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Pancreatic cancer is one of the most deadly cancers, ranking amongst the top leading
cause of cancer related deaths in developed countries. Features such as dense stroma
microenvironment, abnormal signaling pathways, and genetic heterogeneity of the tumors
contribute to its chemoresistant characteristics. Amongst these features, growth factors
have been observed to play crucial roles in cancer cell survival, progression, and
chemoresistance. Here we review the role of the individual growth factors in pancreatic
cancer chemoresistance. Importantly, the interplay between the tumor microenvironment
and chemoresistance is explored in the context of pivotal role played by growth factors.
We further describe current and future potential therapeutic targeting of these factors.
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INTRODUCTION

In developed countries, pancreatic cancer (PC) is poised to become amongst the top three causes of
deaths in cancer patients by 2030 (1, 2). PC is characterized by non-specific symptoms especially at
the early stages of the cancer enabling the progression of the disease. Due to late diagnosis and the
biology of PC, current drug treatments usually lead to poor tumor response rates and early relapse
(3, 4). Pancreatic cancer cells produce growth factors that play various key roles in propagating
tumorigenesis, one of which is in chemoresistance (5). In PC treatment and management,
chemotherapy remains a well-known mode of treatment. The lack of effective chemotherapeutic
agents to treat PC contribute significantly in making it a lethal condition.
CHEMORESISTANCE IN PDAC: ROLE OF THE
TUMOR MICROENVIRONMENT

Many features contribute to chemoresistance and tumor progression, with the presence of a pro-
tumoral microenvironment being the dominant factor (6, 7). It has been observed that 90% of the
total tumor volume comprises the desmoplastic stroma arising due to the pro-fibrotic state initiated
by the PC cells and microenvironment. This composition ensures that PC cells are chemoresistant
by reducing drug delivery into the tumor microenvironment (8). Due to this, PC cells can develop
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resistance towards standard of care chemotherapeutic drugs such as
gemcitabine used for PC treatment (9). Gemcitabine is a deoxycytidine
analog, that functions by intercalating with the DNA, consequently
blocks the cell cycle at theG1/S phase, and inhibits cellular proliferation.
However, this blockage may be impaired by changes in drug
transporters, activation and inactivation of enzymes and their targets
that are characteristic of chemoresistance (10).

The tumor microenvironment of PC which consists of cells
such as tumor-associated macrophages (TAMs), myofibroblasts,
stromal cells, and cancer-associated fibroblasts (CAFs), is a key
player in inducing chemoresistance (11–19). For example, CAFs
have been implicated in drug resistance in pancreatic cancer via
several mechanisms such as upregulating cytokine levels,
blocking adequate delivery of drugs, activating tumor-
promoting signaling pathways, increasing cell proliferation,
promoting metastasis, and dysregulating cellular metabolism.
Recently, novel strategies to target them are being developed
(20–24). Most proteins within the intricate extracellular matrix
(ECM) of PC are secreted by CAFs (20, 25); thus, the dominance
and heterogeneity of CAF within the TME guarantees that it
plays a pivotal role in therapeutic resistance (20, 26). Drug
delivery to tumor cells is essential for drug sensitivity and
therapeutic efficacy. In PC, the dense TME architecture ensures
that drug delivery is impeded. Our group recently showed using
SWATH-MS, the intricate network of signaling pathways within
the ECM of PC tumors highlighting different known and
potentially novel associating proteins (27). Furthermore, mouse
models of PC showed that CAFs accumulate gemcitabine and this
may contribute to drug resistance (28). Also, CAFs originate from
pancreatic stellate cells (PSCs) and these cells can secrete
metabolites such as deoxycytidine which confers resistance on PC
cells (29).

TAMs can either function as inflammatory macrophages
known as M1-like inflammatory macrophages which are
tumor inhibiting or as the tumor-promoting M2-like
immunosuppressive macrophages, both of which play important
roles in solid tumors such as pancreatic cancer (30–32). The M1
and M2-like macrophages can be described as either tumor killing
or promoting, respectively. Chemoresistance in PC has also been
linked to pancreatic cancer stem cells which have enhanced
epithelial-mesenchymal transition (EMT), altered metabolism,
altered key genes (such as KRAS, TP53, CCND1, BIRC5, and
BCL-2), dysregulated signaling pathways (including Notch, PI3K/
AKT, Hedgehog, and NF-kB), reduced apoptosis, and increased
cell cycle (33, 34).
GROWTH FACTORS AND
CHEMORESISTANCE

