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Abstract

Water exchange is increasingly recognized as an important biological process that can affect the study of biological
tissue using diffusion MR. Methods to measure exchange, however, remain immature as opposed to those used to
characterize restriction, with no consensus on the optimal pulse sequence(s) or signal model(s). In general, the trend
has been towards data-intensive fitting of highly parameterized models. We take the opposite approach and show that
a judicious sub-sample of diffusion exchange spectroscopy (DEXSY) data can be used to robustly quantify exchange,
as well as restriction, in a data-efficient manner. This sampling produces a ratio of two points per mixing time: (i) one
point with equal diffusion weighting in both encoding periods, which gives maximal exchange contrast, and (ii) one
point with the same total diffusion weighting in just the first encoding period, for normalization. We call this quotient
the Diffusion EXchange Ratio (DEXR). Furthermore, we show that it can be used to probe time-dependent diffusion
by estimating the velocity autocorrelation function (VACF) over intermediate to long times (∼ 2−500 ms). We provide
a comprehensive theoretical framework for the design of DEXR experiments in the case of static or constant gradients.
Data from Monte Carlo simulations and experiments acquired in fixed and viable ex vivo neonatal mouse spinal cord
using a permanent magnet system are presented to test and validate this approach. In viable spinal cord, we report the
following apparent parameters from just 6 data points: 𝜏𝑘 = 17 ± 4 ms, 𝑓𝑁𝐺 = 0.71 ± 0.01, 𝑅eff = 1.10 ± 0.01 𝜇m,
and 𝜅eff = 0.21 ± 0.06 𝜇m/ms, which correspond to the exchange time, restricted or non-Gaussian signal fraction,
an effective spherical radius, and permeability, respectively. For the VACF, we report a long-time, power-law scaling
with ≈ 𝑡−2.4, which is approximately consistent with disordered domains in 3-D. Overall, the DEXR method is shown
to be highly efficient, capable of providing valuable quantitative diffusion metrics using minimal MR data.

Keywords: exchange, diffusion exchange spectroscopy (DEXSY), time-dependent diffusion, low-field, static
gradient, velocity autocorrelation

Since its inception, the field of diffusion microstructural MR has developed many signal models to describe how1

features such as restriction (i.e., occupancy, size, and shape) [1–7] and processes such as exchange (i.e., permeability)2

[8–13] give rise to the diffusion MR signal. Despite advances in signal modelling, the development of experimental3

methods that can reliably disentangle these features have lagged behind. Largely, the field continues to rely on the4

classic pulsed-field gradient, spin echo (PGSE) method proposed by Stejskal & Tanner [14] in 1965. With PGSE,5

a.k.a. single diffusion encoding (SDE) wherein only the gradient amplitude is varied, restriction and exchange can6

manifest similarly. That is, variations in the signal behavior can be explained equally well by increased restriction7

or reduced exchange, or vice versa. The estimation of these parameters from SDE data is therefore degenerate, as8

discussed in refs. [15–21]. Due to this degeneracy, biological tissues that contain highly permeable compartment(s),9

such as gray matter (GM) [22], are difficult to characterize using SDE. The effects of restriction and exchange may10

coincide, meaning that estimated exchange times in GM — with some reports as fast as ≲ 10 ms [23–25] — are11

similar to a typical encoding period (≳ 10 ms). The robust quantification of exchange in such tissues requires the12

development of diffusion MR methods that go beyond SDE.13
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One approach is to extend the SDE framework by varying additional experimental parameters such as the diffusion14

time. This multi-dimensional data can then be fit to a signal model that includes both restriction and exchange [26–28],15

such as the models for neurite exchange imaging (NEXI) [29], or soma and neurite density imaging with exchange16

(SANDIX) [25, 30]. This SDE-based approach, while feasible, requires making a priori assumptions about the17

number of compartments and which compartments are exchanging. Exchange time estimates can vary substantially18

depending on the assumptions made (e.g., whether to include a “dot compartment” representing small, impermeable19

neurites [29] or whether to correct for the Rician noise floor [31]). As an example of this variability, neurite exchange20

time estimates in the human brain can vary by more than a factor of 2 (≈ 24 − 60 ms) depending on the model21

assumptions [31]. Furthermore, these methods do not fully address the issue of parameter degeneracy, as fit stability22

may remain difficult to achieve due to the large number of model parameters and small signal variations [25, 29, 31].23

A potentially more robust approach to measure exchange is double pulsed-field gradient or diffusion encoding24

(DDE), which helps to resolve degeneracy by introducing additional experimental dimension(s) [20, 32]. In particular,25

diffusion exchange spectroscopy (DEXSY) is a DDE method proposed by Callaghan and Furó to separate water pools26

by their mobility and quantify the exchange between them [33]. The DEXSY experiment consists of two diffusion27

encoding periods along the same direction separated by a longitudinal storage period or mixing time, 𝑡𝑚. Unlike the28

SDE-based approaches, DEXSY makes no assumptions about the number of compartments and their connectivity,29

but does assume Gaussian diffusion in all compartments by virtue of the Gaussian diffusion kernel. DEXSY has been30

found to produce accurate exchange parameters in vitro [34] and in phantom systems [35–37]. However, DEXSY is31

prohibitively data intensive in its original formulation and requires a well-sampled, two-dimensional grid of diffusion32

weightings per 𝑡𝑚, making in vivo measurements infeasible. Clearly, experimental design optimization and data33

reduction are required to apply DEXSY to living systems. Progress has been made using classical techniques such as34

compressed sensing [38, 39] or constraints on the inversion [40], but few truly rapid methods that obviate the costly35

2-D inversion have been proposed. These include filter exchange spectroscopy (FEXSY), proposed by Åslund et al.36

[41], and our own method [42, 43], which we expand upon here.37

Restriction and exchange can also be viewed as giving rise to time-dependent diffusion [8, 44]. In parallel to38

the development of DEXSY and SDE-based signal models, another branch of diffusion MR theory and methodology39

emerged to measure the time-dependence of diffusion directly. Originating from the works of Stepišnik [45–47], these40

methods view the diffusion MR experiment in the frequency domain, wherein the spectrum of the (effective) gradient41

waveform 𝐺eff (𝑡) produces the diffusion weighting. Sequences with a sharp spectrum, such as a sinusoidal gradient42

oscillation in the time domain, can thus be swept to trace out the frequency-dependence of diffusion. This approach,43

called temporal diffusion spectroscopy (TDS) [48–50], has yielded promising results (e.g., refs. [50, 51]) but is44

limited in practice. High frequencies necessitate high slew rates and amplitudes whereas low frequencies can result45

in long echo times and 𝑇2 relaxation. TDS is confined to a somewhat narrow band of frequencies depending on the46

available gradient hardware and sample 𝑇2 (see Reynaud et al. [52] for review). And yet it is these difficult to access47

short- and long-time regimes that are best understood theoretically. In the short-time regime, universal scaling with48

∼ 𝑆/𝑉
√
𝑡 was found by Mitra et al. [53], where 𝑆/𝑉 is the surface-to-volume ratio (SVR). In the long-time regime,49

characteristic power law behaviors ∼ 𝑡−𝜗 were predicted by Novikov et al. [54] for what were termed “structural50

universality classes.”51

These limitations arise in part due to the underlying theory of TDS. A frequency-domain representation implies52

the need for coherent oscillation, but in actuality any sequence will have some time- or frequency-domain weighting.53

Ning et al. [55] derived formulations of Stepišnik’s theory that remain in the time domain, and can thus be applied54

to general gradient sequences. For example, a given sequence can be viewed as a weighting of the ensemble mean-55

squared-displacement ⟨𝑟2 (𝑡)⟩ (MSD) by the autocorrelation function of 𝐺eff (𝑡). These signal representations enable56

the fitting of time-dependent diffusion using sequences that do not coherently oscillate, as shown by Cai et al. [56],57

for example. Viewing the DEXSY experiment through the lens of these representations may yield insights about how58

exchange and time-dependent diffusion are related.59

In this work, we show that a particular sparse sub-sampling of DEXSY data can robustly measure exchange and60

restriction, as well as provide information about time-dependent diffusion from relatively little MR data. The sub-61

sampling consists of two DEXSY points that are equally diffusion-weighted, but one is maximally exchange-weighted62

while the other has little to no exchange-weighting. Our measurement approach is to take the quotient of these two63

points over various 𝑡𝑚, and thus we call it the diffusion exchange ratio (DEXR) method. Compared to conventional64

SDE or TDS approaches, the DEXR method (i) overcomes degeneracy by isolating the estimation of exchange from65
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the estimation of restriction, (ii) reduces the overall data requirements, and (iii) extends the range of sensitivity in66

the time domain by using the longitudinal mixing time 𝑡𝑚 to shift the weighting, rather than the diffusion time in the67

transverse plane.68

While a rapid measurement of exchange was described previously [42, 43], we aim here to provide a self-contained69

framework for DEXR experiments, and reiterate these previous findings. The novel contributions of this work are the70

means to estimate restriction parameters from the same data, the link to time-dependent diffusion, and validation of71

these concepts using Monte Carlo simulations. To limit the scope, we consider the case of static or constant gradients72

(SG) wherein the gradient amplitude 𝑔 can be treated as a constant. Diffusion encoding is achieved by the SG spin73

echo (SG-SE) method, as in the first NMR measurement of diffusion [57]. In contrast to the way PG experiment are74

typically performed, SG experiments involve varying the time that spins spend in the effective gradient rather than the75

gradient amplitude. The application to PG, suitable for preclinical and clinical migration, is discussed briefly at the76

end of the manuscript.77

The manuscript is organized as follows. After a description of the methods, we first discuss the signal behavior78

due to diffusion in the SG-SE experiment and propose a parsimonious signal model that incorporates both Gaussian79

and non-Gaussian signal behavior. Extending this model to SG-DEXSY, we show that just two points per 𝑡𝑚 are80

sufficient to measure the (apparent) rate constant of exchange, 𝑘 , as well as restriction (i.e., size and occupancy) with81

some reasonable assumptions. This forms the DEXR method. Optimal parameter selection is discussed. We then82

adopt an alternative view of this method in terms of time-dependent diffusion. We find that modifying 𝑡𝑚 shifts a83

nearly point-wise sampling in the velocity autocorrelation function (VACF), ⟨𝑣(𝑡)𝑣(0)⟩ = 𝜕2
𝑡 ⟨𝑟2 (𝑡)⟩/2. The DEXR84

method can thus be used to measure the VACF over a wide range of timescales (𝑡 ≈ 2 − 500 ms) compared to TDS85

with oscillating gradients. We support and validate our observations throughout with data acquired in fixed and viable86

ex vivo neonatal mouse spinal cords using a low-field, high-gradient system (𝑔 = 15.3 T/m), as well as data from87

Monte Carlo simulations in loosely packed, monodisperse spheres.88

1. Materials and methods89

1.1. Biological sample preparation90

Spinal cords were extracted from Swiss Webster wild type mice (Taconic Biosciences, Rensselaer, NY, USA) via91

a ventral laminectomy under an animal protocol approved by the Eunice Kennedy Shriver National Institute of Child92

Health and Human Development Animal Care and Use Committee (Animal Study Proposal (ASP) # 21-025). Ex-93

tracted spinal cords were bathed in low-calcium, high-magnesium artificial cerebrospinal fluid (aCSF, concentrations94

in mM: 128.35 NaCl, 4 KCl, 0.5 CaCl2 · 2H2O, 6 MgSO4 · 7H2O, 0.58 NaH2PO4 · H2O, 21 NaHCO3, 30 D-glucose).95

Spinal cords were isolated together with the ventral roots and ganglia. In terms of size, the cords were roughly96

15 × 1 × 1.5 mm (anterior–posterior length × lateral width × ventral–dorsal height). Data from fixed spinal cords97

and a single viable, ex vivo spinal cord are presented. For the fixed samples, fixation was performed immediately98

after dissection in 4% paraformaldehyde and the sample was left overnight at 4 ◦C. Fixative was then replaced with99

normal aCSF (same as before, but with 1.5 mM CaCl2 · 2H2O, 1 mM MgSO4 · 7H2O) 3 times over 2 days to remove100

residual paraformaldehyde before NMR measurements. For the viable sample, NMR measurements were performed101

immediately after dissection and the sample was kept alive in a wet/dry chamber with circulating aCSF bubbled with102

95% O2, 5% CO2. All data is from spinal cords extracted between 1−4 days postnatal. Experiments were performed103

at a controlled temperature of 25 ± 0.2 ◦C, measured using a PicoM fiber optic temperature sensor (Opsens Solutions104

Inc, Québec, Canada) and controlled using an external water bath. Note that at this early stage of development, spinal105

cords predominantly consist of GM [58, 59], such that fast exchange is expected.106

1.2. NMR hardware and methods107

NMR experiments were performed on a low-field, single-sided, permanent magnet system: the PM-10 NMR-108

MOUSE (Magritek, Aachen, Germany) [60, 61]. This is an iron yoke magnet with a field strength that decays rapidly109

and roughly linearly with distance from the magnet’s surface. The active region is chosen as 𝐵0 = 0.3239 T, where110

the field is relatively uniform in a slice parallel to the magnet’s surface. The gradient arises from the linear decay of111

the static field, resulting in a strong SG of 𝑔 ≈ 15.3 T/m, or 𝐺 = 𝛾𝑔 ≈ 650 kHz/mm for the proton gyromagnetic112

ratio, 𝛾 ≈ 2.675 × 108 s−1 T−1. The positioning of the magnet was controlled using a stepper motor with step size of113
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Figure 1: SG-DEXSY pulse sequence with timing parameters 𝜏1, 𝜏2, and 𝑡𝑚. Signal is acquired in a CPMG loop with 𝜏CPMG. The effective
gradient 𝐺eff (𝑡 ) ∈ {0, −𝛾𝑔, +𝛾𝑔} and its modulation by RF pulses is shown below.

