 0.26

Fig 12. Comparison of the misclassification rate of the five-class classification among the four feature extraction algorithms using 25

eigenmodes: (a) RF and (b) SVM. The misclassification rate is zero for A0 vs. [A1, A2, A3, A4] and A1 vs. [A3, A4], which is not presented.

https://doi.org/10.1371/journal.pone.0211413.g012
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mm in A4 (Table 1). As expected, large geometrical variation led to few misclassifications, as

observed in A0 vs. A1. Conversely, misclassifications were predominantly predicted in the pair

of A2 and A3 (Fig 12), whose dimensions were close to each other, with a 23% difference in

diameter (1.13 mm vs. 0.87 mm) and 8% difference in volume (50.5 mm3 vs. 46.6 mm3). The

abnormally high misclassification rate between A2 and A3 suggested that their differences

might be too trivial to be clinically meaningful and therefore, should not be considered as dis-

tinct stages of the disease. In comparison, there was a remarkable reduction of the misclassifi-

cation rate between A1 and A2, which differed by 40% and 35% in bronchiolar diameter (1.88

mm vs. 1.13 mm) and volume (77.6 mm3 vs. 50.5 mm3), respectively.

Similar as in the previous studies [12], RF persistently outperformed SVM regardless of the

feature selection algorithms. It was noteworthy that the RF performance constantly increased

with the number of retained eigenmodes, while the SVM performance climaxed when the

number of retained eigenmodes was 50. Both observations might arise from the limited

amount of image samples in this study and the associated overfitting (i.e., inferring too much

from undersampled observations) in SVM. In practice, SVM tended to exhibit more over-fit-

ting as the number of attributes increases [50]. Adding irrelevant features could also worsen

the performance by diluting the signal. By contrast, RF was more resistant to overfitting prob-

lem [10, 11]. As indicated by its name, RF (random forest) developed a myriad of decision

trees and weighed voting from all decision trees to determine the final classification. In this

study, 1,000 decision trees were specified to increase the classification rate. Ten-fold cross-vali-

dation tests with 100 repetitions were conducted to minimize possible over-fitting [51].

Detecting an anomaly in deep lungs is more difficult than in the upper respiratory tract

because of intrinsically weaker signals in the small airways. These weak signals can result from

two factors: small perturbations by themselvesand signal attenuation during exhalation. It is

crucial to know whether such weak signals can be detected at the mouth and then be retrieved

to the source of the signals. The proposed DMDC-RF algorithm is highly sensitive to even min-

iature variations in aerosol distributions when 100 features were retained, as demonstrated by

the 5-class classification accuracy of 94.8% of in small airways (G7-9, bronchiolar diameter less

than 1.87 mm). The disease model in this study was very small in size and has only one bron-

chiole deformed; it would generate a much weaker perturbation signal than actual asthmas,

which often has a whole sub-region of bronchioles constricted and therefore should be more

amenable to be detected. It is also noted that the models A2 and A3 had a very small difference;

with 25 retained features, the misclassification between A2 and A3 can be as high as 30% for

SVM and 20% for RF. However, with 100 retained features, the total misclassification rate of

the DMDC-RF model reduced to as low as 5.2%. This was remarkable considering that the dis-

ease-associated differences were not the predominating ones in this study, which was intermin-

gled with more pronounced variances such as the inhalation flow rate and particle sizes. Thus,

argumentation of disease signals and attenuation of unrelated ones were conducted in DMDC

to emphasize the signal of interest. This is desirable considering that many extraneous factors

can exert nontrivial influences on the outputs, and it is critical for the classifier to be sufficiently

sensitive to pick out the factor of interest by disentangling it from other compounding factors.

The proposed breath test is envisioned to have two steps (i.e., screening and validation) and

it is noted that the method proposed herein is for the second step (validation) only. In the first

step for screening purposes, a population-based classifier is needed that had been trained on

the database of a specific disease. The exhaled aerosol image of the individual patient will be

used as a test sample to determine the probability of this patient to develop this disease. If the

probability is high, follow-up breath tests are needed for validation purposes. In the second

step, the aerosol images collected thenceforth will be grouped into a new database and used

to train a personalized classifier to verify the initial screening result, as outlined in this study.
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Because of the persistence (or progression) of the disease, common features (or feature evolu-

tion) will show up in the time sequence of aerosol images. As such, this personalized database

can also be used to measure disease progression or treatment efficacy of the patient. Moreover,

this database can be incorporated into the population database to improve the applicability of

the population-based classifier. Other than being used as an independent diagnostic tool, the

proposed method can also be used as a supplemental tool to low-dose resolution CT scans to

the validate the screening results. Considering that the proposed breath test is non-invasive,

low-cost and easy-to-perform, it allows a higher frequency of tests than CT. Multiple tests on a

regular basis can effectively rule out misdiagnosis, thereby increasing prediction accuracy and

reducing false positive rates.

