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Background and Hypothesis: Machine learning ap-
proaches using structural magnetic resonance imaging 
(MRI) can be informative for disease classification; how-
ever, their applicability to earlier clinical stages of psy-
chosis and other disease spectra is unknown. We evaluated 
whether a model differentiating patients with chronic schiz-
ophrenia (ChSZ) from healthy controls (HCs) could be 
applied to earlier clinical stages such as first-episode psy-
chosis (FEP), ultra-high risk for psychosis (UHR), and au-
tism spectrum disorders (ASDs). Study Design: Total 359 
T1-weighted MRI scans, including 154 individuals with 
schizophrenia spectrum (UHR, n = 37; FEP, n = 24; and 
ChSZ, n = 93), 64 with ASD, and 141 HCs, were obtained 
using three acquisition protocols. Of these, data regarding 
ChSZ (n = 75) and HC (n = 101) from two protocols were 
used to build a classifier (training dataset). The remainder 
was used to evaluate the classifier (test, independent con-
firmatory, and independent group datasets). Scanner and 
protocol effects were diminished using ComBat.  Study 
Results: The accuracy of the classifier for the test and in-
dependent confirmatory datasets were 75% and 76%, re-
spectively. The bilateral pallidum and inferior frontal gyrus 
pars triangularis strongly contributed to classifying ChSZ. 

Schizophrenia spectrum individuals were more likely to be 
classified as ChSZ compared to ASD (classification rate to 
ChSZ: UHR, 41%; FEP, 54%; ChSZ, 70%; ASD, 19%; 
HC, 21%). Conclusion: We built a classifier from multiple 
protocol structural brain images applicable to independent 
samples from different clinical stages and spectra. The 
predictive information of the classifier could be useful for 
applying neuroimaging techniques to clinical differential 
diagnosis and predicting disease onset earlier.

Key words:  support vector machine/classification/s
tructural MRI/voxel-based morphometry/multisite 
study/harmonization

Introduction

Several case–control studies have reported on the charac-
teristics of brain anatomical differences in patients with 
chronic schizophrenia (ChSZ) compared to healthy con-
trols (HCs), such as a reduction in gray matter volume 
in the frontal and temporal cortices, hippocampus, thal-
amus, and nucleus accumbens.1–4 Mega studies have 
also identified brain characteristics among patients with 
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schizophrenia including an increase in the volume of 
the putamen and pallidum from the Enhancing Neuro 
Imaging Genetics through Meta-Analysis (ENIGMA, 
n  =  4568)5 and the Cognitive Genetics Collaborative 
Research Organization in Japan (COCORO, n = 2,564).4,6 
Gray matter loss in the frontotemporal regions is ob-
served in different stages of schizophrenia, such as 
first-episode psychosis (FEP) and the ultra-high risk 
for psychosis (UHR).7–19 Previous studies reported a 
progressive decrease in gray matter volume in the supe-
rior temporal lobe during the transition period among 
UHR individuals9,15,16,18 and several years after disease 
onset.9,18,19 Although approximately two-thirds of UHR 
cases did not develop a psychotic disorder (UHR-NP), 
some neuroanatomical alterations in the frontotemporal 
regions were seen in UHR overall and UHR-NP.7,20 On 
the other hand, the effect size of the volume reduction 
in the triangular part of the inferior frontal gyrus (IFG) 
showed similarity among individuals with UHR, FEP, 
and ChSZ.21–23 These results suggest that schizophrenia 
spectrum disorders have specific brain characteristics 
before onset, which are also present in individuals with 
subthreshold psychotic symptoms, and these characteris-
tics become more disease-specific with progression from 
the first psychotic episode to the chronic stage.

Previous studies reported that neuroanatomical alter-
ations may be partially shared among individuals with 
schizophrenia and autism spectrum disorders (ASDs) in 
the frontal lobes, anterior cingulate cortex, insula, basal 
ganglia, and cerebellum.24–27 The overlap of structural al-
terations in the insular cortex was observed in individuals 
with UHR and FEP.24,28 Although no large sample studies 
have directly compared the structural brain characteristics 
of ASDs and schizophrenia, the findings of ENIGMA 
suggested that ASD individuals showed less volume loss 
compared to patients with schizophrenia27 and greater cor-
tical thickness in the superior frontal gyrus and frontal 
pole compared to individuals with typical development.29 
We also reported that the volume reduction in the pars 
triangularis of the IFG is specific to the schizophrenia 
spectrum, while that in the pars opercularis of the IFG is 
specific to ASD.21,23,30 Therefore, investigating the common 
and spectrum-specific neuroanatomical alterations in 
schizophrenia and ASD may provide new biological in-
sights beyond case–control studies and render them appli-
cable to possible biological markers in clinical settings.