50 𝜇m. A custom-built solenoid was used as a transmit-receive radiofrequency (RF) coil. The coil was designed to fit114

the spinal cord(s) snugly with a high filling factor. Compared to flat coil designs, this gives a significant increase in the115

signal-to-noise ratio (SNR) [62, 23]. See refs. [23, 63] for a further description of the system and chamber. Diffusion116

measurements were performed using the standard SG-SE sequence with echo time 2𝜏, where 𝜏 is the spacing between117

the 90◦ and 180◦ RF pulses [64]. The 4-step phase cycle given in Table 2.2 of ref. [65] was used. For exchange118

measurements, an SG-DEXSY sequence was developed in Prospa (V3.22) that stores the signal at the time of echo119

formation. The 8-step phase cycle given in Appendix 5 of ref. [23] was used. When combined with unequal 𝑏-values120

for spoiling (𝜏1 ≠ 𝜏2) this comprehensively suppresses off-resonance effects. The condition 𝜏1 ≠ 𝜏2 was achieved121

practically by offsetting 𝜏2 by 0.013 ms in all SG-DEXSY measurements, avoiding exact parity. In Fig. 1, we show122

a diagram of the SG-DEXSY sequence and its modulation of the effective gradient 𝐺eff (𝑡) ∈ {0, −𝛾𝑔, +𝛾𝑔} by RF123

pulses.124

All experiments used hard RF pulses with pulse powers of −22/16 dB (for 90◦/180◦-pulses) and duration ≈ 2 𝜇s.125

Pulses were driven by a 100 W amplifier (Tomco, Adelaide, Australia). For 𝑔 = 15.3 T/m, this results in a sagittal126

slice of thickness Δ𝑧 ≈ 400 𝜇m. Measurements were performed with a Kea2 spectrometer (Magritek, Wellington,127

New Zealand). Phase correction was optimized at the start of the experiment such that signal in the real channel128

was maximized and signal in the imaginary channel was zero-mean. Data were acquired as signal from the real129

channel, summing over the echoes in a Carr-Purcell-Meiboom-Gill (CPMG) [66, 67] echo train with 2000 echoes and130

𝜏CPMG = 12.5 𝜇s (see Fig. 1). This CPMG echo train acquisition is a common method to boost SNR in low-field131

experiments performed in an inhomogeneous B0 field [61, 65]. The repetition time (TR) was 2 s. Note that these132

NMR data were previously presented across refs. [23, 63], but are reanalyzed here to yield novel insights.133

1.3. Monte Carlo simulations134

Monte Carlo simulations were implemented in Julia 1.9.4. Monodisperse spheres with radius 𝑅 = 0.95 𝜇m135

were placed in a 5 × 5 × 5 grid, equally-spaced, with centers 2 𝜇m apart and a minimum inter-sphere distance of136

0.1 𝜇m. The spheres were situated inside of a 11 × 11 × 11 𝜇m box such that there is an empty surrounding space137

of 0.5 𝜇m in all directions. The overall intra-sphere volume fraction is calculated as ≈ 0.34. Simulations were138

performed with a time step of Δ𝑡 = 2.5 × 10−4 ms, and each walker step was a random sampling of the unit sphere139

×
√

6𝐷0Δ𝑡 ≈ 0.06 𝜇m, where 𝐷0 = 2.15 𝜇m2/ms was set to be near the measured diffusivity of water in aCSF at140

25 ◦C [63]. To initialize the simulation, 104 walkers were placed randomly and uniformly within the box. These141

simulation parameters are expected to yield low to moderate variability (≲ 5%) between repetitions with different142

random seeds [68]. Permeability and exchange were modelled using a small cross-over probability of 4 × 10−5 upon143

collision with a sphere wall (and reflection otherwise). Specifically, walkers take a full step upon cross-over and144

otherwise experience a perfect (elastic) collision with the wall.145

Gradients and phase accrual were simulated by having the isocenter through the central plane of the box and a146

gradient 𝑔 = 15.3 T/m in the 𝑥-direction, consistent with the PM-10. The phase of each walker 𝜙(𝑡) was updated per147

step by 𝜙(𝑡 + Δ𝑡) = 𝜙(𝑡) + Δ𝑡Δ𝜔, where 𝜙(0) = 0, Δ𝜔 is the local frequency offset given by Δ𝜔 = (𝑥 − 𝑥0)𝑔, with148

𝑥0 = 5.5 𝜇m. The effect of 180◦ RF pulses was simulated as an instantaneous change in the sign of Δ𝜔. During the149

mixing time 𝑡𝑚, Δ𝜔 was set to 0. A reflecting, rather than periodic boundary condition was used at the edge of the150

box to avoid issues related to changes in Δ𝜔 upon exiting the domain. Finally, the signal was calculated by taking the151

real part of ⟨exp(𝑖𝜙)⟩, where ⟨·⟩ represents ensemble averaging. Relaxation effects were not included but could be152

implemented as the subject of future work.153
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2. Diffusion in the SG-SE experiment154

Before addressing exchange and SG-DEXSY, we must first consider the SG-SE experiment with echo time 2𝜏155

and gradient amplitude 𝑔. The SG-SE is the basic experimental paradigm used here, as the implemented SG-DEXSY156

sequence consists of two SG-SE blocks (see Fig. 1). According to Hürlimann et al. [69] (c.f., refs. [70–73] for157

review), one can roughly separate the SG-SE signal behavior due to diffusion into three regimes: Gaussian, and two158

non-Gaussian regimes. In the Gaussian regime, spin isochromats or simply “spins” are not significantly impeded by159

barriers and diffusion is effectively free, resulting in Torrey’s [74] well-known expression for the normalized signal160

attenuation: 𝑆/𝑆0 = exp(−𝑏𝐷0), where 𝑏 = (2/3)𝛾2𝑔2𝜏3, 𝛾 is the proton gyromagnetic ratio, and 𝐷0 is the self-161

diffusion coefficient of water.162

2.1. Asymptotic regimes163

In the non-Gaussian regime(s), spins are impeded and the limiting signal behavior takes on a much slower decay164

(n.b., the term non-Gaussian is used here to refer to the distribution of spin displacements and restriction by barriers165

in general, rather than to the phase distribution). The form of the signal decay depends on the relationship between166

characteristic length scales: (i) the diffusion length ℓ𝑑 =
√
𝐷0𝜏, which is the typical distance travelled by spins during167

each gradient application, (ii) the structural length ℓ𝑠 , which defines the confinement dimension along the gradient168

axis (e.g., pore diameter), and (iii) the dephasing length ℓ𝑔 = (𝐷0/𝛾𝑔)1/3, which is the distance that two spins must169

travel to de-correlate their phase by 𝜋 radians. Any one of these length scales being much shorter than the others gives170

rise to a different asymptotic regime of signal behavior. The Gaussian regime arises when ℓ𝑑 is much shorter than ℓ𝑠 .171

In terms of these length scales, we have that:172

𝑆

𝑆0
= exp (−𝑏𝐷0) = exp

(
−2

3

[
ℓ𝑑

ℓ𝑔

]6
)
, ℓ𝑑 ≪ ℓ𝑠 . (1)

The “motional averaging” or “motional narrowing” regime arises when ℓ𝑠 is the shortest of the three length scales173

such that spins experience only a limited range of frequencies over time [3, 75]. Exact solutions were given by174

Neuman [5] in the case of simple, impermeable domains. For spheres of radius 𝑅:175

𝑆

𝑆0
= exp

(
−2𝛾2𝑔2

𝐷0

∞∑︁
𝑚=1

𝛼−4
𝑚

(𝛼𝑚𝑅)2 − 2

×
[
2𝜏 −

3 − 4 exp
(
−𝛼2

𝑚𝐷0𝜏
)
+ exp

(
2𝛼2

𝑚𝐷0𝜏
)

𝛼2
𝑚𝐷0

])
,

(2)

where 𝛼𝑚 is 𝑚th root of176

(𝛼𝑚𝑅)𝐽′3/2(𝛼𝑚𝑅) −
1
2
𝐽3/2 (𝛼𝑚𝑅) = 0, (3)

and 𝐽 represents a Bessel function of the first kind. The first 5 roots are sufficient to obtain a good approximation for177

short diffusion times (≲ 1 ms) and small radii (≲ 1 𝜇m), and are given by 𝛼𝑚𝑅 = [2.0815, 5.940, 9.206, 12.405, 15.579].178

In the limit of large ℓ𝑑 , the above expression simplifies to:179

𝑆

𝑆0
≃ exp

(
−𝑎

[
ℓ𝑠

ℓ𝑔

]4 [
ℓ𝑑

ℓ𝑔

]2
)
, ℓ𝑠 ≪ ℓ𝑔, ℓ𝑑 , (4)

where 𝑎 is a geometry-dependent prefactor (e.g., for spheres, 𝑎 = 1/175 and ℓ𝑠 = 2𝑅). The “localization” regime180

arises when ℓ𝑔 is shortest. In this regime, signal localized near barriers within a distance of ℓ𝑔 persists whereas signal181

deeper within the structure dephases due to being able to displace a distance ℓ𝑑 > ℓ𝑔 within ℓ𝑠 . The signal behavior182

in this regime was first described by Stoller et al. [76]. To a first-order approximation, the asymptotic signal behavior183

at large ℓ𝑑 (ignoring permeability) is given by [72, 76–78]184

𝑆

𝑆0
≃ 𝑎0

ℓ𝑔

ℓ𝑠
exp

(
−𝑎1

[
ℓ𝑑

ℓ𝑔

]2
)
, ℓ𝑔 ≪ ℓ𝑠 , ℓ𝑑 , (5)
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where 𝑎0 is a geometry-dependent prefactor (e.g., 𝑎0 = 5.8841 for parallel plates), and 𝑎1 = 1.0188 is a universal185

prefactor. While the signal behavior in these non-Gaussian regimes is complicated and exact expressions are either186

unwieldy or not available, the different scaling behaviors in terms of ℓ𝑑 , ℓ𝑔, and ℓ𝑠 are clear.187

2.2. A parsimonious ensemble signal model188

As noted by Grebenkov [72, 79], these scaling behaviors yield a simple, dichotomous view of the Gaussian and189

non-Gaussian regimes for the SG-SE experiment. Consider that the 𝑏-value is proportional to 𝜏3 or ℓ6
𝑑

. Since 𝑔 is190

fixed in this case, ℓ𝑔 is constant and 𝜏 is the only parameter being varied. The Gaussian and non-Gaussian regimes191

are contrasted by their (ℓ𝑑/ℓ𝑔)6 vs. (ℓ𝑑/ℓ𝑔)2 scaling, respectively — see Eqs. (4) and (5). This ratio can be seen as192

the controlling feature of the SG-SE experiment, so we define the following dimensionless parameter, 𝜌:193

𝜌 B
ℓ𝑑

ℓ𝑔
= (𝛾𝑔)1/3𝐷

1/6
0

√
𝜏. (6)

Equivalently stated, signal in the Gaussian regime decays with 𝑏 ∝ 𝜌6 whereas the non-Gaussian signal decays much194

more slowly with 𝑏1/3 ∝ 𝜌2 [79, 80]. We illustrate this dichotomy in Fig. 2, plotting the normalized signal decay195

from Eq. (2) for spheres of radii 𝑅 = 0.4 − 1 𝜇m in comparison to free diffusion as a function of 𝜌2. As ℓ𝑑 increases196

and 𝜌2 ≫ 1, the signal behavior for spheres quickly approaches the asymptotic, linear behavior predicted by Eq.197

(4). The parameter values are chosen to correspond to the PM-10 system at room temperature: 𝐷0 = 2.15 𝜇m2/ms,198

𝑔 = 15.3 T/m. These values are used throughout, though we stress that by expressing the signal w.r.t. powers of 𝜌,199

the observations can be generalized to other SG systems with different attributes. Also plotted is the localized signal200

decay from Eq. (5), which may become relevant as 𝜌2 increases, at least for larger ℓ𝑠 = 2𝑅 ≫ ℓ𝑔.201

The picture is more complicated in heterogeneous environments such as biological tissue, which may be hierar-202

chically organized, and wherein there may be a range of ℓ𝑠 values present. In such samples, all three of these regimes203

can arise within different microenvironments, and the ensemble signal resists characterization by any one of the signal204

expressions. Nonetheless, according to the dichotomous view above, the non-Gaussian signal can be lumped into205

some effective decay with 𝜌2, irrespective of the actual distribution of ℓ𝑠 and the mixture of motionally-averaged and206

localized signal that may arise as a result. The ensemble signal can be approximated as a Gaussian signal fraction207

decaying with 𝜌6 and a non-Gaussian fraction decaying with 𝜌2, as suggested by Cai et al. [81], and which is similar208

in principle to the combined hindered and restricted (CHARMED) model [82]. Ignoring exchange for the time being,209

we can write the following quasi-biexponential model:210

𝑆

𝑆0
= 𝑓𝐺 exp

(
−𝜌6⟨𝑐𝐺⟩

)
+ 𝑓𝑁𝐺 exp

(
−𝜌2⟨𝑐𝑁𝐺⟩

)
, (7)

where 𝑓𝐺 represents the Gaussian fraction (e.g., the occupancy fraction of the extracellular space, or ECS), 𝑓𝑁𝐺 rep-211

resents the restricted, non-Gaussian fraction (e.g., the intracellular space, or ICS), 𝑓𝐺 + 𝑓𝑁𝐺 = 1, and ⟨𝑐𝐺⟩, ⟨𝑐𝑁𝐺⟩212

are dimensionless decay constants w.r.t. 𝜌6 and 𝜌2, respectively, where ⟨·⟩ represents signal-weighted ensemble aver-213

aging. For free diffusion, ⟨𝑐𝐺⟩ = 2/3, with smaller values indicating hindered diffusion with an apparent diffusivity214

𝐷app given by215

⟨𝑐𝐺⟩ =
2
3

(
𝐷app

𝐷0

)
. (8)

The non-Gaussian decay ⟨𝑐𝑁𝐺⟩ can be viewed as arising from some effective structure size. In the case of motional216

averaging within spheres, we obtain from Eq. (4),217

⟨𝑐𝑁𝐺⟩ ≈
16

175

(
𝑅 eff

ℓ𝑔

)4

, (9)

which is valid for large 𝜌 ≫ 1 (ℓ𝑑 ≫ ℓ𝑔, ℓ𝑠), and where 𝑅eff is an effective spherical radius, that by volume weighting218

may take the form 𝑅eff = (⟨𝑅7⟩/⟨𝑅3⟩)1/4 [83]. Note that in this model, the signal fractions 𝑓𝐺 , 𝑓𝑁𝐺 do not represent219

volume fractions per se. Rather, they represent the proportion of signal that appears to undergo Gaussian vs. non-220

Gaussian signal decay. Water within some large structure with ℓ𝑠 ≫ ℓ𝑔, for instance, may include both Gaussian and221
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Figure 2: Comparison of the SG-SE signal behavior in different regimes and in simulation and fixed spinal cord data w.r.t. 𝜌2 = (ℓ𝑑/ℓ𝑔 )2 ∝ 𝑏1/3.
(a) Signal curves 𝑆/𝑆0 plotted on a log-axis for the free (dash-dot line), motionally-averaged (red to black lines), and localized (blue) regimes
compared to data from Monte Carlo simulations (magenta) and data acquired in fixed spinal cord (cyan). Curves are plotted up to 𝜌2 = 25 using
𝐷0 = 2.15 𝜇m2/ms, 𝑔 = 15.3 T/m, which gives a dephasing length ℓ𝑔 ≈ 806 nm. Motionally-averaged signal is plotted for spherical radii from
𝑅 = 0.4 − 1 𝜇m or from ℓ𝑠 = 2𝑅 ≈ 1 − 2.5 ℓ𝑔 , summing up to the first 5 roots in Eq. (2). Note the rapid approach of Eq. (2) towards the
asymptotic, linear behavior predicted by Eq. (4) as 𝜌2 exceeds ≈ 2, or 𝜌 ≳ 1.4. Localized signal is plotted only for ℓ𝑑 > 1.5 ℓ𝑔 using the prefactor
𝑎0 = 5.8441, see Eq. (5). For the Monte Carlo simulation data, error bars indicate ±1 SD from 3 repetitions with different random seeds. For the
spinal cord data, error bars indicate 95% confidence intervals estimated by bootstrapping 43 repetitions on the same sample. Fits to Eq. (7) yield
𝑓𝐼 ≈ 0.44, ⟨𝑐𝐸 ⟩ ≈ 0.40, ⟨𝑐𝐼 ⟩ ≈ 0.21 for the simulation data and 𝑓𝐼 ≈ 0.16, ⟨𝑐𝐸 ⟩ ≈ 0.26, ⟨𝑐𝐼 ⟩ ≈ 0.18 for the spinal cord data. (b) Zoomed plot
up to 𝜌2 = 5, highlighting the transition from Gaussian signal behavior to the characteristic non-Gaussian signal decay that is linear on this axis of
𝜌2 ∝ 𝑏1/3. Note the deviation from the fit in the spinal cord data, suggestive of potentially distributed non-Gaussian compartments.
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non-Gaussian decay, with some signal that dephases with 𝜌6 and some that becomes localized and dephases with 𝜌2
222

[79, 78].223

In Fig. 2, we show that both simulated and real SG-SE data measured in fixed spinal cord fit well to Eq. (7). For224

the simulation data, a fit to the mean yields: 𝑓𝑁𝐺 ≈ 0.44, ⟨𝑐𝐺⟩ ≈ 0.40, ⟨𝑐𝑁𝐺⟩ ≈ 0.21. For the spinal cord data:225

𝑓𝑁𝐺 ≈ 0.16, ⟨𝑐𝐺⟩ ≈ 0.25, ⟨𝑐𝑁𝐺⟩ ≈ 0.18. The ⟨𝑐𝑁𝐺⟩ obtained from simulation data yields 𝑅eff ≈ 1.0 𝜇m from226