Growth factors are associated in the progression of several cancers
including pancreatic cancer, leading to the development of several
drugs to target them (5, 35). The functions of the various growth
factors in promoting chemoresistance in pancreatic cancer,
current drugs targeting them, and clinical trials are further
elaborated on.
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Insulin-Like Growth Factor (IGF)
The IGF pathway is dysregulated in pancreatic cancer and its
secretion has been linked to the tumor microenvironment (36,
37). Recent studies have shown its dysregulation in both tumors
and blood samples of pancreatic cancer patients (38, 39).
Furthermore, the upregulation of the insulin/IGF-1R pathway
in PDAC occurs in about 72% of patients and is associated with
an increase in the number of CD163+TAMs (12). The Ireland et
al. (2016) study reported on the role of TAMs and myofibroblasts in
promoting drug resistance in pancreatic cancer by the secretion of IGF
1 and 2. The secretion of these factors desensitized pancreatic cancer
cells to gemcitabine as they showed that by blocking the IGF pathway,
gemcitabine became effective. Also, fibroblast exposed to pancreatic
cancer cells has also been shown to secrete the IGF contributing to
survival and proliferation (36). When IGF-1R was silenced in PC cells,
cell growth, proliferation, and metastasis were inhibited (40).
Supporting evidence revealed that blocking IGF-1R and ErbB3
sensitized tumor cells to nab-Paclitaxel and gemcitabine (41). The
efficacy of another IGF-1R inhibitor, ganitumab, was evaluated in a
phase II clinical trial and found to improve the overall survival of
metastatic PC patients over a period of 6 months while ensuring
manageable toxicity levels (42). In another study, although combination
of ganitumab and gemcitabine resulted in admissible toxicity levels, it
did not improve overall survival (43). In in vivo models, the
simultaneous inhibition of IGF-1R and ErbB3 using istiratumab
(MM-141) blocked the PI3K/AKT/mTOR axis thus increasing the
efficacy of blocking IGF-1R alone or in combination with other
agents such as gemcitabine (44). On the other hand, a combinatorial
treatment of istiratumab with gemcitabine and nab-paclitaxel did
not improve outcomes in metastatic pancreatic cancer patients
compared to standard of care chemotherapy (45). However there
are currently 136 ongoing clinical trial investigating the efficacy of
nab-paclitaxel alone or in combination with other drugs such as
FOLFIRINOX (Table 1).

Vascular Endothelial Growth Factor (VEGF)
Angiogenesis is required for solid tumor development and
progression (46). The heparin-binding glycoprotein, VEGF,
functions as an endothelial cell mitogen and is strongly linked
to angiogenesis in different tumors, including pancreatic cancer
(47). VEGF is highly expressed in PC and many studies have
determined that its overexpression, correlated to greater tumor
size, increased liver metastases, and a reduced patient survival
(48–54). Several preclinical and clinical studies have evaluated
the efficacy of inhibiting VEGF and its receptors in PC (54–57).
For example, the inhibition of VEGF/VEGFR by foretinib
blocked angiogenesis and cell proliferation and resulted in
increased apoptosis (58). Bevacizumab (an anti-VEGF
antibody) and Sunitinib [an anti-tumor and anti-angiogenic
tyrosine kinase (TKI) inhibitor] were observed to inhibit PC
cell motility and migration (54). Sunitinib blocks VEGFR,
allowing angiogenesis to be inhibited in pancreatic cancer cells
(59) (Figure 1A). Treatment with cedirinib, a VEGF inhibitor,
was also found to reduce the expression of key epithelial-to-
mesenchymal transition (EMT) markers such as ZEB1, Snail,
and N-cadherin (60), suggesting potential roles in inhibiting
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cancer cell migration and metastasis. The combination of VEGF
inhibitors such as bevacizumab and chemotherapeutic agents
like gemcitabine and 5-FU have shown promising potential in
treating PC (61).

Epidermal Growth Factor (EGF)
Epidermal growth factor receptor (EGFR) is expressed in up to
60–90% of pancreatic cancers and is involved inducing cell growth
and migration. Targeted anti-EGFR molecular strategies have been
employed in the treatment of PDAC especially to circumvent
chemoresistance (62, 63). Erlotinib, one of the most studied EGFR
inhibitors, has been used to block the EGFR signaling pathway
(Figure 1B). A phase I and II clinical trial concluded that erlotinib
might be an effective and safe treatment option in PC (64).
Combinational treatment of erlotinib with gemcitabine prolonged
survival in pancreatic cancer patients in a phase III study (65).
Simultaneous treatment of erlotinib, gemcitabine, and capecitabine
also showed efficacy in metastatic PC patients (66). Additionally,
studies have demonstrated the use of statins in combination with
anti-EGFR agents in pancreatic cancer treatment (67). Statins,
known to lower lipid concentrations, block the production of
intermediates needed for prenylation and RAS/mitogen-activated
protein kinase 1 signaling activation. They appear to alter
Frontiers in Oncology | www.frontiersin.org 3
resistance to anti-EGFR agents, such as erlotinib and show
efficacy when combined with drugs like gemcitabine (68, 69).