Recently, machine learning approaches have been ap-
plied to structural brain imaging to determine the classifi-
cation pattern of patients with psychiatric disorders.3,12,31–34 
We previously built a three-class machine learning clas-
sifier differentiating ChSZ, ASD, and HC, and showed 
that UHR and FEP individuals were classified into the 
ChSZ and HC groups but not into the ASD group.35 
Therefore, the machine learning approach can be informa-
tive for disease classification applicable to different clinical 
stages of psychosis. However, several limitations should 

be addressed in its interpretation and clinical applica-
tion. First, only a few studies have evaluated a model that 
achieved good performance in terms of overall accuracy 
with independent data.2,31,36,37 Lack of generalizability to 
unseen data is prone to information leaks between the 
training and test datasets.38 To minimize data leakage 
when building models, some strategies can be used, such 
as repeating the preprocess of brain images for each cross-
validation fold or holding out a validation dataset. The 
former strategy is meant to preprocess the images in every 
fold while building the classifiers, which requires a high 
calculation cost for neuroimaging data. Holding out a val-
idation dataset is applied in the classifier evaluation step 
using the data that were not used in the model building 
process by holding out parts of the data in advance. Since 
the data collected from the same site and procedure still 
includes potential information leakage, independent 
confirmatory data outside of the site and procedure for 
building a classifier or newly measured data after building 
the classifier will be needed. Second, previous studies have 
used large samples from multiple sites and datasets; how-
ever, the differences in measurement protocols and mag-
netic resonance imaging (MRI) equipment have been 
neglected.31,39,40 A recent multisite resting-state functional 
connectivity study showed that disease-derived informa-
tion from functional images was smaller compared to ma-
chine- and protocol-derived information.41 The machine 
learning approach requires a large sample size; however, 
one machine and protocol from a single site is limited in 
sampling from various psychiatric disorders. Diminishing 
the machine- and protocol-derived differences in MRI 
data should be considered before machine learning classi-
fiers are applied to a clinical setting.

Here, we intend to develop a support vector machine 
(SVM) classifier to differentiate between individuals with 
ChSZ and HCs, and test whether the classifier applies to in-
dividuals with earlier schizophrenia spectrum, such as UHR 
and FEP, and other disorders such as ASD. Although SVM 
and logistic regression similarly perform using brain MRI 
in clinical psychiatry,35 SVM was the most popular algo-
rithm.31,32,36,37 Furthermore, SVM can generate coordinates 
for each data point as predictive performance for unknown 
data. To overcome the limitations associated with previous 
multisite/multiprotocol datasets, we proposed the use of 
ComBat,42 a batch-effect correction tool for harmonizing 
voxel-wise data collected with multiple protocols. ComBat 
is a suitable method for application to multidataset gray 
matter volumes or that of cortical thickness. Furthermore, 
we investigated the neuroanatomical alterations between 
the ChSZ and HC groups. To prevent information leakage 
from the data used in building a classifier, we applied a two-
step approach using an independent confirmatory dataset 
and other clinical stages and spectrum data to evaluate the 
performance of the classifier.

First, we hypothesized that the performance of the clas-
sifiers would be retained for independent confirmatory 
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datasets. Second, the classifier would discriminate the 
various clinical stages of psychosis (UHR and FEP) as 
schizophrenia, and ASD as HCs. Third, the character-
istic of schizophrenia would correlate positively with the 
clinical stages, as greater anatomical alterations would 
be observed for patients with longer duration of illness. 
An SVM classifier was employed with the following pur-
poses: (1) to ascertain how distinguishable ChSZ patients 
and HCs are from each other using T1-weighted MRI 
data, (2) to describe patterns of morphological features/
neuroanatomical alterations contributing to the classifi-
cation of psychosis, and (3) to evaluate the performance 
of the classifier in predicting the decision scores of unseen 
data such as those of UHR, FEP, and ASD individuals.

Methods

Participants

A total of 359 participants, including 154 individuals 
with schizophrenia spectrum disorder (UHR, n  =  37; 
FEP, n = 24; and ChSZ, n = 93), 64 individuals with ASD, 
and 141 HCs were enrolled in this study (table 1). The HC 
group was matched for sex, age, and premorbid intelli-
gence quotient (IQ) to the ChSZ group (P > .05).

We applied a two-step approach to evaluate the per-
formance of the models by dividing the data into four 
datasets: training, test, independent confirmatory, and 
independent group datasets (figure 1). First, the training 
and test datasets comprised the data of individuals with 

Table 1. Demographic Characteristics of Study Participants

 HC UHR FEP ChSZ ASD Statistical value P-value 

Participants        
 Total, n 141 37 24 93 64   
 Protocol1, n 58 27 20 34 37   
 Protocol2, n 55 2 0 49 5   
 Protocol3, n 28 8 4 10 22   
Sex, male/female 83/58 20/17 18/6 55/38 61/3 χ2 = 32.89 <.001
Age, mean (SD) 29.66  

(7.88)
20.59  
(3.35)

24.46  
(5.88)

31.44  
(10.03)

29.44  
(6.67)

F = 39.20  
HC>FEP>UHR  

ASD>FEP>UHR

<.001

Handedness (right), % 85.71 86.49 95.83 77.42 82.81   
IQ        
 JART IQ, mean (SD) 104.82  

(7.42)
105.02  
(9.79)

106.27  
(10.46)

101.68  
(10.33)

NA F = 3.61  
HC>ChSZ

.018

 FIQ, mean (SD) NA NA NA NA 105.79  
(12.26)