Eq. (9), which roughly agrees with the actual radius 𝑅 = 0.95 𝜇m, though the fitted 𝑓𝑁𝐺 ≈ 0.44 overestimates the227

intra-sphere volume fraction of ≈ 0.34. This may be because the space between spheres can appear to be restricted228

rather than hindered — consider that at its narrowest, the inter-sphere spacing is 0.1 𝜇m (see Methods). Another229

confounding effect is that as 𝜌 and ℓ𝑑 increase, exchange during the encoding will also increase, which may reduce230

the effect of restriction (i.e., increase ⟨𝑐𝑁𝐺⟩ and/or reduce 𝑓𝑁𝐺). As discussed, the estimation of restriction and231

exchange parameters is degenerate with SDE. In the spinal cord data, there is notable deviation from the fit around232

the transition at 𝜌2 ≈ 2− 4 (see Fig. 2b). This deviation could be explained by the different rates that the (potentially)233

numerous non-Gaussian signal pools approach the limiting behavior whence 𝜌2 scaling emerges. A related issue is234

that for 𝜌 ≲ 1, the non-Gaussian signal is not yet well-described by a simple scaling with 𝜌2 and further terms that235

were truncated to arrive at Eq. (4) are needed to explain the signal [5]. Due to these issues, the fit parameters to Eq.236

(7) should be treated as apparent and non-quantitative.237

Despite its limitations, Eq. (7) is seen to be a good empirical signal model for systems that contain both Gaussian238

and non-Gaussian signal populations, and can fit the data well across a wide range of 𝜌2 values. Importantly, the model239

captures the distinct scaling behaviors that differentiate the Gaussian and non-Gaussian signal pools, and provides a240

starting point for our modelling of the SG-DEXSY signal.241

3. Exchange and restriction in the SG-DEXSY experiment242

How does this signal model relate to exchange and the SG-DEXSY experiment with parameters 𝜏1, 𝜏2, 𝑡𝑚? Note243

that by exchange, we refer specifically to barrier-limited exchange, when molecules typically diffuse across a structure244

many times before exiting. This can be more formally stated using a permeability length: ℓ𝜅 = 𝐷0/𝜅 (see Novikov245

[13], c.f., Grebenkov [84]), where 𝜅 is the permeability with units of length per time. The permeability length can be246

seen as an effective membrane thickness or as a competition between diffusive and barrier-limited kinetics. If exchange247

is limited by the time to diffuse to the barrier (ℓ𝜅 ≪ ℓ𝑠) the effect of exchange is indistinguishable from hindered248

diffusion. The long-time limit is rapidly reached and Gaussian diffusion is recovered. Barrier-limited exchange is249

observable only when ℓ𝜅 ≫ ℓ𝑠 and ℓ𝑑 ≫ ℓ𝑠 . This means that motionally-averaged or localized signal must be present;250

the barrier-limiting condition is tantamount to non-Gaussian signal behavior. In this case, exchange can be modelled251

with a first-order rate constant, 𝑘 [9, 10, 84]:252

𝑘 =
1
𝜏𝑘

=
𝜅𝑆

𝑉
, (10)

where 𝜏𝑘 is the corresponding exchange time (i.e., a mean pore residence time) and 𝑆/𝑉 is the SVR. As an aside,253

we point out that any signal model that characterizes the confined signal using a hindered diffusivity yet also fits a254

first-order exchange rate, such as the Kärger model [9, 10] or indeed the original DEXSY model with 𝑃(𝐷1, 𝐷2) [33],255

does not correctly describe the SG experiment.256

With the preceding remarks on diffusion in mind, the SG-DEXSY experiment can be conceptualized as follows:257

(i) spins undergo an initial diffusion encoding with echo time 2𝜏1 that separates microenvironments into Gaussian258

and non-Gaussian regimes by their degree of dephasing, (ii) the signal in these environments then mix during the259

longitudinal storage period 𝑡𝑚, wherein exchange out of the non-Gaussian microenvironments is barrier-limited, and260

(iii) a second encoding with 2𝜏2 dephases the exchanging signal, resulting in exchange-weighted contrast in the261

measured echo intensity, 𝑆. For this experiment to work, several conditions must be met.262

3.1. Sensitivity to exchange263

Firstly, exchange during 𝑡𝑚 must be detectable. That is, exchange must not proceed so quickly that a steady state264

is reached during the encoding itself: 𝜏𝑘 ≫ 2𝜏1. Another condition is that the signal must not fully decay by 𝑇1265

relaxation, (i.e., 𝑇1 ≫ 𝑡𝑚). There must also be significant contrast between the Gaussian and non-Gaussian signals.266

According to the above conception of the SG-DEXSY experiment, the sensitivity to exchange is proportional to the267
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Figure 3: Signal difference Δ𝑆/𝑆0 between non-Gaussian and Gaussian signal decay plotted as a function of 𝜌 = ℓ𝑑/ℓ𝑔 for motional averaging in
spheres of radii 𝑅 = 0.4 − 1 𝜇m using Eq. (2), compared to free diffusion, or Eq. (1). The difference between the components of the fits to Eq.
(7) for simulated (magenta) and spinal cord (cyan) data shown in Fig. 2 are also plotted, i.e., Δ𝑆/𝑆0 is calculated as the difference between the
terms exp(−𝜌2 ⟨𝑐𝑁𝐺 ⟩) and exp(−𝜌6 ⟨𝑐𝐺 ⟩) . For these data, Δ𝑆/𝑆0 is smaller and the maximum is farther to the right due to hindered diffusion.
Overall, the optimal range to maximize Δ𝑆/𝑆0 is about 𝜌 ≈ 1.35 − 1.55, with 𝜌 ≳ 1.4 as a heuristic.

difference in signal decay between these regimes, with exchange having the greatest effect when they are maximally268

separated. Practically, this translates to parameters in the regime of 𝑏𝐷0 ≳ 2 (i.e., 𝜌 ≳ 1.2) such that the initial269

encoding greatly dephases the Gaussian signal while preserving the non-Gaussian signal. This is similar to the notion270

of an efficient “filtering” value of 𝑏1 in FEXSY [41, 85]. This condition also ensures that the non-Gaussian signal can271

in fact be described as scaling with 𝜌2 (see Fig. 2b).272

It is important to note that the range of structure sizes ℓ𝑠 for which exchange is being probed is determined by the273

chosen ℓ𝑑 and ℓ𝑔. Consider that the available 𝑔 (and ℓ𝑔) determines how large 𝜏 (and ℓ𝑑) must be to achieve signal274

separation and 𝜌2 > 1. Subsequently, ℓ𝑑 dictates what values of ℓ𝑠 result in restriction or non-Gaussian signal (ℓ𝑠 ≪275

ℓ𝑑). Thus, the measurement is sensitive to exchange out of structures for which ℓ𝑠 ∼ ℓ𝑔 ≈ 0.8 𝜇m ≲ ℓ𝑑 . Consider too276

the condition about exchange during the encoding (𝜏𝑘 ≫ 2𝜏1). The choice of ℓ𝑑 =
√
𝐷0𝜏1 dictates what values of 𝜏𝑘277

can be measured via 𝜏𝑘 ≫ 2ℓ2
𝑑
/𝐷0. Thus, the sensitivity to 𝜏𝑘 and ℓ𝑠 has a multi-faceted dependence on ℓ𝑔. In general,278

higher 𝑔 enables the measurement of faster exchange out of smaller structures [84]. This dependence may explain in279

part the large range of reported exchange times in the literature for tissues with heterogeneous microstructure, which280

can vary by more than an order of magnitude in ostensibly similar tissue [86].281

3.2. Optimal parameter selection282

What value of 𝜌 exactly maximizes sensitivity to exchange? Put another way, what is the maximal signal difference283

Δ𝑆/𝑆0 between non-Gaussian and Gaussian signal w.r.t. 𝜌? As a first comparison, we look at Δ𝑆/𝑆0 for motional284

averaging vs. free diffusion, or Eq. (2) vs. Eq. (1), shown in Fig. 3. We plot only 𝜌 > 1, keeping in mind that the285

signal model in Eq. (7) is only valid for 𝜌 ≫ 1 whence the 𝜌2 scaling of the non-Gaussian regime(s) emerges. The286

maximum values cluster around 𝜌 ≈ 1.3 − 1.5 for the chosen values of 2𝑅 ≲ ℓ𝑔, with smaller radii leading to a larger287

optimum 𝜌. We also plot Δ𝑆/𝑆0 between the two decay terms exp(−𝜌6⟨𝑐𝐺⟩) and exp(−𝜌2⟨𝑐𝑁𝐺⟩) for the fits of Eq.288

(7) to simulation and spinal cord data, shown earlier in Fig. 2. For these fitted parameters, the maximal value of Δ𝑆/𝑆0289

is smaller due to the hindered model of the Gaussian signal. This also results in a shift of the optimal 𝜌 to the right.290

Nonetheless, the optima lie near the upper end of the values predicted for spheres, at 𝜌 ≈ 1.45 and 1.55 for simulation291

and spinal cord data, respectively. In general, 𝜌 ≳ 1.4 (or 𝜌2 ≳ 4, see again Fig. 2b) is a reasonable heuristic to achieve292

separation between the Gaussian and non-Gaussian signal without prior knowledge of ℓ𝑠 . This value of 𝜌 corresponds293

to 𝜏 ≈ 0.59 ms and 𝑏 ≈ 2.3 ms/𝜇m2 for 𝐷0 = 2.15 𝜇m2/ms and 𝑔 = 15.3 T/m. Note that for 𝜌 ≈ 1.3−1.5, localized294

signal is not expected because ℓ𝑑 is only moderately larger than ℓ𝑔, and the more straightforward interpretation of the295

non-Gaussian decay as arising from some effective spherical radius, ⟨𝑐𝐼⟩ = 16/175(𝑅 eff/ℓ𝑔)4 as in Eq. (9), is likely296

to be valid.297

There are, however, two values of 𝜌 in SG-DEXSY, with 𝜌1 and 𝜌2 corresponding to 𝜏1 and 𝜏2. The above answers298

what value of 𝜌1 is optimal, but what of 𝜌2? One might guess that holding 𝜌1 = 𝜌2 is optimal, again maximally299

separating the Gaussian and non-Gaussian regimes in the second encoding. This is in fact the case, as was shown in300
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our previous work [42, 81] and by others [21, 87]. We reiterate this result by extending Eq. (7) to SG-DEXSY, writing301

the signal as arising from four signal fractions:302

𝑆(𝜌1, 𝜌2, 𝑡𝑚)
𝑆0

= 𝑓𝐺,𝐺 exp
(
−

[
𝜌6

1 + 𝜌6
2

]
⟨𝑐𝐺⟩

)
+ 𝑓𝐺,𝑁𝐺 exp

(
−𝜌6

1⟨𝑐𝐺⟩ − 𝜌2
2⟨𝑐𝑁𝐺⟩

)
+ 𝑓𝑁𝐺,𝐺 exp

(
−𝜌2

1⟨𝑐𝑁𝐺⟩ − 𝜌6
2⟨𝑐𝐺⟩

)
+ 𝑓𝑁𝐺,𝑁𝐺 exp

(
−

[
𝜌2

1 + 𝜌2
2

]
⟨𝑐𝑁𝐺⟩

)
,

(11)

where 𝑓𝑁𝐺,𝐺 represents the signal fraction that exchanges from a non-Gaussian to a Gaussian regime during 𝑡𝑚 and303

so forth for 𝑓𝐺,𝐺 , 𝑓𝐺,𝑁𝐺 , 𝑓𝑁𝐺,𝑁𝐺 (which sum to 1). Although the model appears to ignore exchange between the304

microenvironments that may comprise 𝑓𝐺 and 𝑓𝑁𝐺 — i.e., it looks only at exchange between two bulk pools —305

we argue that if a (detailed) mass balance holds, then the ensemble-averaged decay constants ⟨𝑐𝐺⟩, ⟨𝑐𝑁𝐺⟩ will not306

change with 𝑡𝑚 and the pools can be treated as decaying identically in both encodings. Therefore, further components307

are not necessary to explain the signal behavior. Mass balance also implies that the exchanging signal fractions308

𝑓𝐺,𝑁𝐺 , 𝑓𝑁𝐺,𝐺 are equal such that we can define a total exchanging signal fraction309

𝑓exch B 2 𝑓𝐺,𝑁𝐺 = 2 𝑓𝑁𝐺,𝐺 (12)

and rewrite the previous expression in terms of the equilibrium signal fractions, 𝑓𝐺 and 𝑓𝑁𝐺 , and 𝑓exch:310

𝑆(𝜌1, 𝜌2, 𝑡𝑚)
𝑆0

=

(
1 − 𝑓𝑁𝐺 − 1

2 𝑓exch

)
exp

(
−

[
𝜌6

1 + 𝜌6
2

]
⟨𝑐𝐺⟩

)
+ 1

2 𝑓exch exp
(
−𝜌6

1⟨𝑐𝐺⟩ − 𝜌2
2⟨𝑐𝑁𝐺⟩

)
+ 1

2 𝑓exch exp
(
−𝜌2

1⟨𝑐𝑁𝐺⟩ − 𝜌6
2⟨𝑐𝐺⟩

)
+

(
𝑓𝑁𝐺 − 1

2 𝑓exch

)
exp

(
−

[
𝜌2

1 + 𝜌2
2

]
⟨𝑐𝑁𝐺⟩

)
.

(13)

Note that the maximum possible value of 𝑓exch, which we will call 𝑓exch, ss for steady-state, is given as a direct result311

of mass balance by312

𝑓exch, ss = lim
𝑡𝑚→∞

𝑓exch (𝑡𝑚) = 2 𝑓𝐺 (1 − 𝑓𝐺) = 2 𝑓𝑁𝐺 (1 − 𝑓𝑁𝐺). (14)

We also argue that exchange during the encoding period is implicitly accounted for in Eq. (13) because signal that313

exchanges partway through an encoding can nonetheless be modelled by some combination of the terms above.314

Incorporating a model of the intra-encoding exchange such as the Kärger model [9, 10] is not necessary, though315

such exchange may result in 𝑓exch > 0 at 𝑡𝑚 = 0.316

In Figs. 4a and b, we plot signal contour maps generated by substituting the parameters obtained by fitting Eq. (7)317

to the SG-SE spinal cord data (see again Fig. 2) into Eq. (13). Contour maps are plotted for 𝜌1, 𝜌2 ≥ 1 and for several318

values of 𝑓exch = [0.02, 0.13, 0.27], where the largest value 𝑓exch = 2 𝑓𝑁𝐺 (1 − 𝑓𝑁𝐺) ≈ 0.27 corresponds to near full319

signal turnover. In the rightmost plot, we look at the signal contrast Δ𝑆/𝑆0 due to exchange by taking the difference320

between the higher 𝑓exch cases and the 𝑓exch = 0.02 case. These difference maps indicate clearly that the maximal321

contrast is obtained when 𝜌1 = 𝜌2 and confirm the result shown in Fig. 3: that 𝜌 ≈ 1.55 is optimal for obtaining322

exchange contrast with these parameters. Moving away from parity results in less contrast, indeed, none along the323

axes where 𝜌1 or 𝜌2 = 0. It is also clear that the contrast roughly doubles as 𝑓exch doubles, indicating proportionality324

of this midpoint in the domain with 𝑓exch.325

In Fig. 4c, we show analogous plots for data acquired in fixed spinal cord data over a 6 × 6 grid of 𝜌1 ≈ 𝜌2 =326