Fibroblast Growth Factor (FGF)
The fibroblast growth factors (FGFs) include about 23 known
proteins and their receptors are associated with PC playing a role
in tissue hyperplasia, transition of EMT, tumor metastasis, and
angiogenesis (70). FGF is overexpressed in PC and promotes cell
growth, proliferation, and invasion (71, 72). The overexpression of
FGF and FGFR can lead to oxidative stress evident through
increased nitric oxide synthase (iNOS) (73). FGF10 is a molecule
involved in mesenchymal-epithelial signaling and is crucial in
development of multiple organs including the pancreas (74).
However, when alterations occur, the FGF10 can induce
migration and invasion in the PC cells. As the mesenchyme is
essential for the pancreas growth, its absence can result in lack of
islet cells and hypoplasia. Furthermore, the crosstalk between the
FGF10 and TGF-b pathway can promote EMT and cancer cell
invasion (75, 76). A recent study observed that a high expression of
FGF8 was independently associated with diminished overall patient
survival, indicative of poor prognosis (77). The FGF can also play a
role in chemoresistance. It was determined that, acquired drug
resistance observed when tumors were treated with VEGF inhibitors
TABLE 1 | Ongoing clinical trials evaluating growth factor inhibition in pancreatic cancer.

Drugs/
Inhibitors

Growth factor
target

Number of
ongoing clinical

trials with results*

Status of
clinical
trials

Clinical trial number

Nab-Paclitaxel IGF-1R 142 41 active,
not
recruiting
101
recruiting

Such as NCT03316599, NCT03520790, NCT02827201, NCT02210559, NCT02047513,
NCT03086369, NCT02717091, NCT02481635, NCT03252808, NCT02427841, NCT04808687,
NCT02340117, NCT03929094, NCT03850769, NCT03941093, NCT03885219, NCT03652428,
NCT03636308, NCT04498689,

Bevacizumab VEGF 13 7 active,
not
recruiting
6 recruiting

NCT03387098, NCT03329248, NCT03136406, NCT03586869, NCT03376659, NCT01229943,
NCT04299880 NCT03351296, NCT03597581, NCT03193190, NCT02820857, NCT04430842,
NCT03597581

Sunitinib VEGFR,
PDGFR,

4 4 recruiting NCT02230176, NCT02282059, NCT02465060, NCT03878524,

Nintedanib VEGFR, FGFR,
PDGFR

1 1 recruiting NCT02902484

Erlotinib EGFR 6 4 active,
not
recruiting
2 recruiting

NCT01013649, NCT00878163, NCT01660971, NCT02737228 NCT04136132, NCT03878524

Cetuximab EGFR 4 3 active,
not
recruiting
1 recruiting

NCT03992664, NCT03319459, NCT01420874 NCT03785249

Imatinib PDGFR 1 1 recruiting NCT03878524
Pamrevlumab
(FG-3019)

CTGF 2 1 active,
not
recruiting
1 recruiting

NCT02210559 NCT03941093

Larotrectinib NGF 1 1 recruiting NCT02465060
Ficlatuzumab HGF/c-MET 1 1 active,

not
recruiting

NCT03316599

Crizotinib HGF/c-MET 2 2 recruiting NCT02465060, NCT02568267
*Studies could involve treatment alone or in combination with other therapeutic strategies.
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was induced by several factors including hypoxia and FGF
expression (78). FGF2 targeting agents and inhibitors can aid in
preventing TAM-associated cell migration and chemoresistance
(11, 73). One study evaluated the use of dovitinib, an inhibitor of
FGFR/VEGFR pathway in combination with gemcitabine and
capacitabine and determined improved efficacy in patients with
advanced PC (79). Mastinib, another inhibitor of FGFR and
PDGFR, was shown to decrease inflammation in PC patients
(80). Combining mastinib and gemcitabine in both in vitro and
in vivo PC models showed that mastinib sensitized tumor cells to
gemcitabine (81). This was further supported by a phase III clinical
trial which indicated the use of the combination of mastinib and
gemcitabine in patients that overexpress ACOX1 (82).