NA NA

 VIQ, mean (SD) NA NA NA NA 112.55  
(13.56)

NA NA

 PIQ, mean (SD) NA NA NA NA 94.98  
(16.18)

NA NA

DOI, mean (SD) NA NA 0.21  
(0.17)

7.28  
(6.91)

NA t = 9.96 <.001

CPeq, mean (SD) NA 154.0  
(306.0)

452.4  
(420.2)

698.3  
(582.1)

NA F = 23.14  
ChSZ>FEP>UHR

<.001

PANSS        
 Positive symptom, mean (SD) NA 12.5  

(3.88)
13.48  
(4.57)

16.47  
(5.28)

NA F = 8.77  
ChSZ>UHR

<.001

 Negative symptom, mean (SD) NA 16.17  
(6.37)

18.1  
(4.45)

20.38  
(6.69)

NA F = 6.57  
ChSZ>UHR

.002

 General psychopathology, mean (SD) NA 31.2  
(8.81)

33.76  
(7.95)

36.41  
(9.78)

NA F = 4.42  
ChSZ>UHR

.014

ADI-R        
 Social, mean (SD) NA NA NA NA 15.63  

(5.16)
NA NA

 Com, mean (SD) NA NA NA NA 9.45  
(4.58)

NA NA

 RRB, mean (SD) NA NA NA NA 3.89  
(1.88)

NA NA

 Total, mean (SD) NA NA NA NA 27.79  
(9.54)

NA NA

Note: HC, healthy control; UHR, ultra-high risk for psychosis; FEP, first-episode psychosis; ChSZ, chronic schizophrenia; ASD, autism 
spectrum disorder; SD, standard deviation; DOI, duration of illness; CPeq, chlorpromazine equivalent doses; PANSS, Positive and Nega-
tive Syndrome Scale; ADI-R, Autism Diagnostic Interview-revised; Social, Social interaction issues; Com, Communication and language 
skills; RRB, Restricted and repetitive behavior.
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ChSZ and HC collected using protocols 1 and 2. Ninety 
percent of the data were randomly sorted as the training 
dataset, and the remaining 10% were sorted as the test 
dataset. The independent confirmatory dataset com-
prised the data of the same groups collected using pro-
tocol 3, which was completely excluded from the training 
partition, to perform an independent first-step evaluation 
without site information leakage. To evaluate the classi-
fier for earlier clinical stages of psychosis as the second 
step, we defined the independent group dataset as the 
data of individuals with UHR, FEP, and ASD collected 
using any protocol.

The participants were recruited from the outpatient 
and inpatient units of the University of Tokyo Hospital, 
University of Tokyo Health Service Center, psychiatry 
clinics, and internet referrals. Individuals with ChSZ were 
diagnosed with schizophrenia by designated psychiatrists. 
Individuals with ASD were diagnosed according to the 
Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition, Text Revision (DSM-IV-TR)43 with more 
than 2 months of follow-up examinations by an experi-
enced psychiatrist (H.Y.). The diagnoses were further 

confirmed by a certified psychiatrist (H.K.) using the 
Japanese version of the Autism Diagnostic Interview 
– Revised (ADI-R). The inclusion criteria were ages 
15–40  years for FEP and 15–30  years for UHR, non-
receipt of antipsychotic medications for more than 16 
cumulative weeks, and continuous psychotic symptoms 
within the past 6 months. All eligible participants in the 
UHR and FEP groups were assessed using the Structured 
Interview for Prodromal Symptoms (SIPS)44,45 and evalu-
ated using the UHR or psychosis criteria (supplemen-
tary materials). The SIPS criteria for psychosis were the 
same as those of psychotic disorders in the DSM-IV-TR. 
HCs were not diagnosed with ASD, schizophrenia, or 
any other psychiatric disorder, and were screened for 
neuropsychiatric disorders using the Structured Clinical 
Interview for DSM-IV, Nonpatient Edition.46

The exclusion criteria were as follows: (1) previous and/
or present severe brain injury and/or neurological illness; 
(2) a previous history of electroconvulsive therapy; (3) a 
premorbid IQ of ≤70 as assessed using the 25-item ver-
sion of the Japanese Adult Reading Test (JART25)47,48 for 
the schizophrenia spectrum groups and full scale of the 
Wechsler Adult Intelligence Scale Revised Japanese ver-
sion (WAIS-R) for the ASD group; (4) previous and/or 
present alcohol addiction; and (5) previous and/or present 
continuous substance use. For the schizophrenia spec-
trum groups, we also excluded participants with clearly 
comorbid ASD according to the DSM-IV criteria.49 The 
detailed inclusion and exclusion criteria for the UHR and 
FEP groups are described in the protocol paper.49

Symptom severity for schizophrenia spectrum groups 
was assessed using the Positive and Negative Syndrome 
Scale (PANSS)50 and designated using the positive, neg-
ative, and general psychopathology subscales. For the 
ASD group, the ADI-R subtypes (social, communica-
tion, and restricted and repetitive behavior [RRB]) were 
assessed. The chlorpromazine equivalent dose was calcu-
lated for medications received at the time of scanning.51

The study protocol was approved by the ethics com-
mittee of the Faculty of Medicine, University of Tokyo 
(approval nos. 397, 629, 630, and 2226). All participants 
provided written informed consent to participate in the 
measurements after receiving a complete explanation of 
the experiment.