[1.09, 1.30, 1.49, 1.65, 1.80, 1.93] at a short 𝑡𝑚 = 0.2 ms vs. a long 𝑡𝑚 = 160 ms. At this long 𝑡𝑚, exchange is327

expected to have reached the steady state, 𝑓exch, ss. Despite the coarse sampling of this data, the finding that 𝜌1 = 𝜌2328

is optimal remains clear and the qualitative similarity to part (b) is evident. While the optimum is shifted slightly329

towards a smaller 𝜌 ≈ 1.37, this may be due to the deviation from the fit around these values of 𝜌, which can be seen330
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Figure 4: Signal contour and difference maps between low and high exchange cases. (a) Plots for synthetic data generated using Eq. (13) and
the fit parameters obtained by fitting Eq. (7) to the SG-SE spinal cord data in Fig. 2: 𝑓𝑁𝐺 ≈ 0.16, ⟨𝑐𝐺 ⟩ ≈ 0.25, ⟨𝑐𝑁𝐺 ⟩ ≈ 0.18. Exchanging
signal fractions 𝑓exch = [0.02, 0.13, 0.27] are compared, where 𝑓exch, ss ≈ 0.27. Exchange is seen to produce an inwards curvature in the signal
contours around 𝜌1, 𝜌2 ≳ 1.25 (see middle panel). The difference map Δ𝑆/𝑆0 indicates that 𝜌1 = 𝜌2 ≈ 1.55 produces the most exchange
contrast, which agrees with the optimum and range identified in Fig. 3. The parity axis 𝜌1 = 𝜌2 is marked with a dash-dot line. The heuristic
optimum of 𝜌1 = 𝜌2 = 1.4 is marked by a cross. (b) The same plots as part (a) but using the maximal 𝑓exch = 𝑓exch, ss ≈ 0.27. Note that
the exchange contrast Δ𝑆/𝑆0 roughly doubles as 𝑓exch doubles between (a) and (b), proportional with the increase in 𝑓exch. The peak value of
Δ𝑆/𝑆0 increases from ≈ 0.023 to ≈ 0.046 (see color bar values). (c) The same plots for data acquired in fixed spinal cord in a 6 × 6 grid at
𝜌1 ≈ 𝜌2 = [1.09, 1.30, 1.49, 1.65, 1.80, 1.93] (recall that 𝜏2 ≠ 𝜏1, see Methods). In these data, the optimal point is shifted towards a smaller
𝜌1 = 𝜌2 ≈ 1.37 than in parts (a) or (b), and is also of a smaller peak amplitude than part (b), with a maximal Δ𝑆/𝑆0 ≈ 0.037. This may be due
to the model being an incomplete description of the distributed non-Gaussian microenvironments in tissue (see again the fit deviations in Fig. 2b)
and/or larger compartments with a smaller expected optimum but larger volume dominating the exchange contrast (see Fig. 3). Nonetheless, the
heuristic 𝜌1 = 𝜌2 = 1.4 remains a good choice. Despite the coarse sampling of this data and the shift in optimum, the qualitative similarity in shape
and character to part (b) is evident.
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Fig. 2b. Another explanation is that larger compartments dominate the exchange contrast due to their greater volume331

fraction (see the trend with 𝑅 in Fig. 3). Regardless, 𝜌1 = 𝜌2 = 1.4 is shown to be a good heuristic and is marked by332

a cross in all of the difference maps.333

3.3. The curvature method334

Our goal though is not merely to obtain maximal exchange weighting, we also wish to isolate the effect of exchange335

such that the fitting of a highly parameterized model such as Eq. (13) is not necessary to estimate 𝜏𝑘 . We should thus336

ask what set of SG-DEXSY points yields contrast due to exchange independent of other effects. We previously showed337

in Cai et al. [42] that by holding the sum of 𝑏-values — 𝑏𝑠 = 𝑏1 + 𝑏2 — constant, we can isolate exchange from338

non-exchanging, Gaussian diffusion (an idea inspired by Song et al. [88]). We further showed that the curvature339

along an axis of constant 𝑏𝑠 (i.e., along the difference axis 𝑏𝑑 = 𝑏1 − 𝑏2) is proportional to 𝑓exch if the exchanging340

microenvironment(s) can be adequately modelled with an apparent diffusivity, i.e., decaying as exp(−𝑏𝐷app). From341

Eq. (9) in Cai et al. [42], a minimal measurement of 𝑓exch at a given 𝑡𝑚, assuming two sites with diffusivities 𝐷𝐸 > 𝐷 𝐼 ,342

is343

𝑓exch ≈ 1
𝑆0

exp (𝑏𝑠 [𝐷𝐸 + 𝐷 𝐼 ])
(𝐷𝐸 − 𝐷 𝐼 )2

[
2(𝑆end − 𝑆mid)

Δ𝑏2
𝑑

]
, (15)

where Δ𝑏𝑑 is a step-size in 𝑏𝑑 as close to 𝑏𝑠 as possible, 𝑆end corresponds to the signal when (𝑏1, 𝑏2) = (Δ𝑏𝑑 , 𝑏𝑠 −344

Δ𝑏𝑑), 𝑆mid corresponds to (𝑏1, 𝑏2) = ( 1
2𝑏𝑠 ,

1
2𝑏𝑠) — i.e., the point along the parity axis with maximal exchange345

weighting — and the bracketed term on the right-hand-side is a finite difference approximation of the curvature in 𝑆346

w.r.t. 𝑏𝑑 about 𝑏𝑑 = 0, taking advantage of the symmetry across the parity axis. The general approach is visually347

supported by the rightmost column of Fig. 4, which shows that (𝑆end − 𝑆mid)/𝑆0 takes the difference between a point348

with almost no exchange weighting along 𝜌1 or 𝜌2 ≈ 0 (i.e., Δ𝑏𝑑 ≈ 𝑏𝑠) and a point with maximal weighting along349

parity 𝜌1 = 𝜌2, thereby isolating exchange. The two points are notated as such because 𝑆mid corresponds to a midpoint350

in the domain and 𝑆end corresponds to an endpoint along the marginal axis.351

As discussed in the previous section, however, a model such as Eq. (15) may be inaccurate for SG-DEXSY in352

heterogeneous systems because the characteristic 𝑏1/3 or 𝜌2 scaling of the non-Gaussian regime(s) is not accounted353

for. Applying the same principle, holding the sum of 𝑏1/3
1 + 𝑏

1/3
2 or 𝜌2

1 + 𝜌2
2 constant would potentially remove the354

effect of 𝑓𝑁𝐺,𝑁𝐺 , or non-exchanging, non-Gaussian diffusion, but these two constancy conditions cannot be met355

simultaneously. In a follow-up work [81], we extended this curvature method to account for non-Gaussian diffusion356

by acquiring multiple 𝑏𝑠 values to estimate 𝑓𝑁𝐺 and ⟨𝑐𝑁𝐺⟩ prior to estimating 𝜏𝑘 . Though the expression(s) became357

complicated, a key finding of that work is that non-Gaussian diffusion manifests itself as an intercept in the curvature358

that does not vary with 𝑡𝑚. This finding suggests that while it may be difficult to measure 𝑓exch in an absolute sense,359

the change in some signal quantity such as (𝑆end − 𝑆mid)/𝑆0 w.r.t. 𝑡𝑚 may be sufficient to characterize the exchange360

time 𝜏𝑘 via its proportionality with 𝑓exch. If said quantity is linear with 𝑓exch, even with some intercept, then 𝜏𝑘 can be361

measured robustly in a manner that is isolated from the effects of restriction or non-Gaussian diffusion.362

3.4. Rapid quantification of exchange363

Let us reconsider Eq. (13) for these points of interest: 𝑆mid/𝑆0 along 𝜌1 = 𝜌2 ≈ 1.4, and 𝑆end/𝑆0 along 𝜌2 ≈ 0364

with 𝜌1 ≳ 1.4. Hereafter, we notate the equal 𝜌 values in 𝑆mid/𝑆0 as 𝜌mid and the (𝜌1, 𝜌2) values for 𝑆end/𝑆0 as365

(𝜌end,1, 𝜌end,2). Note that 𝜌end,2 cannot be set to 0 exactly for SG measurements as the gradient is “always-on”. In the366

case of 𝑆mid, 𝜌mid = 1.4 (𝑏 ≈ 2.3 ms/𝜇m2 for 𝐷0 = 2.15 𝜇m2/ms) should be large enough that signal in the Gaussian367

environment(s) during both 𝜏1 or 𝜏2 will be fully dephased — see again Fig. 2b — leaving only the terms in Eq. (13)368

with at least one encoding residing in the non-Gaussian environment(s):369

𝑆mid (𝑡𝑚)
𝑆0

≈
(
𝑓𝑁𝐺 − 1

2 𝑓exch

)
exp

(
−2𝜌2

mid⟨𝑐𝑁𝐺⟩
)
+ 𝑓exch exp

(
−𝜌2

mid⟨𝑐𝑁𝐺⟩ − 𝜌6
mid⟨𝑐𝐺⟩

)
, (16)

This expression is itself a linear relationship with 𝑓exch, with intercept 𝑓𝑁𝐺 exp(−2𝜌2
mid⟨𝑐𝑁𝐺⟩) and a (negative) slope370

of exp (−𝜌2
mid⟨𝑐𝑁𝐺⟩ − 𝜌6

mid⟨𝑐𝐺⟩) − exp(−2𝜌2
mid⟨𝑐𝑁𝐺⟩)/2. This linearity was hinted at in Figs. 4a and b, where371

the exchange contrast Δ𝑆/𝑆0 was seen to double as 𝑓exch doubled. We can confirm this relationship by looking at372

simulation data, for which the position of walkers during each encoding can be tracked, i.e., the true 𝑓exch is known.373
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Figure 5: Comparison of 𝑓exch and 𝑆mid/𝑆0 obtained from simulation data with 𝜌1 = 𝜌2 ≈ 1.397 and 𝑡𝑚 = [0.1, 0.5, 1, 2, 5, 10, 15, 20, 50] ms.
Here, the ground-truth 𝑓exch is quantified as the fraction of walkers that moved from inside/outside of a sphere between the start of the simulation
and the start of the second diffusion encoding. The curve for 𝑓exch (left axis, black) is fit to the form 𝑓 (𝑡𝑚 ) = 𝛽1 [1 − exp (−𝛽2 𝑡𝑚 ) ] + 𝛽3 whereas
𝑆mid/𝑆0 (right axis, magenta) is fit to 𝑓 (𝑡𝑚 ) = 𝛽1 exp (−𝛽2 𝑡𝑚 ) + 𝛽3. Note that a small intercept of 𝛽3 ≈ 0.02 is estimated in 𝑓exch due to
exchange during the encoding period. Error bars indicate mean ± SD from 3 repetitions. Solid lines are a fit to the mean. Fits to each repetition
yield 𝜏𝑘 = 1/𝛽2 = 21.7 ± 0.9 and 20 ± 5 for 𝑓exch and 𝑆mid/𝑆0, respectively. The values are in agreement, though noisier for 𝑆mid.

Specifically, we define a walker as having exchanged if its position at the beginning of the simulation differs from374

that at the start of the second diffusion encoding period (in a binary sense: inside vs. outside of a sphere). If Eq.375

(16) holds, then fitting the exponential decay of 𝑆mid/𝑆0 w.r.t. 𝑡𝑚 should yield the same time-dependence (i.e., with376

𝜏𝑘) as fitting the growth of 𝑓exch. Practically, this fit of 𝑆mid/𝑆0 w.r.t. 𝑡𝑚 needs at least 3 parameters without a priori377

knowledge. These parameters can be conceptualized as arising from (i) the decay of the equilibrium signal pools and378

any exchange during the encoding, which leads to an intercept at 𝑡𝑚 = 0, (ii) a limit that is reached as 𝑡𝑚 → ∞ and379

𝑓exch → 𝑓exch, ss, and (iii) a first-order exchange time, 𝜏𝑘 . The fit has the general form 𝑓 (𝑡𝑚) = 𝛽1 exp (−𝛽2 𝑡𝑚) + 𝛽3380

[23, 43], where 𝛽2 = 1/𝜏𝑘 = 𝑘 .381

In Fig. 5, we plot the ground-truth 𝑓exch and 𝑆mid/𝑆0 vs. 𝑡𝑚 for 3 simulated repetitions with 𝜌mid ≈ 1.397382

(𝜏 = 0.59 ms) and 𝑡𝑚 = [0.1, 0.5, 1, 2, 5, 10, 15, 20, 50] ms. Fits to each repetition yield 𝜏𝑘 ≈ 21.7 ± 0.9 and383

𝜏𝑘 = 20 ± 5 ms (mean ± SD) for 𝑓exch and 𝑆mid/𝑆0, respectively. The exchange times thus agree between the curves,384

as predicted by Eq. (16). The estimation is also seen to be robust to a small amount of exchange during the encoding385

which is captured in the intercept 𝛽3. In principle, therefore, it is possible to measure 𝜏𝑘 from the decay of 𝑆mid/𝑆0386

along at least 3 points in 𝑡𝑚 to fit the 3-parameter model, which is a highly efficient and quantitative measurement387

of exchange. Remarkably, this estimation can be performed without invoking any microstructural signal model and388

arises merely out of the signal decay of 𝑆mid/𝑆0 itself, although we do assume that said decay takes a monoexponential389

form consistent with barrier-limited exchange.390

What of 𝑆end? For this point, we can again simplify Eq. (13) by assuming that signal which is in the Gaussian391

environment during the large first diffusion encoding has vanished:392

𝑆end (𝑡𝑚)
𝑆0

≈
(
𝑓𝑁𝐺 − 1

2 𝑓exch

)
exp

(
−

[
𝜌2

end,1 + 𝜌2
end,2

]
⟨𝑐𝑁𝐺⟩

)
+ 1

2 𝑓exch exp
(
−𝜌2

end,1⟨𝑐𝑁𝐺⟩ − 𝜌6
end,2⟨𝑐𝐺⟩

)
.

(17)

Similar to 𝑆mid/𝑆0, this expression too can be described as a slope and intercept in 𝑓exch, though the slope is much393

smaller because 𝜌end,2 ≈ 0. Normalizing or subtracting 𝑆mid/𝑆0 by a point such as 𝑆end/𝑆0 (as in the curvature method)394

should thus have no effect on the fundamental linearity with 𝑓exch. The estimation of 𝜏𝑘 remains robust regardless.395

The choice of this additional point does become important if we consider the effect(s) of relaxation.396

3.5. Accounting for relaxation397

Thus far, we have ignored 𝑇1 relaxation during 𝑡𝑚 by expressing the signals as normalized by 𝑆0. Normalizing398

for relaxation in the SG-DEXSY experiment is not straightforward, however. The 𝑇1 for the exchange-weighted399

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.05.606620doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606620
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

T1

exchange

3 pt it

11 pt it

Figure 6: Estimation of the exchange time 𝜏𝑘 from two points per 𝑡𝑚 (𝑆mid and 𝑆end) in viable ex vivo spinal cord. The normalization and fitting
approach shown here comprise the DEXR method. (a) Plots of the raw signal decay of 𝑆mid with 𝜌mid ≈ 1.39 (𝜏 ≈ 0.59 ms) and 𝑆end with
𝜌end ≈ 1.55 (𝜏 ≈ 0.74 ms) for 11 values of 𝑡𝑚 = [0.2, 1, 2, 4, 7, 10, 20, 40, 80, 160, 300] ms. Data is plotted on a log 𝑦-axis to highlight
the approximately linear decay at long 𝑡𝑚, indicative of diffusion-weighted 𝑇1 relaxation. Error bars indicate mean ± SD from 3 repetitions on
the same sample. Both points evolve by 𝑇1, while 𝑆mid also evolves due to exchange. Fitting a monoexponential decay to 𝑆end yields an apparent
diffusion-weighted 𝑇1 ≈ 600 ± 20 ms, which differs from the 𝑇1 ≈ 710 ± 10 ms obtained by fitting an 𝑆0 acquisition with 𝜏1 = 𝜏2 = 0.05 ms
(fits and data not shown, see ref. [43]), highlighting the non-triviality of accounting for 𝑇1. Note that because 𝑆end is not acquired precisely at
𝜏2 = 0, but at 𝜌2 ≈ 0.81, this point is also slightly exchange-weighted — see the non-linear behavior at short times. (b) Fit of Eq. (18) to the ratio
𝑆mid/𝑆end, yielding 𝜏𝑘 = 11±3 ms. Fits to the mean using all 11 𝑡𝑚 (solid line) or a minimal 3 values of 𝑡𝑚 = [0.2, 20, 160] ms (crosses, dashed
line) are plotted. The minimal sampling yields a similar 𝜏𝑘 = 17 ± 4 ms.