In terms of classifier selection, both the SVM and random forest algorithms exhibited satis-

factory performances in this study. In recent years, deep learning algorithms have become the

mainstream with increasing evidence of superiority over traditional machine learning algo-

rithms in image classification [52, 53]. One particularly appealing feature in deep learning is

that feature extraction and classification can be executed at the same time. The ability of con-

volutional neural network (CNN) model to learn rich features at multiple levels has led to a

variety of successful application in medical image analysis [54, 55]. On the other hand, unique

challenges present in applying CNN models. It generally requires large datasets for effective

model training, while quality medical images are often limited. In this study, a database of 405

images was tested, which was adequate in SVM and random forest classifications, but appeared

insufficient for a meaningful deep learning test. Evaluations of the performance of CNN mod-

els in analyzing exhaled aerosol images are needed as more image data are becoming available.

Challenges exist before the proposed method can be applied in clinic settings. One immedi-

ate challenge is the requirement of an existent population-based classier for screening purpose,

as there is no record of aerosol images at the patient’s first visit. Further work is needed to

develop such a classifier (e.g., a classifier for COPD) based on exhaled aerosol images from dif-

ferent (COPD) patients. This can be done using the PCA/POD features and RF classification

algorithm, following the method described in this study. It is acknowledged that the perfor-

mance of the proposed method can be reduced when training a classifier across individuals or

among different diseases. The high predictive accuracy herein could partially come from the

limited number of patient (one herein), controlled airway diseases, and predefined test condi-

tions. Therefore, results in this study should not be generalized to population-based classifiers

or other respiratory diseases. Some other limitations may also affect the clinical applicability

of the proposed method, such as steady flows, rigid walls, in silico generated aerosol images,

and a limited number of disease models originated from the same lung geometry. Natural

breathing is characterized by tidal breathing [44] and compliant walls [56], which should be

considered in future investigations. Aerosol images were acquired from physiology-based sim-

ulations, not from in vivo or in vitro tests. Even though such aerosol images did not affect the

performance evaluation of the proposed algorithm, more realistic aerosol images should be

used to be clinically relevant. One advantage of using numerically generated aerosol images is

that a quantitative evaluation of the classifier is possible in light of the well-defined inputs and

outputs as in this study. Another benefit of model-based classification is that the in-silico data-

base allows more disease types and can be an ongoing process as well. Acquiring new images

helps refine the classifier, improving both its prediction accuracy and statistical power.

In addition to the above-mentioned limitations, other factors may also affect the exhaled

aerosol images, such as the mouth shape, breathing rate, body position, as well as intersubjec-

tive variability. While the effects from some factors can be minimized through standardization,

others need further investigations. For instance, adopting a mouthpiece during the test is

expected to alleviate the impact from the shape of the mouth and tongue position. likewise,
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standardizing the patient’s breathing pattern (slow and steady) and sitting position (upright)

may reduce the complication from breathing and body position. Considering that diseases can

occur anywhere in the lung, will the inclusion of aerosol images from different branches make

it too complicated to be distinguished? The answer is that it is unlikely. All exhaled aerosol pat-

terns, no matter how complex they appear, can be quantified as a linear combination of feature

vectors and used as inputs to classify diseases. Considering that different diseases will generate

different aerosol patterns, a database of commonly diagnosed lung diseases can be built to

train and test the classifier model. The database can be extended by including samples of new

or less diagnosed diseases. As more data become available, the existing classifier can be refined

to increase the extent of its applicability.

In summary, eigenmode-based feature extractions were explored to characterize the

exhaled aerosol images. RF was inherently a better classifier than SVM in classifying lung dis-

eases. Features that included transient dynamics (DMD and DMDC) outperformed the con-

ventional SVD-based features such as POD and PCA. The DMDC-RF (or DMD-RF) model

was demonstrated to have a high sensitivity to lung structural remodeling [94.8% (or 93.0%)

for 5-class classification] and is recommended for future machine-learning-based lung diagno-

sis. The inclusion of the evolving dynamics through DMD (or DMDC) can assist in machine-

learning-based decision-making (i.e., diagnosis, prognosis, and treatment) of obstructive lung

diseases in small airways.
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16. Hervé A, J WL. Principal component analysis. Wiley Interdiscip Rev Comput Mol Sci. 2010; 2(4):433–

59. https://doi.org/10.1002/wics.101

17. ÅKervik E, HŒPffner J, Ehrenstein UWE, Henningson DS. Optimal growth, model reduction and control

in a separated boundary-layer flow using global eigenmodes. J Fluid Mech. 2007; 579:305–14. Epub

05/02. https://doi.org/10.1017/S0022112007005496

18. Boyle KR, Ligthart LP. Radiating and balanced mode analysis of PIFA antennas. IEEE Trans Antennas

Propag. 2006; 54(1):231–7. https://doi.org/10.1109/TAP.2005.861537

19. Rowley CW. Model reduction for fluids using balanced proper orthogonal decomposition. Int J Bifurcat

Chaos. 2005; 15(03):997–1013. https://doi.org/10.1142/s0218127405012429
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