MRI Data Acquisition and Preprocessing

T1-weighted images were obtained from the three 
datasets using different scanners and protocols. All struc-
tural MRI images were acquired using 3 Tesla General 
Electric scanners. The scanning for protocol 1 was per-
formed using an 8-channel head coil on SIGNA HDx 
(3D-FSPGR sequence, 176 axial slices, slice thickness: 
1.0 mm; supplementary table S1), for protocol 2 using a 
24-channel head coil on DISCOVERY MR750w (Sag_
IR-FSPGR sequence, 196 sagittal slices, slice thickness: 

Fig. 1. Pipeline employed for the processing and analysis of 
T1-weighted images. HC, healthy control; UHR, ultra-high 
risk for psychosis; FEP, first-episode psychosis; ChSZ, chronic 
schizophrenia; ASD, autism spectrum disorder.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
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1.2 mm), and for protocol 3 using a 32-channel head coil 
on DISCOVERY MR750w (3D-FSPGR sequence, 172 
axial slices, slice thickness: 1.0  mm). All T1-weighted 
images were first corrected for intensity nonuniformity 
with N4BiasFieldCorrection,52 distributed using ANTs 
2.2.0 (RRID: SCR_004757).53 The intensity corrected 
images were then segmented to produce images of dif-
ferent tissue types (gray matter, white matter, and ce-
rebrospinal fluid) using CAT12 software (http://www.
neuro.uni-jena.de/cat/). We used the Diffeomorphic 
Anatomical Registration Through Exponentiated Lie 
Algebra (DARTEL)54 option in the CAT12 toolbox to 
normalize the segmented scans into a standard Montreal 
Neurological Institute (MNI) space. Default parameters 
were used for this preprocessing. Smoothing was applied 
later in the harmonization process. To assess gray matter 
segment homogeneity and identify possible outliers, the 
“Check Data Quality” module of CAT12 was used. No 
participants were excluded from this step. To retain max-
imum image information, voxels from gray matter images 
were smoothed using a Gaussian smoothing kernel of 
2-mm full width at half-maximum as features in further 
classification. All features from the smoothed, modulated, 
and normalized gray matter images were transformed to 
a two-dimension matrix (participants × features) using 
Niftimasker, a component of Nilearn (https://github.
com/nilearn/nilearn).

ComBat Harmonization

ComBat42 is a harmonization method used to remove 
scanner and protocol effects based on the adjusted 
general linear model harmonization method. ComBat 
uses Bayesian criteria to improve the estimation for small 
sample size data (supplementary materials). Further ana-
lyses were conducted using Python version 3.7.4. We 
applied the transformed two-dimensional data with par-
ticipants’ age and sex as covariables, along with protocol 
effects (supplementary figure S1).

Support vector Machine

The main idea behind SVMs is to separate two groups 
using a contrasted hyperplane (supplementary ma-
terials).55 In building a classifier, we applied stand-
ardization and dimension reduction using principal 
component analysis (PCA) to the dataset, which in-
cluded 554 992 features. The usage of  value standardiza-
tion, optimization of  the number of  PCA components, 
and hyperparameters of  the classifier (penalty param-
eter C and kernel parameter gamma) were tuned using 
GridSearchCV implemented in the “scikit-learn” module 
(version 0.21.3) in Python (https://scikit-learn.org/
stable/whats_new/v0.21.html). We plotted the weights 
of  the classifier to determine the importance of  the fea-
tures for generalization (supplementary materials).56,57 

The classifier was optimized using a 10-fold cross-
validated grid search over a defined parameter grid. 
Data from the HC group were randomly downsampled 
to the same ratio as the ChSZ group in each fold. To re-
duce downsampling bias, downsampling and grid search 
were repeated 1000 times and stratified 10-fold for the 
training data. Then, we applied 10-fold cross-validation 
and 1000 permutations to evaluate the significance of 
the cross-validation scores of  the model with the best 
hyperparameters for the training dataset. The best cross-
validation accuracy score was averaged across 1000 re-
peats. Permutation tests were conducted by shuffling the 
labels in the training data, and the permutation-based 
P-value was calculated.58 The final model with the best 
hyperparameters was trained using the entire training 
dataset. One hundred and fifty PCA components were 
used as features. Finally, the trained classifier was ap-
plied to the test set and the independent confirmatory 
dataset with the best parameters tuned by grid search. 
The predictive performance of  the classifier was evalu-
ated using an independent group dataset (UHR, FEP, 
and ASD data collected using any protocol).