point 𝑆mid is not the ensemble 𝑇1 as measured by 𝑆0, but rather a diffusion-weighted 𝑇1 that is dominated by smaller400

compartments. Simply using 𝑆mid/𝑆0 may leave some residual effect of 𝑇1 that biases the exchange measurement. The401

issues caused by 𝑇1 relaxation in these measurements was explored in detail by Williamson et al. [43] and approaches402

were given to normalize it. In general, these approaches exploit the fact that 𝑆end is equivalently diffusion-weighted403

but is nominally not exchange-weighted (see again the rightmost “difference” column in Fig. 4). Therefore, we can404

use the decay of 𝑆end w.r.t. 𝑡𝑚 to characterize the diffusion-weighted 𝑇1 and remove it from 𝑆mid, recovering the linear405

relationship with 𝑓exch in Eq. (16) that permits robust exchange measurement.406

A straightforward approach is to take a ratio of the two points 𝑆mid/𝑆end, i.e., normalizing by 𝑆end rather than 𝑆0.407

One could also fit 𝑆end separately before dividing out this decay from 𝑆mid. The latter approach has the benefit of408

requiring as few as 2 points in 𝑆end while also avoiding noise propagation, which may be critical if SNR is low. Other409

approaches are also possible. Again, we defer to ref. [43] (where the ratio is called Method 2) for a more thorough410

comparison. Here, we choose the ratio approach for its simplicity and to avoid additional fitting steps.411

We have thus arrived at the Diffusion Exchange Ratio (DEXR) method, which is comprised of the following fit:412

𝑆mid (𝑡𝑚)
𝑆end (𝑡𝑚)

= 𝛽1 exp
(
− 𝑡𝑚

𝜏𝑘

)
+ 𝛽3. (18)

In Fig. 6a, we plot the raw signal values of 𝑆mid and 𝑆end acquired in a viable, ex vivo spinal cord with 𝜌mid ≈ 1.4,413

𝜌end ≈ 1.56 (with a small 𝜌2 ≈ 0.81), and across 11 values of 𝑡𝑚 = 0.2 − 300 ms (see caption). In terms of 𝑏-values414

and the curvature method, these parameters correspond to 𝑏𝑠 = 4.5 and Δ𝑏𝑑 = 4.3 ms/𝜇m2. We see that both 𝑆mid415

and 𝑆end evolve by a diffusion-weighted 𝑇1 that is nearly identical at long 𝑡𝑚, i.e., at steady state (see ref. [43] for416

estimates of 𝑇1 across many samples that confirm this), while exchange manifests as an additional decay in 𝑆mid. In417

Fig. 6b, we plot 𝑆mid/𝑆end along with a fit of Eq. (18) to the mean. The data takes roughly the expected form for418

a first-order exchange model (i.e., exponential decay to a baseline) after removing 𝑇1. Fits to each repetition yield419

𝜏𝑘 = 11 ± 3 ms, which is consistent with our previous reports [23, 43, 63].420
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To demonstrate the potential efficiency of the method, we perform the same fit using a minimal 3 values of421

𝑡𝑚 = [0.2, 20, 160] ms (indicated by crosses and a dashed line in Fig. 6b). Using 3 points along 𝑡𝑚 or 6 points422

in total yields 𝜏𝑘 = 17 ± 4 ms. Thus, similar parameters and variation can be obtained from minimal data, though423

a slightly smaller 𝜏𝑘 is estimated using the full dataset. This may be due to some multiexponential character in the424

data, which can be seen in the zoomed inset in Fig. 6b. The behavior is interesting and may indicate that a first-425

order exchange model is insufficient to explain the data, which we will explore further in the following section on426

time-dependent diffusion (see Ordinola et al. [89] and Cai et al. [90] for other investigations of this phenomenon).427

It should be mentioned that there are other effects in the DEXR experiment. For instance, there is also a small428

difference in 𝑇2-weighting between 𝑆mid and 𝑆end due to their different 𝜏 values, as well as the possibility of 𝑇2-𝑇2429

exchange, though we expect that these effects will be small given that 𝜏 < 1 ms ≪ 𝑇2. Another issue is that in our430

SG-DEXSY implementation, 𝑆end is slightly exchange-weighted (see Methods and Fig. 6a) and dividing it removes431

some exchange contrast [43]. Nonetheless, these effects will not impact 𝜏𝑘 estimates much because they are captured432

in the other fit parameters 𝛽1 and 𝛽3 that characterize the range of signal variation. We reiterate that the linearity433

between the ratio 𝑆mid/𝑆end and 𝑓exch is what is important and this is preserved and robust to confounding effects.434

That said, Eq. (18) and its demonstration in Figs. 5 and 6 form the basis of the DEXR method.435

3.6. Extracting restriction parameters436

Although 𝜏𝑘 is the main parameter of interest, 𝛽1 and 𝛽3 may also hold important information about exchanging437

pools and their environment. If the confounding effects such as exchange during the encoding can be accounted438

for, then these parameters contain information about the restricting microenvironment and can potentially be used to439

estimate 𝑓𝑁𝐺 and ⟨𝑐𝑁𝐺⟩. Consider that the total signal variation 𝛽1 should be related to 𝑓exch, ss, with a larger 𝛽1440

indicating larger 𝑓exch, ss, all else being equal. The intercept where 𝑡𝑚 = 0, given by 𝛽1 + 𝛽3, should be related to the441

decay of the equilibrium signal fractions as well as exchange during the encoding. Can these terms be rearranged to442

yield restriction parameters?443

First, let us try to estimate 𝑓𝑁𝐺 . Consider that by taking some ratio in combinations of 𝛽1 and 𝛽3, we can remove444

any leading exponential attenuation terms. We will leave aside the issue of 𝑆end being slightly exchange weighted445

for now, working with an idealized 𝑆mid/𝑆0 from Eq. (16). The limiting behavior(s) can be written following some446

rearrangement as:447

𝑆mid (𝑡𝑚)
𝑆0

∝
{
𝑓𝐼 − 𝑓exch, 0 (1/2 − 𝜎) , 𝑡𝑚 = 0
𝑓𝐼 − 𝑓exch, ss (1/2 − 𝜎) , 𝑡𝑚 → ∞

, (19)

where we leave out the leading decay term exp(−2𝜌2
mid⟨𝑐𝑁𝐺⟩) for compactness, and where448

𝜎 = exp
(
𝜌2

mid⟨𝑐𝑁𝐺⟩ − 𝜌6
mid⟨𝑐𝐺⟩

)
, (20)

can be thought of as a filter efficiency that characterizes how well a single encoding with 𝜌mid separates the Gaussian449

and non-Gaussian signal, and 𝑓exch, 0 is the exchange that transpires during the first encoding. More specifically, 𝜎450

describes the degree to which signal that has exchanged (i.e., which spends one of the two encodings in the Gaussian451

environment) is dephased relative to the non-exchanging, non-Gaussian signal. An appreciable value of 𝜎 indicates452

that there remains some coherent exchanged signal that contributes to 𝑆mid such that the second term in Eq. (16)453

cannot be ignored. Taking the ratio of the total signal variation and the intercept, 𝛽1/(𝛽1 + 𝛽3), we obtain454

𝛽1

𝛽1 + 𝛽3
=

( 𝑓exch, ss − 𝑓exch, 0) (1/2 − 𝜎)
𝑓𝑁𝐺 − 𝑓exch, 0 (1/2 − 𝜎) . (21)

Substituting 𝑓exch, ss = 2 𝑓𝑁𝐺 (1 − 𝑓𝑁𝐺) and dividing 𝑓𝑁𝐺 ,455

𝛽1

𝛽1 + 𝛽3
=

(1 − 𝑓𝑁𝐺) (1 − 𝜍) (1 − 2𝜎)
1 − 𝜍 (1 − 𝑓𝑁𝐺) (1 − 2𝜎) , (22)

where456

𝜍 =
𝑓exch, 0

𝑓exch,ss
(23)
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Figure 7: Relationship between 𝑓𝑁𝐺 and the fit-derived quantity 1 − 𝛽1/(𝛽1 + 𝛽3 ) for various values of 𝜎 =

exp (−𝜌6
mid ⟨𝑐𝐺 ⟩)/exp (−𝜌2

mid ⟨𝑐𝑁𝐺 ⟩) and 𝜍 = 𝑓exch, 0/ 𝑓exch,ss, which characterize the confounding effects of extant exchanged signal
and exchange during the encoding, respectively. The solid black line indicates parity when 𝜎, 𝜍 = 0. Curves of Eq. (24) derived from an idealized
𝑆mid/𝑆0 are plotted for 𝜎 = [0.02, 0.08, 0.14, 0.2] and 𝜍 = [0.02, 0.06, 0.1, 0.14]. The parameters are varied together (magenta circles) and
independently (blue crosses, red diamonds), with deepening color representing increasing values. In all cases, the behavior manifests, roughly
speaking, as a decrease in the linear relationship or slope between 𝑓𝑁𝐺 and 𝛽1/(𝛽1 + 𝛽3 ) .

captures how much of the total exchange is missed in the first encoding, and we note that 𝑓exch, 0 = 2𝜍 𝑓𝑁𝐺 (1 − 𝑓𝑁𝐺).457

Rearranging,458

1 − 𝛽1

𝛽1 + 𝛽3
=

2𝜎(1 − 𝑓𝑁𝐺) + 𝑓𝑁𝐺

1 − 𝜍 (1 − 𝑓𝑁𝐺) (1 − 2𝜎) . (24)

We see that if the confounding effects can be ignored — i.e., if both 𝜎, 𝜍 = 0 — then the right-hand-side is simply 𝑓𝑁𝐺 .459

Thus, 𝑓𝑁𝐺 can potentially be experimentally measured from the same data and fit, with the following simplifying460

cases:461

𝑓𝑁𝐺 =



1 − 𝛽1

𝛽1 + 𝛽3
, 𝜎, 𝜍 = 0

1 − 𝛽1

𝛽1 + 𝛽3
(1 − 2𝜎)−1 , 𝜍 = 0

1 − 𝛽1

𝛽1 + 𝛽3

[
1 − 𝜍

(
1 − 𝛽1

𝛽1 + 𝛽3

)]−1

, 𝜎 = 0,

(25)

where the 𝜎, 𝜍 = 0 case is readily extracted from DEXR data and the other cases describe possible corrections.462

Practically, 𝜎 reduces the slope between 𝑓𝑁𝐺 and the quantity 1 − 𝛽1/(𝛽1/𝛽3) such that its effect is to bias 𝑓𝑁𝐺463

upwards when compared to the 𝜎, 𝜍 = 0 case. The effect is more pronounced for smaller 𝑓𝑁𝐺 . The effect of 𝜍 is464

similar in that it also biases 𝑓𝑁𝐺 upwards compared to the 𝜎, 𝜍 = 0 case. Recall that the relationship between 𝑓exch, ss465

and 𝑓𝑁𝐺 is quadratic, see Eq. (14); therefore 𝜍 will introduce an upwards bowing in 𝑓𝑁𝐺 vs. 1 − 𝛽1/(𝛽1 + 𝛽3), with466

the maximal effect at 𝑓𝑁𝐺 = 0.5. In Fig. 7, we plot 𝑓𝑁𝐺 vs. 1 − 𝛽1/(𝛽1 + 𝛽3) for various values of 𝜎 and 𝜍. The467

curves indicate that 𝜎 can have a large effect on 𝑓𝑁𝐺 estimates, while the effect of 𝜍 is comparatively small. This468

suggests that when selecting 𝜌mid, it is preferable to err on the side of larger 𝜌 in order to better crush the Gaussian469

signal and yield robust 𝑓𝑁𝐺 estimates. Given that the optimal range in Fig. 3 is quite broad, this should have little470

effect on the SNR of 𝜏𝑘 estimates. In all cases, the effect is roughly linear such that we can correct 𝑓𝑁𝐺 reasonably471

well simply by drawing a line between 𝑓𝑁𝐺 = 0 and 𝑓𝑁𝐺 = 1. From Eq. (24) we obtain:472

𝑓𝑁𝐺 ≈ 1 − 𝛽1

𝛽1 + 𝛽3

[
(1 − 2𝜎) (1 − 𝜍)
1 − 𝜍 (1 − 2𝜎)

]−1

, for
𝑆mid

𝑆0
. (26)

Note that 𝜎, 𝜍 can never actually be 0 and the bracketed term above is always > 1 (inverse < 1). As such, using473

1− 𝛽1/(𝛽1+ 𝛽3) as an estimate of 𝑓𝑁𝐺 is a systematic overestimation, the size of which roughly scales with 1− 𝑓𝑁𝐺 =474

𝑓𝐺 .475

Another confounding effect arises from the exchange weighting in 𝑆end. As mentioned in Eq. (17), an idealized476

𝑆end/𝑆0 also has a slope and intercept in 𝑓exch if 𝜌end,2 > 0. Giving a similar treatment to 𝑆end/𝑆0 from Eq. (17) as in477
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Eq. (19), we obtain478

𝑆end (𝑡𝑚)
𝑆0

∝ 𝑓𝑁𝐺

{
1 − 𝜍 (1 − 𝑓𝑁𝐺) (1 − 2𝜂) , 𝑡𝑚 = 0
1 − (1 − 𝑓𝑁𝐺) (1 − 2𝜂) , 𝑡𝑚 → ∞

, (27)

which is similar to Eq. (19) but with 𝜂 instead of 𝜎, and where479

𝜂 =
1
2

exp
(
−𝜌6

end,2 [⟨𝑐𝐺⟩ − ⟨𝑐𝑁𝐺⟩]
)

(28)

is a term that characterizes the decay of exchanged signal due to 𝜌end,2, which we have approximated as being Gaussian480

for all environments since 𝜌end,2 < 1. Again, we leave out the leading attenuation term exp(−[𝜌2
end,1 + 𝜌2

end,2]⟨𝑐𝑁𝐺⟩)481

for compactness. As expected, if 𝜌end,2 = 0, then 𝜂 = 1/2 and 𝑆end/𝑆0 has no 𝑡𝑚 dependence. Note that 𝜍 actually482

differs between 𝑆end and 𝑆mid because their value(s) of 𝜏 differ. Practically, this difference in 𝜏 is small ≈ 0.14 ms due483

to the high 𝑔 used here, and we will assume that 𝜍 is approximately equal in both points. Furthermore, the effect of 𝜍484

in Fig. 7 is small such that this approximation should not affect the 𝑓𝑁𝐺 estimate significantly. If we can assume that485

𝜍 is the same, then we can simply “add back” the 𝑡𝑚 dependence that is lost by dividing 𝑆end, replacing (1− 2𝜎) with486

(1 − 2𝜎) + (1 − 2𝜂) = 2(1 − 𝜎 − 𝜂) wherever it appears. Thus, we approximate from Eq. (26) that487

𝑓𝑁𝐺 ≈ 1 − 𝛽1

𝛽1 + 𝛽3

[
2(1 − 𝜎 − 𝜂) (1 − 𝜍)
1 − 2𝜍 (1 − 𝜎 − 𝜂)

]−1

, for
𝑆mid

𝑆end
, (29)

taking into account all three effects or corrections from 𝜎, 𝜍, and 𝜂: incomplete dephasing of exchanged signal,488

exchange during the first encoding, and exchange weighting in 𝑆end, respectively. Importantly, the general linear489

behavior with intersection at 𝑓𝑁𝐺 = 1 shown in Fig. 7 is preserved in Eq. (29).490

Let us assess expected values of 𝜎, 𝜍, and 𝜂. The value of 𝜍 can be estimated from the fit itself — using 𝜏𝑘 ≈ 11 ms491

and 2𝜏 ∼ 1 ms, we obtain 𝜍 ≈ 0.1. However, 𝜎 and 𝜂 cannot be estimated from the data alone. Using the values492