Transforming Growth Factor-Beta (TGF‐b)
Mutations of key genes such as SMAD4 are a major characteristic of
PC initiation and progression. These mutations can be found in
more than half of pancreatic cancer patients and play an important
role in TGF-b signaling (83, 84). In the TME, TGF‐b signaling
pathway is involved in the regulation of several cell types. For
instance, it promotes differentiation of myofibroblasts, recruitment
of immune cells and influences epithelial and endothelial cell
differentiation (85). This pathway also has contradictory functions
as a tumor suppressor and promoter (86). During early
tumorigenesis, TGF-b signaling can inhibit cell cycle and induce
apoptosis, but could also promote tumor growth via enhancing
EMT, cancer stem cells formation, cellular migration, invasion, and
immune response evasion by inhibiting Th1 immune response (87).
Cancer cells can secrete both PDGF-BB and TGF-b leading to
promotion of fibroblasts transformation thereby resulting in the
low expression of the anti-cancer Pigment Epithelium-Derived
Factor (PEDF) (88).

Another study determined that silencing TGF-bRII, the
protein that begins the TGF-b signaling, promoted tumor growth
and resistance to gemcitabine (89). On the other hand, several
inhibitors of the TGF-b signaling pathway such as trabedersen and
Frontiers in Oncology | www.frontiersin.org 4
galunisertib have been developed and tested in pancreatic cancer
with the aim of inhibiting tumor growth (90, 91). LY2109761, an
inhibitor of TGF-b receptors I and II, was used alone and in
combination with gemcitabine and revealed to inhibit cell survival,
migration, and metastases (92). Cisplatin (Platin) resistance can also
be promoted through altering TGF-b/SMAD4 signaling and up-
regulation of EMT-markers by tumor-derived exosomes (TDEs),
known to function in development and progression of several
biological processes in cancer (93). It was shown that the release
of TGF‐b and FGF5 from CAFs causes myofibroblast
reprogramming in cancer stem cells (CSCs), which is needed to
protect the cells from external influences and to acquire a
chemoresistance characteristic within the cells (94).

Connective Tissue Growth Factor
Connective Tissue Growth Factor (CTGF/CCN2) is a protein found
in the extracellular matrix that functions in regulating diverse
cellular processes such as cell survival, proliferation, migration,
and apoptosis (95). CTGF has also been linked to other growth
factor signaling pathways including TGF-b and FGF. Studies
showed that TGF-b can prompt CTGF production in PC cell
lines and it can induce the expression of FGFR2 (96, 97). Over
recent years, CTGF has been increasingly investigated as a target for
PC therapies (98). In vivo silencing of CTGF resulted in the
reduction of tumor growth and its expression was closely
associated with hypoxia and density of tumor-surrounding
stromal cells (99). Treatment with an antagonist of CTGF,
mAbFG-3019, using murine models of pancreatic ductal
adenocarcinoma revealed that gemcitabine-based chemotherapy
was enhanced by increasing levels of gemcitabine and leading to
reduction of tumor size (100). The efficacy of pamrevlumab (FG-
3019) against pancreatic tumors was further confirmed by another
study that showed its effectiveness in selectively targeting pancreatic
tumor cells and inhibiting metastases (101). In a phase I and II
study, pamrevlumab, enhanced gemcitabine activity in locally
advanced pancreatic cancer patients (102). Similarly, another
A B

FIGURE 1 | Examples of inhibition of the VEGFR and EGFR signaling pathways. (A) Inhibition of VEGFR signal transduction by sunitinib. After the entry of sunitinib
into the cytoplasm, it competitively binds at the ATP site of VEGFR, consequently inhibiting the activation of the pathway. (B) Mechanism of action of Tyrosine kinase
inhibitor, erlotinib. Erlotinib is a small molecule that acts as an ATP analogue and inhibits EGF signaling by binding to receptor tyrosine kinases (RTKs), and inhibits
the activation of downstream signaling pathways.
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study also demonstrated the use of peptides targeting CTGF alone
and in combination with gemcitabine in reducing tumor size (103).

Platelet-Derived Growth Factor (PDGF)
The PDGF family can bind to the tyrosine kinase receptors,
PDGFRa and PDGFRb, and interacts with different cell types
within the tumor microenvironment to enhance tumor
progression and chemoresistance (104, 105). PDGF regulates PC
progression by mediating pathways such as HIPPO/Yes and via its
interaction with DUSP28 (106, 107). Inhibiting the phosphorylation
of PDGFR by using Gleevec (Imatinib) with gemcitabine led to a
reduction in pancreatic tumor growth in nude mice models (108).
The tyrosine kinase inhibitor (Sunitinib) targets both VEGFR1-3
and PDGFR pathways (109). Sunitinib appears to be a promising
drug in instances where patients did not respond well to
gemcitabine-based treatments (110). In another study, the use of
a multi-kinase inhibitor, nintedanib, which simultaneously targets
VEGFR, FGFR, and PDGFR signaling was investigated alone, and
in combination with gemcitabine in xenograft models and this drug
displayed a strong antitumor activity (111).