Statistical Analysis

Evaluation metrics First, the classifier was evaluated 
using the test, independent confirmatory, and inde-
pendent group datasets separately by the given scores of 
the tuned classifier using the training dataset. We calcu-
lated the confusion matrix, macro, and weighted average 
accuracies to evaluate the classifier because the data used 
were imbalanced (supplementary materials). We also re-
ported the area under the curve (AUC) of the receiver 
operator characteristic.
Predictive performance of the classifier The predictive 
performance of the classifier and the chi-squared test were 
applied to the classified labels of the test, independent 
confirmatory, and independent group datasets. Since we 
compared 10 pairs of groups, Bonferroni’s correction 
was applied to post-hoc comparisons (P < .05/10 = .005). 
Decision scores generated by the SVM were tested using 
an analysis of variance separately for all samples corre-
sponding to the hyperplane. Bonferroni’s correction was 
applied to post-hoc comparisons (P < .05/10 = .005).
Correlations between decision scores and clinical se-
verity To determine the relationship between the deci-
sion score and symptom severity, Pearson’s correlation 
analyses were performed using the PANSS subscores 
for the schizophrenia spectrum groups and the ADI-R 
subscale scores for the ASD group. Bonferroni’s correc-
tion was applied to the subscores (P < .05/3 = .016). To 
determine the potential effect of medication on the clas-
sification, we also tested the correlation between the de-
cision score and medication dose for the schizophrenia 
spectrum groups using Spearman’s rank correlation (un-
corrected P < .05). For the UHR group, we also tested 

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://github.com/nilearn/nilearn
https://github.com/nilearn/nilearn
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
https://scikit-learn.org/stable/whats_new/v0.21.html
https://scikit-learn.org/stable/whats_new/v0.21.html
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
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the difference in decision scores between those with and 
without medication using a t-test.

Results

Model Evaluation

The best cross-validation accuracy within the training 
dataset was 74% (±0.68). The permutation test showed 
that it was significantly higher than that attributable to 
chance (50%, P < .001). The accuracy with the best esti-
mator for the test and independent confirmatory datasets 
were 75% (AUC  =  0.88) (table  2, supplementary figure 
S2A) and 76% (AUC = 0.82) (supplementary figure S2B), 
respectively.

The voxel space feature weights of the SVM showed 
that the clusters including the IFG pars triangularis, su-
perior frontal gyrus, cuneus, superior occipital gyrus, pu-
tamen, and pallidum contributed to identifying ChSZ 
(figure  2A, table  3). Clusters including the inferior pa-
rietal gyrus, inferior occipital gyrus, superior parietal 
gyrus, and middle frontal gyrus contributed to the iden-
tification of HCs.

Predictive Performance of the Classifier for the Test, 
Independent Confirmatory, and Independent Group 
Datasets

A chi-squared test showed a significant difference within 
the classified labels for the test, independent confirma-
tory, and independent group datasets, respectively (X2(1, 
n = 20) = 5.69, P < .05; X2(1, n = 38) = 7.72, P < .01; and 
X2(2, n = 118) = 11.25, P < .01). Further residual analysis 
showed that the HC group was significantly more likely 
to be classified as HCs than the ChSZ group in the inde-
pendent confirmatory dataset (79% vs. 21%, corrected P 
< .01). For the independent group dataset, the ASD and 

UHR groups were significantly more likely to be clas-
sified as HCs (classification rate to HC: 81% and 59%, 
respectively, corrected P < .01), while the FEP group as 
ChSZ (46%, corrected P < .01; figure 2B). Compared to 
the ASD group, UHR was more likely to be classified as 
ChSZ (corrected P < .01). A chi-squared test showed no 
difference between HCs from the independent confirma-
tory dataset and ASD participants from the independent 
group dataset.

Using the decision score generated by the SVM for all 
groups, we found a significant main effect of the decision 
score for the five groups (F = 161.99, P < .001). Multiple 
comparisons showed that UHR was close to FEP but dif-
ferent from HC, ASD, and ChSZ (HC < ASD < UHR 
and FEP < ChSZ; corrected P < .001) (figure 2C).

Correlations Between Decision Scores and Clinical 
Severity

No significant correlations were found between PANSS 
subscores and decision scores. In the schizophrenia spec-
trum groups, significant correlations between chlorprom-
azine equivalent dose and decision scores were observed in 
the UHR group (rho = 0.44, P < .05). However, no signifi-
cant differences in decision scores between medicated and 
nonmedicated UHR participants were found (t = −1.78, 
not significant). No significant correlation was found be-
tween the ADI-R subscale scores and decision scores in 
the ASD group. No significant correlations were found 
between JART IQ and decision scores in each group.

Discussion

To the best of our knowledge, the current study is the first 
to apply machine learning to the classifier for HC and 
ChSZ groups with multi-protocol structural MRI and 
multidisease spectrum and clinical stages. To evaluate the 
classifier, we confirmed a two-step approach using an in-
dependent confirmatory dataset obtained via a different 
protocol from the ones used in building the classifier and 
the earlier clinical stage and ASD dataset. We success-
fully achieved a 74% accuracy in the 2-class classification 
within training dataset. The decision scores from the clas-
sifier indicated that the characteristics of ChSZ became 
pronounced in the UHR and FEP groups, which was dif-
ferent from those in the HC and ASD groups.