⟨𝑐𝑁𝐺⟩ = 0.18, ⟨𝑐𝐺⟩ = 0.26 obtained for spinal cord in Fig. 2, we estimate that 𝜎 could be as high as ≈ 0.2 for493

𝜌mid = 1.4, though we again stress that the SG-SE fits are suspect to aforementioned confounds, and ⟨𝑐𝐺⟩ is likely494

underestimated. As an upper-bound, using the maximal ⟨𝑐𝐺⟩ = 2/3 corresponding to free Gaussian diffusion yields495

just 𝜎 ≈ 0.01 using the same ⟨𝑐𝑁𝐺⟩. A lower-bound can be estimated from literature values of the tortuosity of the496

ECS497

𝜆 =

√︄
𝐷0

𝐷app
=

√︄
2

3⟨𝑐𝐸⟩
, (30)

which generally fall below 𝜆 ≈ 1.7 (and may be much smaller in neonatal mouse tissue that has larger ECS occupancy498

compared to adult tissue) [91]. Using 𝜆 ≲ 1.7 gives ⟨𝑐𝐺⟩ ≳ 0.5, yielding 𝜎 ≲ 0.04. For 𝜌end,1 = 1.55, 𝜌end,2 = 0.81,499

we obtain 0.44 ≲ 𝜂 ≤ 0.47. To a first approximation, we estimate that the bracketed correction term in Eq. (29) may500

range from ≈ 0.9 − 1.02 in spinal cord data. Surprisingly, these effects when considered together yield a correction501

close to 1. Thus, 𝑓𝑁𝐺 = 1 − 𝛽1/(𝛽1 + 𝛽3) may be a good estimate in this data, particularly for larger values of502

1 − 𝛽1/(𝛽1 + 𝛽3) > 0.7.503

Let us now isolate ⟨𝑐𝑁𝐺⟩. Of course, the estimations of 𝑓𝑁𝐺 and ⟨𝑐𝑁𝐺⟩ are actually coupled via the various504

correction terms and the two cannot be truly isolated. Nonetheless, we can proceed with estimating some apparent505

⟨𝑐𝑁𝐺⟩ by assuming that our initial 𝑓𝑁𝐺 estimate is accurate. We have at 𝑡𝑚 → ∞ for 𝑆mid/𝑆0 that506

𝛽3 = 𝑓𝑁𝐺 exp(−2𝜌2
mid⟨𝑐𝑁𝐺⟩) [1 − (1 − 𝑓𝑁𝐺) (1 − 2𝜎)], (31)

which removes 𝜍 . Thus,507

⟨𝑐𝑁𝐺⟩ = − 1
2𝜌2

mid

ln
(

𝛽3/ 𝑓𝑁𝐺

1 − (1 − 𝑓𝑁𝐺) (1 − 2𝜎)

)
, for

𝑆mid

𝑆0
. (32)

And similarly,508

⟨𝑐𝑁𝐺⟩ ≈
1

𝜌2
end,1 + 𝜌2

end,2 − 2𝜌2
mid

ln
(
𝛽3

[
1 − (1 − 𝑓𝑁𝐺) (1 − 2𝜂)
1 − (1 − 𝑓𝑁𝐺) (1 − 2𝜎)

] )
, for

𝑆mid

𝑆end
. (33)
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Note that if both restriction and exchange are quantified, then we can go further and calculate the effective permeability509

from Eqs. (9) and (10) as a secondary result,510

𝜅eff =
𝑅eff

3𝜏𝑘
. (34)

where 3/𝑅eff is the SVR of the effective sphere, though this can easily be adapted for other geometries simply by511

changing the geometric prefactor.512

3.7. Restriction results513

Let us revisit the results in Figs. 5 and 6 and estimate 𝑓𝑁𝐺 and ⟨𝑐𝑁𝐺⟩. In the simulation data (Fig. 5), we obtain514

𝑓𝑁𝐺 = 0.34 ± 0.06 from Eq. (26) assuming that 𝜎, 𝜍 = 0 and ⟨𝑐𝑁𝐺⟩ = 0.17 ± 0.07, 𝑅eff = 0.88 ± 0.08 𝜇m using the515

expressions for 𝑆mid/𝑆0 in Eqs. (26) and (32). These parameters agree well with the ground truth of 𝑅 = 0.95 𝜇m and516

𝑓𝑁𝐺 ≈ 0.34, though 𝑅 is slightly underestimated due perhaps to a truncation of Neuman’s [5] expressions to arrive517

at Eq. (4). What of the correction terms? From the 𝑓exch fit in Fig. 5, we estimate that 𝜍 ≈ 0.04. Again, 𝜎 cannot518

be determined from the data itself because of the lack of sensitivity to ⟨𝑐𝐺⟩, but we point out that a value close to519

⟨𝑐𝐺⟩ = 2/3 is reasonable given the loose packing of these spheres [92]. For the mean ⟨𝑐𝑁𝐺⟩ above and a somewhat520

arbitrary ⟨𝑐𝐺⟩ = 0.6, we have 𝜎 ≈ 0.015. From Eq. (29), we obtain a slightly smaller 𝑓𝑁𝐺 = 0.33 ± 0.06 and521

𝑅eff = 0.84 ± 0.1 𝜇m. Note that applying these corrections updates the estimated ⟨𝑐𝑁𝐺⟩ and thereby the correction522

terms themselves. We could perform the correction iteratively until the parameters converge, but because ⟨𝑐𝐺⟩ has523

the greatest effect on 𝜎 and 𝜂, this is not necessary and one iteration suffices. The permeability estimated from 𝜏𝑘524

and the corrected 𝑅eff using Eqs. (34) and (9) is 𝜅eff = 0.14 ± 0.05 𝜇m/ms, which can be compared to a ground-truth525

estimate from the 𝑓exch curve in Fig. 5 and 𝑅 = 0.95 𝜇m, which yields 𝜅eff = 0.094 ± 0.007 𝜇m/ms. Note that an526

underestimation of 𝑅eff will lead to a corresponding overestimation in 𝜅eff according to Eq. (34).527

These parameters agree more closely with the ground truth than the fit of Eq. (7) to simulated SG-SE data, shown528

in Fig. 2, particularly for 𝑓𝑁𝐺 . In that fit, 𝑓𝑁𝐺 ≈ 0.44 was overestimated. Consider that in SG-DEXSY, walkers have529

more time over 𝑡𝑚 to explore the tortuous space and manifest as hindered signal, rather than appearing as restricted530

over the short timescale of an SG-SE. We reiterate that in DEXR data, the estimation of exchange and restriction531

are isolated, with exchange being the only effect that influences the time-dependence with 𝑡𝑚, while the effect(s) of532

restriction are estimated using only the other fit parameters that capture the initial and limiting behavior of the signal533

(i.e., 𝛽1 and 𝛽3, along with the various corrections).534

For the fully sampled spinal cord data in Fig. 6, we obtain 𝑓𝑁𝐺 = 0.752 ± 0.003, ⟨𝑐𝑁𝐺⟩ ≈ 0.28 ± 0.02, and535

𝑅eff = 1.07 ± 0.02 𝜇m, without correction. With this mean ⟨𝑐𝑁𝐺⟩, we estimate the correction terms using a lower-536

bound ⟨𝑐𝐺⟩ = 0.5 corresponding to 𝜆 ≈ 1.7, yielding 𝜎 ≈ 0.04 and 𝜂 ≈ 0.47. With correction: 𝑓𝐼 = 0.746 ± 0.003,537

𝑅eff = 1.11±0.02 𝜇m, and 𝜅eff = 0.33±0.09 𝜇m/ms. This value of 𝜅eff is large, but is within the range of permeability538

values expected for phospholipid bilayers that highly express aquaporin water channels [93, 94], such as those found539

in GM. Solenov et al., for example, report 𝜅 ≈ 0.5 𝜇m/ms in primary cultures of mouse astrocytes, measured via540

calcein fluorescence quenching [95].541

As was the case for the simulation data shown in Fig. 5, a different 𝑓𝑁𝐺 ≈ 0.75 is obtained here than in Fig.542

2, where a much smaller 𝑓𝑁𝐺 ≈ 0.16 was estimated for spinal cord, though that sample was fixed. Given the very543

fast exchange time of 𝜏𝑘 ≈ 11 ms, the confounding effect of exchange during the SG-SE encoding may have been544

significant, potentially leading to a decreased 𝑓𝑁𝐺 . While the ground truth in this case is unknown (as are the effects545

of fixation, which permeabilizes membranes [96]), consider that 𝑓𝑁𝐺 ≈ 0.75 estimated using DEXR roughly agrees546

with the expected occupancy fraction of the ICS in vivo; the ECS is reported as occupying between ∼ 15− 30% of the547

space in rodent spinal cord, specifically [91], in accordance with 𝑓𝐺 = 1 − 𝑓𝑁𝐺 ≈ 0.25. We speculate that DEXR is548

more quantitatively accurate than SDE, highlighting once again the key advantage of the method in isolating exchange549

from restriction. That said, signal from water in the tissue ICS and ECS would not be expected to exactly parse into550

𝑓𝑁𝐺 and 𝑓𝐺; heterogeneity of plasma membrane length scales may lead to some water in the ICS appearing as more551

mobile or unrestricted, and the narrow width of the ECS may lead to some water in the ECS appearing as restricted.552

We cannot know, truly, what 𝑓𝑁𝐺 is within tissue, though the obtained estimate is reasonable.553

To summarize, the fit parameters obtained from simulation and spinal cord DEXR data are provided in Table 1.554

We highlight again that the simulation data produces accurate estimates of 𝜏𝑘 and 𝑓𝑁𝐺 compared to the ground truth,555

and reasonable estimates of 𝑅eff and 𝜅eff , though some systematic over/underestimation remains. In the spinal cord556
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data, we also explored the feasibility of data reduction, and compared 11 vs. 3 mixing times (Fig. 6b). The use of just557

3 mixing times is a vast reduction in data requirement compared to conventional DEXSY.

Table 1: Exchange and restriction parameters estimated using DEXR data from simulation and from viable, ex vivo neonatal mouse spinal cord.
For simulation data, 𝜌mid ≈ 1.397 (𝑆end was not simulated). For spinal cord, 𝜌mid ≈ 1.4 and (𝜌end,1, 𝜌end,2 ) ≈ (1.56, 0.81) . Error bars = mean
± SD from 3 repetitions on the same sample. In all data sets, Eq. (18) was first fit to yield 𝜏𝑘 , 𝛽1, and 𝛽3. Subsequently Eqs. (26) and (32) were
evaluated for simulation data, and Eqs. (29) and (33) were evaluated for spinal cord to yield 𝑓𝑁𝐺 and 𝑅eff from Eq. (9). See the main text for
correction terms (𝜍 , 𝜎, 𝜂). Subsequently, Eq. (34) was used to yield 𝜅eff . The estimated parameters for simulation data can be compared to the
simulation ground truth shown in Fig. 5.

Data source Sampling in 𝑡𝑚 𝜏𝑘 (ms) 𝑓𝑁𝐺 𝑅eff (𝜇m) 𝜅eff (𝜇m/ms)

simulation (ground truth) 9 pt., 0.1 − 50 ms 21.7 ± 0.9 0.337 0.95 0.094 ± 0.007
simulation 9 pt., 0.1 − 50 ms 20 ± 5 0.33 ± 0.06 0.84 ± 0.1 0.14 ± 0.05

viable spinal cord 11 pt., 0.2 − 300 ms 11 ± 3 0.746 ± 0.003 1.11 ± 0.02 0.33 ± 0.09
viable spinal cord 3 pt., [0.2, 20, 160] ms 17 ± 4 0.71 ± 0.01 1.10 ± 0.01 0.21 ± 0.06

558

4. Alternative analysis with time-dependent diffusion559

Having provided a pipeline to analyze DEXR data to yield both exchange (𝜏𝑘 , 𝜅eff) and restriction parameters560

( 𝑓𝑁𝐺 , 𝑅eff) we now turn towards an alternative analysis in terms of time-dependent diffusion and show that the same561

data can be used to yield an apparent VACF.562

4.1. A time-domain signal representation563

The conventional measurement of time-dependent diffusion using TDS is based on a frequency-domain represen-564

tation of the signal [45, 46, 48, 49]565

𝑆

𝑆0
= exp

(
− 1

2𝜋

∫ ∞

0
|𝐹 (𝜔) |2𝐷 (𝜔)𝑑𝜔

)
, (35)

where 𝐹 (𝜔) is the (truncated) spectrum of 𝐹 (𝑡), where 𝐹 (𝑡) =
∫ 𝑡

0 𝐺eff (𝑡′)𝑑𝑡′, 𝐺eff (𝑡′) is the effective gradient, and566

𝐷 (𝜔) is the spectrum of the VACF = 𝜕2
𝑡 ⟨𝑟2 (𝑡)⟩/2. To be more explicit about how these different transport quantities567

(in a single dimension) are related, the conversions between them are summarized as:568

𝐷inst (𝑡′)
2
∫ 𝑡

0 𝑑𝑡 ′

−−−−−−⇀↽−−−−−−
𝜕𝑡/2

⟨𝑟2 (𝑡)⟩
𝜕2
𝑡 /2

−−−−−−−−−−−⇀↽−−−−−−−−−−−
2
∫ 𝑡

0 (𝑡−𝑡 ′ ) 𝑑𝑡 ′
⟨𝑣(𝑡′)𝑣(0)⟩

ℱ−−−⇀↽−−−
ℱ−1

𝐷 (𝜔), (36)

where ℱ denotes a Fourier transform, ℱ−1 its inverse, and with the additional relation 𝐷 (𝑡) = ⟨𝑟2 (𝑡)⟩/2𝑡. We see569

that 𝐷inst (𝑡) is half the first derivative of the MSD w.r.t. time, while the VACF is half the second derivative. The570

frequency-domain expression in Eq. (35) is useful in the case of gradient sequences with a sharp power spectrum, but571

less useful in describing the time- or frequency-dependence of more general diffusion MR sequences. According to572

Ning et al. [55], Eq. (35) can be rewritten in several equivalent, time-domain representations. One of these expresses573

the signal in terms of the instantaneous diffusivity 𝐷inst (𝑡) and the cumulative gradient autocorrelation function C(𝑡):574

𝑆

𝑆0
= exp

(
−

∫ TE

0
C(𝑡)𝐷inst (𝑡)𝑑𝑡

)
(37)

where C(𝑡) is given by575

C(𝑡) =
∫ 𝑡

0
G(𝑡′)𝑑𝑡′, (38)
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where576

G(𝑡′) =
∫ TE

0
𝐺eff (𝑠)𝐺eff (𝑡′ + 𝑠)𝑑𝑠 (39)

is the autocorrelation function of the effective gradient and TE is the time of echo formation. It is important to note577

that the 𝑏-value:578

b =

∫ TE

0
C(𝑡)𝑑𝑡 (40)

can be viewed in this representation as a multiple time integral of the autocorrelation function of the effective gradient579

waveforms. This explicitly opens up the possibility of using unconventional gradient waveforms as a means of refin-580

ing the diffusion weighting, and reinforces the notion that the b-value sensitizes the signal to motional correlations581

between different encoding periods.582

Using this signal representation in C(𝑡), we can characterize the sensitivity of our SG-DEXSY sub-sampling583

scheme in the time domain. In the case of an 𝑆end acquisition or simply an SG-SE experiment, we have that584

Cend (𝑡) = 𝛾2𝑔2

𝑡

(
− 3

2 𝑡 + 2𝜏
)
, 0 ≤ 𝑡 ≤ 𝜏

𝑡

(
1
2 𝑡 − 2𝜏

)
+ 2𝜏2, 𝜏 ≤ 𝑡 ≤ 2𝜏

, (41)

where 𝜏 = 𝜏1, and assuming that 𝐺eff ∈ {0, −𝛾𝑔, +𝛾𝑔} = 0 for 𝑡 > 2𝜏1, i.e., we ignore the diffusion-weighting of585

the CPMG readout, see Fig. 1. As an aside, we take this opportunity to point out that there is a typo in Eq. (14) of586