Nerve Growth Factor (NGF)
Nerve growth factor (NGF) is present in sympathetic and neural
crest-derived sensory neurons, as well as in the central nervous
system (CNS) (112). Pancreatic cancer cell can invade surrounding
nerve cell spaces leading to perineural invasion. Perineural invasion
is common in pancreatic cancer cells correlating to poor prognosis
and can be facilitated by nerve growth factor (113–115).
Overexpression of NGF and BDNF induces noradrenaline
accumulation consequently inducing pancreatic cancer cell growth
(116). Due to its role in inhibiting apoptosis, NGF has also been
implicated in chemoresistance (117). Time-dependent treatment of
PC mouse models determined that depleting NGF inhibits
inflammation and metastasis (118). The inhibition of NGF by
blocking STAT3 resulted in decreased pancreatic cancer
migration and reduced perineural invasion (119). Similarly,
another study showed that NGF knockdown prevented pancreatic
cancer cell proliferation, invasion, and migration (120).

Hepatocyte Growth Factor (HGF)
Together with its receptor, c-MET, HGF is overexpressed in PC and
has been linked to cancer cell invasion, metastasis, and
chemoresistance via tumor-promoting pathways such as P13/Akt
and neuropilin (121–125). HGF levels predicted overall survival in
locally advanced PC patients that underwent neoadjuvant therapy
(126). One study demonstrated the promotion of PC cells by
pancreatic stellate cells through the HGF/c-MET pathway; this
pathway required survivin expression and was regulated by the
p53/p21 pathway (127). Several inhibitors such as rilotumumab,
ficlatuzumab onartuzumab, crizotinib, tivantinib, foretinib, and
cabozantinib can be used against HGF/c-MET (128). For
example, blocking HGF using rilotumumab in vivo led to
decreased metastasis compared to treatment with gemcitabine
(129). Patients treated with the combinatorial therapy of
ficlatuzumab nab-paclitaxel and gemcitabine had favorable
treatment response albeit with an observed significant decrease in
albumin levels and increased body swelling (130). A synergistic
Frontiers in Oncology | www.frontiersin.org 5
effect was observed when PC cell cultures were treated with
tivantinib and gemcitabine, suggesting their possible use in patient
treatment (131).
CONCLUSION AND FUTURE PROSPECTS

Chemoresistance is rampant in pancreatic cancer. Growth factors
play a crucial role in chemoresistance. Efficient elucidation of
growth factor signaling and associated pathways in initiating
and propagating chemoresistance is crucial in targeting
these pathways. In this instance, the investigation of the
interplay of growth factor signaling pathways and other
upstream/downstream pathways might provide us with better
understanding of chemoresistance in pancreatic cancer and how
to circumvent it. Of importance is the elucidation of the diverse
roles these growth factors play in the tumor microenvironment.
Targeting these growth factors by the use of pharmaceutical agents
and inhibitors individually may prove difficult. Perhaps the use of
combination therapy targeting the various growth factors may be
more effective. For example, blocking FGFR/PDGFR/VEGFR
increased survival in mouse models, slowed tumor growth and
increased effectiveness of gemcitabine on pancreatic cancer cells
(35). Additionally, combining growth factor inhibitors with
chemotherapeutic drugs such as gemcitabine may facilitate
synergistic drug action and improve chemosensitivity. Although,
several preclinical and clinical trials are needed as it is possible that
some drug combination may be antagonistic as shown in one
study where HGF inhibitor and gemcitabine was combined (132).
Toxicity levels are also of concern with combinatorial treatments,
while efficacy towards tumor treatment might be achieved, the
tolerable toxicity levels might be exceeded. Another promising
strategy would be the combination of growth factor inhibitors with
peptide inhibitors, statins, or non-coding RNAs inhibitors. This
type of strategy was demonstrated when the simultaneous
silencing of miR-21 and sunitnib treatment resulted in a
synergistic increase in anti-tumor effects (133). In conclusion,
growth factor inhibition is promising in pancreatic cancer
treatment and management which is evident from the many
studies discussed here and the various ongoing clinical trials
evaluating their efficacies.
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