In this study, we discriminated between the HC and 
ChSZ groups with 74% and 75% accuracy in the training 
and test sets, respectively. The performance of the clas-
sifier on the independent confirmatory dataset achieved 
76% accuracy. To avoid downsampling bias, we performed 
random execution and 1000 repeats, which may cause a 
slightly lower training accuracy than the test accuracy 
(≤1%). Our results are compatible with the accuracy of 
72%–77% in a previous study.37 As Rozycki et al.37 treated 
MRI scanners as a variable in the multivariate analysis, we 
used ComBat to harmonize the effects of MRI protocols 

Table 2. Classification Report of the Test and Independent 
Datasets

 Precision Recall F1-score 
N for  
prediction 

Test dataset     
 HC 0.89 0.67 0.76 12
 ChSZ 0.64 0.88 0.74 8
 macro avg 0.76 0.77 0.75 20
 weighted avg 0.79 0.75 0.75 20
Independent confirmatory dataset
 HC 0.88 0.79 0.83 28
 ChSZ 0.54 0.70 0.61 10
 macro avg 0.71 0.74 0.72 38
 weighted avg 0.79 0.76 0.77 38

Since the samples from protocol 1 and 2 were used for Test 
dataset (HC = 12, ChSZ = 8) and those from protocol 3 for Inde-
pendent confirmatory dataset (HC = 28, ChSZ = 10), the metrics 
except for weighted average accuracy (weighted avg) may be af-
fected by sampling imbalance (Supplementary Materials).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
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or scanners. ComBat is superior at preserving within-site 
biological variability and improving the consistency and 
replicability of the voxels associated with age.59–61 By ap-
plying the two-step approach using multi-protocol sam-
ples, we obtained less biased results than evaluating the 
classifier using data from the same dataset. We obtained 
a model with a solid predictive performance for new data, 
unlike previous studies that did not test the performance 
of the trained classifier.2,37 As expected, a majority of 
ASD patients were classified as HCs. The decision scores 
also indicated that ASD and UHR patients share some 
characteristics that differ from those of the HC or ChSZ 
group. Moreover, no significant associations were found 

between IQ or chlorpromazine equivalent doses and de-
cision scores, indicating that the brain characteristics of 
schizophrenia found in the present study may serve as bio-
markers for improving methods for differential diagnosis.

In line with previous studies of volumetric alter-
ations in the schizophrenia spectrum,1–6,13 we found that 
a pattern of morphological features, including the IFG 
pars triangularis, putamen, and pallidum contributed 
to the identification of ChSZ patients. Using a manual 
tracing method within the IFG, we previously found that 
the volume reduction in the IFG pars triangularis is a 
disease-specific feature in the schizophrenia spectrum, 
such as UHR,21 FEP,21 and ChSZ,23 and the extent of 

Fig. 2. Voxel feature contributions and predictive performance comparisons of support vector machine (SVM). (A) Weighted features of 
SVM classification in the voxel space. Note that positive scores indicate the regions of feature contribution for identifying patients with 
chronic schizophrenia, while negative score for healthy controls. (B) Predictive performance of HC and ChSZ groups was evaluated using 
the independent confirmatory dataset, and UHR, FEP, and ASD groups using the independent group dataset. (C) Box and scatter plot 
of decision scores of support vector machines. P-values of post hoc comparisons were corrected using the Bonferroni method (***P < 
.001, **P < .01, *P < .05).
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Table 3. Top 10 Weighted Features of Regions Contributed to SVM Classification Included in AAL Atlas.

Cluster ID 

Peak Contribution values Brain regions

x y z 
Cluster mean weight  

(×10−5) 
Peak weight  

(×10−5) 
Volume 
(mm3) Cluster Peak 

Top 10 by cluster mean weight for healthy controls     
 361 −51 −55.5 54 −3.09 −4.42 104.625 90.32% Parietal_Inf_L; 9.68% no_label Parietal_Inf_L
 48 −36 −73.5 −7.5 −3.08 −5.53 1090.12 75.85% Occipital_Inf_L; 13.00% Occipital_ 

Mid_L; 5.88% Fusiform_L; 5.26% no_label
Occipital_Inf_L

 504 25.5 −25.5 37.5 −3.04 −3.84 74.25 100.00% no_label no_label
 63 40.5 13.5 61.5 −3.03 −6.24 772.875 96.51% Frontal_Mid_2_R Frontal_Mid_2_R

 392 12 −60 60 −3.03 −5.27 101.25 80.00% Precuneus_R; 20.00% Parietal_Sup_R Precuneus_R
 148 −4.5 −91.5 36 −3.02 −4.57 273.375 69.14% Cuneus_L; 19.75% no_label; 11.11% Oc-

cipital_Sup_L
no_label

 105 28.5 −37.5 72 −3.01 −4.47 381.375 100.00% Postcentral_R Postcentral_R
 333 19.5 −61.5 −64.5 −2.98 −5.06 114.75 100.00% no_label no_label
 586 −16.5 −43.5 −52.5 −2.98 −4.47 57.375 88.24% Cerebelum_9_L; 11.76% no_label Cerebelum_9_L
 74 −12 −63 72 −2.96 −5.41 631.125 90.37% Precuneus_L; 5.35% Parietal_Sup_L Precuneus_L

Top 10 by peak weight for healthy controls     
 1 7.5 46.5 −24 −2.89 −6.98 118770 23.13% no_label Rectus_R