Cai et al. [56], where a factor of 2 is missing in the second interval from 𝜏 < 𝑡 ≤ 2𝜏. This Cend (𝑡) is a single broad587

“lobe” centered at 𝑡 = 2𝜏/3, with coarse sensitivity in the time-domain as would be expected of a non-oscillating588

sequence. For 𝑆mid with 𝜏 = 𝜏1 = 𝜏2, the analogous expression for the final echo formed at TE = 4𝜏 + 𝑡𝑚 is tedious589

but straightforward to calculate:590

Cmid(𝑡) = 𝛾2𝑔2 ×



𝑡 (4𝜏 − 3𝑡) , 0 ≤ 𝑡 < 𝜏

𝑡 (−4𝜏 + 𝑡) + 4𝜏2, 𝜏 ≤ 𝑡 < 2𝜏
0, 2𝜏 ≤ 𝑡 < 𝑡𝑚

𝑡
(
𝑡𝑚 − 𝑡

2

)
− 𝑡2

𝑚

2 , 𝑡𝑚 ≤ 𝑡 < 𝑡𝑚 + 𝜏

𝑡
(
−3𝑡𝑚 − 4𝜏 + 𝑡

2

)
+

( 𝑡𝑚
2 + 𝜏

)
(𝑡𝑚 + 2𝜏) , 𝑡𝑚 + 𝜏 ≤ 𝑡 < 𝑡𝑚 + 2𝜏

𝑡
(
3𝑡𝑚 − 8𝜏 − 𝑡

2

)
−

( 𝑡𝑚
2 + 5𝜏

)
(𝑡𝑚 + 2𝜏) , 𝑡𝑚 + 2𝜏 ≤ 𝑡 < 𝑡𝑚 + 3𝜏

𝑡
(
−𝑡𝑚 − 4𝜏 + 𝑡

2

)
+

( 𝑡𝑚
2 + 2𝜏

)
(𝑡𝑚 + 4𝜏) , 𝑡𝑚 + 3𝜏 ≤ 𝑡 ≤ 𝑡𝑚 + 4𝜏

0, 𝑡𝑚 + 4𝜏 < 𝑡

. (42)

In Fig. 8, we plot Cend (𝑡) and Cmid (𝑡) for exemplar timing parameters consistent with the curvature method using591

𝑏𝑠 ≈ 4.5 ms/𝜇m2 in order to illustrate the shape of these time-domain weightings. The weighting over the timescale592

of the first encoding in either case is similar — indeed, these “lobes” integrate to the same total 𝑏-value of 𝑏𝑠 , though593

Cend (𝑡) spans a wider time range. The Cmid (𝑡) curve, however, has two additional lobes centered about 𝑡 = 2𝜏 + 𝑡𝑚,594

with the negative lobe having a peak at 𝑡 = 4𝜏/3 + 𝑡𝑚 and the positive lobe peaking at 𝑡 = 8𝜏/3 + 𝑡𝑚. These lobes595

arise from the autocorrelation between the first and second encodings and integrate to ∓𝑏𝑠/2. If we assume that the596

variation in 𝐷inst (𝑡) is small on the timescale of 𝜏 such that we can treat it as being approximately constant over each597

lobe, then598

ln
(
𝑆mid (𝑡𝑚)
𝑆end (𝑡𝑚)

)
≈ 𝑏𝑠

2

[
𝐷inst

(
4
3
𝜏 + 𝑡𝑚

)
− 𝐷inst

(
8
3
𝜏 + 𝑡𝑚

)]
+ 𝐶0, (43)

where 𝜏 here corresponds to 𝜏1 = 𝜏2 of 𝑆mid and 𝐶0 represents a unitless, negative constant that accounts for any599

remaining contribution from the imperfect cancellation of the initial lobes in Cend (𝑡) and Cmid (𝑡). By dividing the600

effective spacing between the pair of positive and negative lobes, 4𝜏/3, this becomes a forward, first-order finite601

difference approximation of the slope in 𝐷inst (𝑡) at 𝑡 = 2𝜏 + 𝑡𝑚. Thus we can rearrange the above into an expression602

that is an experimental measurement of 𝜕𝑡𝐷inst (𝑡 = 2𝜏 + 𝑡𝑚), which is equivalently the VACF as shown in Eq. (36):603

VACF(𝑡𝑚 + 2𝜏) ≈ − 3
2𝜏𝑏𝑠

[
ln

(
𝑆mid(𝑡𝑚)
𝑆end (𝑡𝑚)

)
− 𝐶0

]
, (44)
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Figure 8: Time-domain weighting C(𝑡 ) for an 𝑆end acquisition with 𝜏1 = 0.74 ms compared to an 𝑆mid acquisition with 𝜏1 = 𝜏2 = 0.59 ms;
𝑡𝑚 = 2.36 ms for both. These parameters are approximately consistent with the curvature method and 𝑏𝑠 = 4.5 ms/𝜇m2. The curves are plotted
on a non-dimensionalized 𝑦-axis of C(𝑡 )/(𝛾2𝑔2 ) , where 𝑔 = 15.3 T/m. Gray vertical lines indicate the timing of RF pulses and echo formation
for the 𝑆mid acquisition. The weightings over 0 ≤ 𝑡 < 2𝜏 are similar between the two acquisitions, as expected for an equal total 𝑏-value or 𝑏𝑠 .
However, Cmid (𝑡 ) has an additional two lobes centered about 𝑡 = 2𝜏 + 𝑡𝑚 with peaks at 𝑡 = (4/3)𝜏 + 𝑡𝑚 and (8/3)𝜏 + 𝑡𝑚. These peaks arise
from the autocorrelation of the separated diffusion encodings and integrate to ∓𝑏𝑠/2, respectively, while the first lobe integrates to +𝑏𝑠 (i.e., if the
𝑦-axis were multiplied by 𝛾2𝑔2).

where we notate the VACF = ⟨𝑣(𝑡)𝑣(0)⟩ as a function of time. Additionally, consider that at long times, we can604

approximate lim𝑡→∞ 𝜕𝑡𝐷inst (𝑡) ≈ 0 (i.e., the long-time behavior where 𝐷 (𝑡) ≃ 𝐷app is reached, and the bracketed605

term in Eq. (43) vanishes). Therefore, 𝐶0 can potentially be approximated by the limiting value of 𝑆mid/𝑆end, called606

𝛽3 in the previous section:607

VACF(𝑡𝑚 + 2𝜏) ≈ − 3
2𝜏𝑏𝑠

[
ln

(
𝑆mid (𝑡𝑚)
𝑆end (𝑡𝑚)

)
− ln(𝛽3)

]
, (45)

where608

𝛽3 ≈ lim
𝑡𝑚→∞

𝑆mid (𝑡𝑚)
𝑆end (𝑡𝑚)

(46)

is estimated from a fit of Eq. (18). Such an approximation is justified by the data itself, as decay toward a baseline is609

clearly observed (see Figs. 5 and 6b). This baseline is when the VACF ≈ 0.610

From this perspective, our method can be interpreted as a measurement of time-dependent diffusion — indeed,611

it is a direct measurement of the VACF — wherein the weighting in the time-domain is varied via 𝑡𝑚. The effective612

resolution (i.e., the width of the positive and negative lobes), is the value of 2𝜏 for 𝑆mid. This method can probe the613

VACF from 𝑡 ≳ 2𝜏 ≈ 1 ms to an upper limit depending on the SNR constraint imposed by the sample 𝑇1, which for614

this field strength is on the order of ∼ 1 s (see Fig. 6a), and by the chosen diffusion weighting. Using just one method,615

we can probe multiple orders of magnitude in the time domain.616

4.2. The Gaussian phase approximation and stationarity617

Before going further and applying Eq. (45) to the DEXR data presented previously, we stress that these time-618

dependent signal representations are valid if and only if the transport process is stationary with no net flow into/out619

of the active region, nor any re-partitioning of the signal between compartments (i.e., detailed balance). Another620

assumption is that the distribution of spin phases 𝑃(𝜙) is well-approximated by a Gaussian. If so, the first two621

cumulants suffice to describe 𝑃(𝜙). This is known as the Gaussian phase approximation (GPA), used since the622

infancy of diffusion MR [5, 57, 69, 97, 98]. The GPA holds in the motional averaging and Gaussian diffusion regimes623

but not in the localization regime. It holds in the motional averaging regime because the averaging process within a624

given restricted volume implies that each spin isochromat is in effect a random sample of the underlying 𝑃(𝜙) and625

the central limit theorem applies [69]. The GPA can be equivalently stated as there being negligible localized signal.626

Recall that in our data, we have 𝜌 ≳ 1, but no greater than 𝜌 ≈ 1.6, and thus a significant amount of localized signal is627

not expected because ℓ𝑑 and ℓ𝑔 remain similar, and the GPA should hold. This can be explored in the simulation data.628

In Figs. 9a and b we show the phase distributions 𝑃(𝜙) at the end of the first and second encodings of the629

simulated SG-DEXSY experiment, respectively (i.e., at the times of echo formation). We see that the non-Gaussian,630
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Figure 9: Phase distributions 𝑃 (𝜙) ∈ [−𝜋, +𝜋 ] at (a) the first echo for 𝑓𝑁𝐺 and 𝑓𝐺 , and (b) at the final echo for 𝑓𝑁𝐺,𝑁𝐺 , 𝑓exch, and 𝑓𝐺,𝐺 in
simulation data generated from a single repetition using 𝜌mid ≈ 1.397 and 𝑡𝑚 = 50 ms. The signal 𝑆 = ⟨cos(𝜙) ⟩ (i.e., real part) is shown as text.
The non-exchanging, restricted signal 𝑓𝑁𝐺,𝑁𝐺 is well-described by a Gaussian (green, dash-dot line) such that the GPA holds, as expected for
this value of 𝜌 ≳ 1. Quantitatively, an Anderson-Darling test yields a 𝑝-value ≈ 0.33. The Gaussian signal 𝑓𝐺,𝐺 is fully dephased. The exchanged
signal 𝑓exch is mostly, though not entirely dephased.

non-exchanging fraction 𝑓𝑁𝐺,𝑁𝐺 at the second echo is well-described by a Gaussian (𝑝 > 0.3, see caption), while the631

other signal fractions are nearly completely dephased. Therefore, the GPA holds overall. Given the similar 𝑅eff (Table632

1) estimated for spinal cord, Ning et al.’s [55] signal representations can be said to hold in the spinal cord data. The633

distributions shown in Fig. 9 also serve as a visual summary of the SG-DEXSY experiment for 𝑆mid, illustrating how634

the signal pools 𝑓𝐺 and 𝑓𝑁𝐺 evolve over both encodings, and how the signal from 𝑓exch is largely dephased, leading635

to proportionality between the ensemble signal and 𝑓exch.636

Although the GPA holds in the simulation data, the stationarity requirement actually does not hold. The simulation637

is initialized with a uniform distribution of walkers, which leads to greater exchange out of the sphere(s) compared to638

inwards (by a factor of about ≈ 10×, data not shown). This is simply because the probability of sphere wall collision is639

much higher for walkers within the sphere than outside. As such, we cannot apply these time-dependent signal models640

to the simulation DEXR data, though we stress that this does not affect the validity of the previous analyses (Fig. 5)641

because those were based simply on a quasi-biexponential model of the signal with 𝑓𝐺 , 𝑓𝑁𝐺 and exchange between642

these pools. Adapting simulations for this time-dependent analysis remains a topic for future work. Nonetheless, we643

can use the simulation data to form initial intuition about the various transport quantities.644

4.3. Time-dependent diffusion from simulation645

Let us first look at the behavior of the MSD, VACF, 𝐷 (𝑡), and 𝐷inst (𝑡) from simulation as a representative system646

with restriction and exchange. In Fig. 10a, we plot the MSD obtained from simulation for times up to 𝑡 = 52.36 ms647

(𝑡𝑚 = 50, 𝜏 = 0.59 ms) along with expressions that describe the short- and long-time scaling behaviors. At short648

times 𝑡 ≪ 0.1 ms, the MSD follows the expected free behavior of 2𝐷0𝑡, but very quickly diverges as walkers interact649

with walls, taking a concave-down shape. At the tail-end of the simulated range of times, the MSD is better described650

by an exponential function. In Fig. 10b, we plot the same data and expressions on a log-log plot. To make possible651

the analysis of the derivative and curvature of the MSD (i.e., to make the MSD smooth and twice-differentiable in652

order to reveal the VACF), we fit a piecewise, cubic Hermite polynomial [99] to the MSD in this log-log domain (see653

caption). In Fig. 10c, we plot 𝐷inst (𝑡), estimated by taking a backwards, first-order finite difference of the fitted MSD654

with time spacing Δ𝑡 = 5 × 10−4 ms. We also plot 𝐷 (𝑡) = ⟨𝑟2 (𝑡)⟩/2𝑡, obtained from the raw MSD. Both diffusivity-655

type quantities are seen to decay monotonically from 𝐷0 = 2.15 𝜇m2/ms, which is consistent with the sub-diffusive656

behavior observed in the MSD.657

Finally, we plot the VACF in Fig. 10d, estimated by taking a central, second-order finite difference of the fitted658

MSD using the same Δ𝑡 = 5 × 10−4 ms spacing. In principle, the VACF should be 0 at 𝑡 = 0 as the MSD is linear659
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DRAFTFigure 10: MSD and other transport quantities from simulation. (a) The MSD along the gradient direction from one simulation up to 𝑡 ≈ 52.36 ms
(blue dots), corresponding to 𝑡𝑚 = 50, 𝜏 = 0.59 ms. Also shown is a linear relationship with 𝑡 (dotted) and an exponential fit (dashed) that describe
the MSD at shorter and longer times, respectively. To analyze the first and second derivatives of the MSD, a piecewise, cubic Hermite polynomial
was fit in the log-log domain (solid line), splitting the domain into 10 log-linearly spaced segements. For all panels, the bottom plot shows the
short-time behavior 𝑡 ≤ 1 ms. Note the immediate deviation from 2𝐷0𝑡 . (b) Same data and relationships on a log-log plot. The approach towards
exponential behavior is clear. (c) Diffusivity quantities derived from the MSD. The time-dependent diffusivity 𝐷 (𝑡 ) is the raw MSD divided by
2𝑡 . The instantaneous diffusivity 𝐷inst (𝑡 ) is estimated using a backward, first-order finite difference of the piecewise fit to the MSD with spacing
Δ𝑡 = 5 × 10−4 ms, or twice the simulation time-step. Both quantities decay monotonically from 𝐷0. 𝐷 (𝑡 ) approaches a Gaussian limit described
by an unknown 𝐷∞ where as 𝐷inst (𝑡 ) approaches 0, consistent with the bounding box in the simulation. (d) The VACF is estimated as half the
curvature in the piecewise fit to the MSD obtained using a central, second-order finite difference with the same spacing Δ𝑡 = 5 × 10−4 ms. The
VACF exhibits a sharp, initial decrease due to reflection before asymptotically approaching 0 as 𝑡 → ∞ and the system loses its “memory” of the
first interaction(s) with barriers via exchange.

and there is no correlation between walker steps. Here, the VACF has decreased rapidly on a timescale that cannot660

be observed (i.e., time to first interaction with a barrier). This initial decrease in the VACF can be interpreted as661

the effect of reflection: a walker’s velocity will be negatively correlated with its initial trajectory towards a barrier.662

Following this decrease, the VACF rises asymptotically towards 0, consistent with “memory” loss of the system, i.e.,663

the de-correlation of walker velocities over time due to exchange. This behavior can be seen in Fig. 10d.664

The shape of the VACF here informs the expected behavior in experimental estimates of the VACF using Eq. (45).665