 26 −19.5 −51 76.5 −2.87 −6.45 1859.62 54.99% Parietal_Sup_L; 22.87% Precuneus_L; 
14.34% Postcentral_L; 5.44% Paracentral_ 
Lobule_L

Parietal_Sup_L

 63 40.5 13.5 61.5 −3.03 −6.24 772.875 96.51% Frontal_Mid_2_R Frontal_Mid_2_R
 12 28.5 −7.5 −42 −2.81 −5.83 2504.25 47.04% no_label; 18.06% Fusiform_R; 15.09% 

Temporal_Pole_Mid_R; 12.67% Temporal_Inf_R; 
6.74% ParaHippocampal_R

Fusiform_R

 5 −27 −10.5 46.5 −2.87 −5.69 5055.75 31.38% Precentral_L; 27.10% Frontal_Mid_2_L; 
26.44% Frontal_Sup_2_L; 14.35% no_label

no_label

 21 −45 7.5 28.5 -2.73 −5.66 2052 43.75% Precentral_L; 39.47% Frontal_Inf_ 
Oper_L; 11.84% Frontal_Inf_Tri_L

Frontal_Inf_ 
Oper_L

 69 57 −31.5 −21 −2.94 −5.57 678.375 90.55% Temporal_Inf_R; 7.46% no_label Temporal_Inf_R
 161 −15 −73.5 63 −2.91 −5.54 239.625 73.24% Precuneus_L; 18.31% no_label; 8.45% Pa-

rietal_Sup_L
Precuneus_L

 48 −36 −73.5 −7.5 −3.08 −5.53 1090.12 75.85% Occipital_Inf_L; 13.00% Occipital_ 
Mid_L; 5.88% Fusiform_L; 5.26% no_label

Occipital_Inf_L

 11 −37.5 −49.5 −52.5 −2.76 −5.49 2575.12 65.92% Cerebelum_8_L; 21.10% no_label; 10.62% 
Cerebelum_7b_L

Cerebelum_8_L

Top 10 by cluster mean weight for chronic schizophrenia     
 432 −49.5 46.5 4.5 3.73 6.02 91.125 96.30% Frontal_Inf_Tri_L Frontal_Inf_Tri_L
 253 −12 51 46.5 3.55 5.73 155.25 58.70% Frontal_Sup_2_L; 32.61% Frontal_Sup_ 

Medial_L; 8.70% no_label
Frontal_Sup_2_L

 72 −9 −84 27 3.26 6.75 648 83.85% Cuneus_L; 16.15% Occipital_Sup_L Cuneus_L
 516 −10.5 −33 −28.5 3.25 5.53 70.875 100.00% no_label no_label
 138 18 −52.5 72 3.18 5.63 293.625 100.00% Parietal_Sup_R Parietal_Sup_R
 224 54 40.5 7.5 3.13 5.01 178.875 100.00% Frontal_Inf_Tri_R Frontal_Inf_ 

Tri_R
 297 58.5 24 25.5 3.09 4.97 131.625 87.18% Frontal_Inf_Tri_R; 12.82% Frontal_Inf_ 

Oper_R
Frontal_Inf_ 
Tri_R

 79 −9 0 64.5 3.08 6.39 563.625 79.64% Supp_Motor_Area_L; 16.17% no_label Supp_Motor_ 
Area_L

 396 −49.5 −45 −45 3.06 4.02 97.875 100.00% Cerebelum_Crus2_L Cerebelum_ 
Crus2_L

 1308 12 −48 22.5 3.04 3.37 16.875 60.00% Cingulate_Post_R; 40.00% Precuneus_R Cingulate_Post_R
Top 10 by peak weight for chronic schizophrenia     

 2 22.5 −4.5 3 2.97 9.32 17465.6 48.10% no_label; 14.40% Putamen_R; 9.80% 
Pallidum_R; 5.84% Caudate_R; 5.10% Tem-
poral_Sup_R

Pallidum_R

 3 −19.5 −1.5 4.5 3.01 8.66 11292.8 35.51% no_label; 19.75% Putamen_L; 16.44% 
Pallidum_L; 8.70% Parietal_Inf_L

Pallidum_L

 72 −9 −84 27 3.26 6.75 648 83.85% Cuneus_L; 16.15% Occipital_Sup_L Cuneus_L
 4 6 70.5 4.5 2.98 6.72 9966.38 17.78% Frontal_Sup_Medial_L; 15.92% Frontal_ 

Sup_2_R; 14.83% no_label; 12.87% Frontal_ 
Sup_Medial_R; 11.38% Frontal_Sup_2_L; 9.75% 
Frontal_Mid_2_R

Frontal_Sup_ 
Medial_R
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structural alteration was associated with brain activity 
during a verbal fluency test in FEP.22 These findings sug-
gest that a decrease in gray matter volume in the region is 
a trait characteristic of the schizophrenia spectrum. On 
the other hand, the IFG pars opercularis is related to a 
disease-specific feature in ASD.30 In this study, the SVM 
classifier used the structural features of the IFG pars 
triangularis as one of the contributory regions and is a 
reasonable selection according to previous studies.

Previous large-scale studies from ENIGMA5 and 
COCORO6 found increased volumes of the putamen and 
pallidum in patients with schizophrenia. Recently, our 
multi-site study showed that individuals with UHR exhib-
ited increased volumes of the left caudate and pallidum62; 
however, the ENIGMA clinical high risk for psychosis 
study failed to replicate these findings.20 This suggests 
that an altered striatum and pallidum volume is another 
disease-specific feature of the schizophrenia spectrum. 
These volumes are inconsistent in terms of FEP.63–65 
Nevertheless, the findings of the present study suggest 
a major contribution of the putamen and pallidum for 
classifying ChSZ, and these regions may contribute to 
some disease-specific pathologies in schizophrenia.

The decision score given by the classifier increased 
according to the clinical stages of  psychosis, suggesting 
that the gradual transitions of  neuroanatomical char-
acteristics were distinguishable among the HC, UHR, 
FEP, and ChSZ groups. This further implies that prom-
inent symptoms (anatomical alterations) appear after 
FEP and progressively change after the initial period of 
psychosis onset (HC < ASD < UHR and FEP < ChSZ) 
(figure 2C). Although a partial overlap of  anatomical al-
terations has been reported between the ASD and ChSZ 
groups,66,67 the classifier in this study weighted other-
wise. As ASD is mostly classified as HC compared to 

other schizophrenia spectrum groups, the neuroanatom-
ical changes used in the classifier during early clinical 
stages are specific to schizophrenia and weighed both 
differences in trait and progressions in brain pathology. 
Recent studies including whole brain (gray matter, white 
matter, and ventricular cerebrospinal fluid volumes)33 or 
diffusion MRI as features reported a high performance 
rate32,34; with more features, it is possible to achieve a 
higher accuracy with relatively smaller samples than 
this study.

Our study had several limitations. First, we did not 
build a classification system differentiating ASD from 
other groups because of the smaller sample size. More 
samples from multiple sites will yield a multiclass classi-
fier that can be used to learn more about disease-specific 
structural brain characteristics, which may apply to earlier 
clinical stages of the schizophrenia spectrum. Moreover, 
although ComBat was applied protocol-wise, there is 
little risk of information leak since the data used in the 
current study were acquired from a single site. However, 
ComBat was unable to distinguish the sampling bias 
from measurement bias.41,60,68 While applying combat har-
monization to multiple site datasets, the sampling effects 
could be a potential information leak. Second, due to the 
limited samples of UHR individuals who later converted 
to psychosis, we were unable to evaluate whether the clas-
sifier could differentiate a later onset of psychosis. Third, 
although we showed that the classification was slightly 
influenced by the medication dose, the potential effect 
of medication on the structural characteristics should be 
considered. Fourth, although previous machine learning 
classification studies did not control features for intra-
cranial volume,31,35,36 we need to see whether the features 
adjusted for intracranial volume would increase the sen-
sitivity in further studies.

Cluster ID 

Peak Contribution values Brain regions

x y z 
Cluster mean weight  

(×10−5) 
Peak weight  

(×10−5) 
Volume 
(mm3) Cluster Peak 

 79 −9 0 64.5 3.08 6.39 563.625 79.64% Supp_Motor_Area_L; 16.17% no_label Supp_Motor_ 
Area_L

 80 15 −76.5 42 2.87 6.18 560.25 65.06% Cuneus_R; 19.88% Precuneus_R; 7.83% 
Parietal_Sup_R

Cuneus_R

 432 −49.5 46.5 4.5 3.73 6.02 91.125 96.30% Frontal_Inf_Tri_L Frontal_Inf_Tri_L
 64 42 −6 21 2.83 5.74 752.625 47.09% no_label; 42.60% Rolandic_Oper_R; 

7.62% Insula_R
Rolandic_Oper_R

 45 64.5 1.5 27 2.77 5.74 1194.75 64.41% Precentral_R; 14.97% Postcentral_R; 
11.02% Frontal_Inf_Oper_R; 9.32% Rolandic_ 
Oper_R

Postcentral_R

 253 −12 51 46.5 3.55 5.73 155.25 58.70% Frontal_Sup_2_L; 32.61% Frontal_Sup_ 
Medial_L; 8.70% no_label

Frontal_Sup_2_L

The 10 largest clusters that contributed to the classification by cluster mean and peak of the brain regions are shown. All features are 
listed in supplementary tables S2-3. By transforming the weights of each PCA component back into the original feature (voxel) output, a 
weighted image was generated in a standard MNI space, which including the coordinates of the weights. AAL atlas was used to generate 
a coordinates table and region labels based on the information given by the weighted image.

Table 3. Continued

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac030#supplementary-data
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The present study compared a 2-class SVM classifier 
(HC vs. ChSZ) using the multiprotocol voxel-based mor-
phometry datasets, which showed a good predictive per-
formance for the unknown data of the UHR, FEP, and 
ASD groups. The classifier indicated that the character-
istic was gradually modified in the UHR, FEP, and ChSZ 
groups. This method could be the next step to apply brain 
MRI machine learning algorithms to clinical settings. 
Further elaboration of the method applied herein may 
contribute to the early discovery and clinical diagnosis of 
schizophrenia and ASDs in the future.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin. 
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