Because we can only probe 𝑡 > 2𝜏, the short-time decrease in the VACF is not visible, and only the intermediate- to666

long-time regime over which the VACF approaches 0 can be observed. Therefore, the rate of decay in ln (𝑆mid/𝑆end)667

is related to the rate of growth in the VACF. This relationship is intuitive: if exchange is slow, then walkers that remain668

confined will exhibit persistent negative autocorrelation(s), slowing the growth of the VACF; if exchange is fast, then669

velocities will rapidly de-correlate as walkers enter the freer space, increasing the VACF towards 0. Restriction size670

and shape will also influence the VACF. Smaller restrictions, for example, would result in greater initial decrease of671

the VACF (i.e., more reflections per unit time, all else being equal). Exchange can thus be thought of as giving rise to672

or arising from the asymptotic tail of the VACF, with exchange leading to faster recovery. This tail is what is measured673

using the DEXR method when viewed from the perspective of time-dependent diffusion.674

4.4. Measuring the VACF675

While Eq. (45) is attractive in its simplicity, applying it to actual measurements of 𝑆mid and 𝑆end is not straight-676

forward. Again, the imperfect cancellation of the first lobe(s) in Fig. 8 leads to the constant 𝐶0 in Eq. (44) which we677

argued can be estimated from 𝛽3 as given in Eq. (18). This may be practically difficult, however, if the data deviates678

significantly from a first-order exchange model. For instance, we noted some multiexponential character in the spinal679

cord data in Fig. 6b, indicating that Eq. (18) may not be a sufficient model to describe the signal. There are also errors680
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Figure 11: Apparent VACF from DEXR data viable spinal cord, calculated using Eqs. (45) and (18) to obtain 𝛽3. Error bars = mean ± SD
from repetitions with different seeds. For each repetition, 𝛽3 was first estimated by fitting to Eq. (18) and the VACF was then calculated as
3/(2𝜏𝑏𝑠 ) [ln(𝛽3 ) − ln(𝑆mid/𝑆end ) ] as in Eq. (45). The leading factor is calculated as 3/(2𝜏𝑏𝑠 ) ≈ 0.55 𝜇m2/ms2 using 𝑏𝑠 ≈ 4.59 ms/𝜇m2 and
𝜏 = 0.59 ms. Insets show a (natural) log-log plot obtained by first taking the absolute value of the VACF. The exchange time, 𝜏𝑘 = 11.7 ms is
marked with a dotted line. A subset of the data is shown, omitting the longest mixing times at 𝑡𝑚 = [160, 300] ms that are effectively 0. In the
log-log inset, a linear fit to the points over 𝑡𝑚 = [20, 40, 80] (dashed line) indicates a power-law tail with ∼ 𝑡−2.4, or 𝜗 = 1.4, although this fit is
highly sensitive to 𝛽3.

introduced by finite differencing (on the order of the spacing, 4𝜏/3), as well as blurring of variation in the VACF due681

to the broadness of the peaks seen in Fig. 8 (width of 2𝜏). This blurring is particularly problematic in the short-time682

regime (∼ 1 ms) where the VACF changes rapidly (Fig. 10d). Experimental estimates in this regime may flatten the683

true variation. Furthermore, the exchange weighting in 𝑆end in acquired data means that Cend (𝑡) will also have smaller684

lobes about 𝑡 = 2𝜏 + 𝑡𝑚 such that an additional scaling factor < 1 is necessary to yield the correct proportionality685

with the VACF. We can nonetheless make a similar argument to that made for measuring 𝜏𝑘 : regardless of these other686

effects, the overall scaling behavior w.r.t. 𝑡𝑚 should approximate the scaling of the VACF.687

What should this behavior be? According to Novikov et al. [54], the “structural disorder” of a system, which can688

be thought of as the distribution of domains or barriers (i.e., their spatial Fourier transform), determines the behavior.689

Different power-law scaling exponents of ∼ 𝑡−𝜗 were proposed in the decay in 𝐷inst (𝑡) as 𝑡 → ∞, corresponding to690

different “structural universality classes”. From Eq. (36), this corresponds to recovery in the VACF with ∼ 𝑡−𝜗−1.691

For fully periodic domains, 𝜗 → ∞, and the decay is exponential and thus faster than any power law because walkers692

do not need to explore the whole domain to reach the limiting Gaussian behavior with VACF = 0. Note that this693

is consistent with Fig. 10d, where the long-time behavior in the simulation VACF (which has periodic domains) is694

well-approximated by an exponential. For fully uncorrelated domains, 𝜗 = 𝑑/2, where 𝑑 is the dimensionality. Other695

cases with analytical results are random membranes with 𝜗 = 1/2 and random rods with 𝜗 = 1.696

In Fig. 11, we plot the apparent VACF estimated by applying Eq. (45) to DEXR data from viable spinal cord.697

A fit to Eq. (18) was first performed to estimate 𝛽3. To look at the scaling behavior with time, we show a (natural)698

log-log plot in the insets, taking the absolute value to yield a decay in real values. Also marked is the value of699

𝜏𝑘 = 11.7 ms (see Table 1. We plot only up to 𝑡𝑚 = 80 ms, as the data reaches a noise floor indistinguishable from700

0 at higher 𝑡𝑚. The general behavior is as expected, with a monotone approach towards 0 (compare to Fig. 10d).701

In the log-log inset, it is clear that the approach to 0 sharply accelerates as 𝑡 > 𝜏𝑘 , indicative of exchange being the702

controlling factor in the VACF tail. Thus, the apparent VACF curve reproduces expected trends. As an initial sanity703

check, numerically integrating the apparent VACF yields ≈ −0.8 𝜇m2/ms, corresponding to a decrease in 𝐷inst (𝑡)704

from ≈ 2.15 → 1.35 𝜇m2/ms over the observed time frame. This is roughly the expected magnitude of decrease (i.e.,705

decreases less than 𝐷0), given that some further negative portion of the VACF is not visible at short times.706

What of the scaling? In the log-log inset of Fig. 11, we perform a linear fit in this domain over several mixing707

times for which 𝑡 > 𝜏𝑘 at 𝑡𝑚 = [20, 40, 80] ms (dashed line), yielding a scaling with ∼ 𝑡−2.4 or 𝜗 ≈ 1.4. This lies708

between the exponents for uncorrelated domains in 3-D (𝜗 = 3/2) and random rods (𝜗 = 1), which may indeed be709

consistent with the makeup of GM (i.e., soma and neurites). This differs from the 𝜗 ≈ 1/2 estimated by Novikov et710

al. in GM [54, 19], which they argued is consistent with uncorrelated domains in 1-D. A potential biological substrate711

of such behavior is beads or varicosities [100] along effectively 1-D neurites. Here, the short dephasing length ℓ𝑔712
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may restore the intrinsic 3-D nature of neurites (i.e., we may be sensitive to decay due to diffusion in the intra-neurite713

space), resulting in 𝜗 = 3/2. In the study by Novikov et al. [54], however, the data was found to follow a single power714

law across 𝜔 ≈ 0 − 500 Hz or from 𝑡 ≈ 2 ms to long times. We do not see this behavior here, where there is a clear715

transition due to exchange.716

As a precaution, we stress that estimates of 𝜗 are highly sensitive to the estimate of 𝛽3 (data not shown) — i.e., a717

smaller 𝛽3 would yield a potentially much slower decay in the log-log domain — and this estimate relies on a perhaps718

flawed assumption of monoexponential behavior in the data, mentioned above. This issue is ameliorated by going to719

very long 𝑡𝑚 ≫ 𝜏𝑘 up to 300 ms ≈ 28𝜏𝑘 in the spinal cord data, and it may be argued that the estimate of 𝛽3 is robust720

to the presence of multiexponential behavior unless such behavior manifests over very long times. Furthermore, while721

𝜗 is a straightforward observable that can be compared to the literature, we emphasize that the DEXR method yields722

the apparent VACF outright over a wide range of times, and different analyses or quantitative metrics may also be723

insightful. As an example, the data suggest that piece-wise fitting of power laws with a transition at 𝑡 = 𝜏𝑘 may fit the724

VACF well (see again the inset in Fig. 11).725

4.5. Reconciling the two interpretations726

Taking a step back, this alternative interpretation in terms of the VACF sheds light on the behavior of DEXR727

data and whether they can be described by a first-order exchange model. When modelling exchange, or when using728

compartment-based signal models in general, it is tempting to argue that deviations can be explained by further729

compartments and parameters. The VACF provides a more model-agnostic view. The multiexponential character730

in the spinal cord data seen in Fig. 6b could potentially be described as a result of complicated behavior in the731

VACF, which could also involve multi-site exchange as hypothesized by Cai et al. [90]. By bridging these sub-fields732

of diffusion MR under one method, we can assess how phenomena such as exchange are related to fundamental733

transport quantities such as the MSD. Instead of assuming some compartmentalization, we can instead begin from734

models of the MSD and make forward predictions of the VACF tail and DEXR data.735

For instance, we can compare to the literature on anomalous diffusion modelling (see ref. [101] for brief review)736

wherein power laws are used to describe the MSD. Because the VACF is the curvature in the MSD, see again Eq.737

(36), these exponents in the MSD translate directly to power law scaling in the VACF by an exponent subtracted by738

2. Other models of the MSD include the Ornstein-Uhlenbeck model [102], which predicts exponential recovery in739

the MSD and thus corresponding exponential behavior in the VACF [55]. Many such analyses that begin with an740

analytical form of the MSD are possible, and we leave this as a topic for future work.741

5. Discussion and conclusions742

5.1. Summary of findings743

This work provides theoretical underpinnings and guidelines for the design, optimization, and data interpretation744

of a two-point SG-DEXSY sub-sampling scheme, which we call the DEXR method. Based on taking the ratio of745

equally diffusion-weighted, but oppositely exchange-weighted points — 𝑆mid and 𝑆end — the method was shown to746

produce robust estimates of 𝜏𝑘 and restriction parameters in simulation data. The method was subsequently applied747

in viable, ex vivo spinal cord of neonatal mice using a high gradient system, yielding 𝜏𝑘 ≈ 11 ms, 𝑓𝐼 ≈ 0.71,748

and 𝑅eff ≈ 1.1 𝜇m from just 6 total data points. Our findings highlight the specificity as well as efficiency of the749

method for probing microstructural features. Importantly, the method decouples the measurement of exchange from750

restriction and overcomes this degeneracy. Taking a different view, we show that DEXR data can be interpreted to751

yield an apparent VACF. To our knowledge, this is the only method capable of yielding point-wise sampling in the752

time-domain without the use of oscillating gradients. The DEXR method enables the study of the VACF across a wide753

range of times (𝑡 ∼ 2−500 ms) while using the same experimental paradigm. Preliminarily, we find long-time scaling754

behavior (𝑡 ∼ 20 − 80 ms) in viable spinal cord that is roughly consistent with short-range, 3-D disorder (𝜗 ≈ 3/2).755

5.2. Limitations and assumptions756

We were careful throughout to state the assumptions required for each analysis. For instance, we found that we757

could not yield an apparent VACF from simulation data due to non-stationarity. The assumptions required to estimate758

restriction parameters are particularly nuanced, with various corrections (𝜎, 𝜍, 𝜂) needed to yield quantitative 𝑓𝐼 and759
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⟨𝑐𝐼⟩ values. The downstream estimation of 𝑅eff and 𝜅eff requires an additional assumption of spherical compartments760

(without localized signal), which may not be accurate. Note that changing to other effective geometries (cylindrical,761

parallel plates) merely involves changing the constant prefactor in Eq. (9). With regards to exchange, we argued that762

the disparate 𝜏𝑘 estimates in the literature [86] can perhaps be explained by differences in ℓ𝑔 (see Sec. 3.1) and will763

not remark further. Some of our assumptions, however, merit reexamination. Most notably, we ignored 𝑇2 relaxation764

and 𝑇2-𝑇2 exchange effects [88, 103] on the basis of short diffusion encodings, 𝜏 < 1 ms. For systems with smaller765

gradient amplitude, longer encoding times become necessary to reach optimal exchange weighting (see Figs. 3 and766

4) and these effects may become significant. For PG systems, these effects can perhaps be normalized by using fixed767

diffusion times (not possible on our SG system), but this changes the relevant theory as ℓ𝑔 is now variable, which we768

discuss in the following subsection. Other effects that were neglected include surface relaxation and magnetization769

transfer [104], though we suspect that these effects will manifest in the effective diffusion-weighted relaxation rates770

such that they do not need to be explicitly included in our signal model(s).771

An issue that is more difficult to address is the possible breakdown of detailed balance. Investigations of relaxation772

exchange [105, 106] find that the exchange map in multi-site (> 2) exchange can be asymmetric, indicative of a773

circular exchange pathway. Such exchange pathways would complicate our view of the Gaussian and non-Gaussian774

pools being static over time and 𝑓exch may exhibit unexpected decay behavior. While a breakdown of detailed balance775

has not yet been demonstrated in diffusion MR data (to our knowledge) this cannot be excluded as a possibility, and776

may lead to bias in our estimates of 𝜏𝑘 . A similar issue is the breakdown of first-order exchange. Such a breakdown777

was recently discussed by Ordinola et al. [89] in the context of a discrete diffusion spectrum. This was also observed778

in Cai et al. [90], and both works report multiexponential behavior in the exchange-weighted signal measured via779

DEXSY. We add our own results regarding the VACF as a possible explanation for this behavior (see Fig. 6b),780

and reiterate that a first-order exchange model is not necessarily compatible with what is seen in the VACF, though781

empirical agreement is observed here (see again Figs. 5, 6b, 11). This also calls into question whether the wider body782

of literature (e.g., NEXI [29]) based on the first-order Kärger model [9, 10] may be affected by the breakdown of783

first-order exchange.784

5.3. Application to pulsed gradients785

The DEXR method and framework can readily be applied to PG experiments if the separation between gradient786

lobes Δ−𝛿 is small compared to the gradient duration 𝛿, and furthermore the diffusion weighting is varied by changing787

the timings, rather than the gradient amplitude 𝑔. Such an experiment resembles the SG case, and the same principles788

can be applied. Typical PG experiments, however, are not performed in this way and instead fix the timings 𝛿, Δ while789

varying 𝑔. In this PG case, we cannot easily condense the experimental parameters by defining 𝜌 B ℓ𝑑/ℓ𝑔 as we did790

for the SG case. Consider for instance that the motionally-averaged signal behavior in Eq. (4) would become791

ln
(
𝑆1

𝑆2

)
= 𝑎ℓ4

𝑠

(
ℓ2
𝑑

ℓ6
𝑔,2

−
ℓ2
𝑑

ℓ6
𝑔,1

)
, (47)

where 𝑆1 and 𝑆2 are two acquisitions with different ℓ𝑔,1 and ℓ𝑔,2, and ℓ𝑑 =
√︁
𝐷0 (𝛿 + Δ). The expression cannot be792

condensed due to the different powers in ℓ𝑑 and ℓ𝑔. The sensitivity to exchange would also differ between acquisitions,793

following our argument in Sec. 3.1. It may thus be more difficult to extract restriction and exchange parameters as at794

least one additional parameter is needed in the signal model. On the other hand, the normalization of 𝑇2 relaxation795

effects becomes more straightforward, as ℓ𝑑 is not varied. For relatively moderate 𝑏-values ∼ 4 ms/𝜇m2 such as those796

used here, the necessary difference in ℓ𝑔,1 and ℓ𝑔,2 to yield the same total 𝑏𝑠 (i.e., to acquire 𝑆mid and 𝑆end) may be797

small, and the signal models presented in this paper may be sufficient to a first approximation.798

5.4. Comparison to related work799

Our method is innovative in its analysis but its methodology is similar to other approaches based on DEXSY and/or800

on the ratio of acquisitions with different diffusion contrasts. The most relevant point of comparison is to FEXSY [41],801

which, similar to our method, is based on a sub-sampling of DEXSY data and does not employ a numerical inverse802

Laplace transform. Practically, our method reduces to FEXSY when the filter value of 𝑏1 is set to be equal to 𝑏2803

and the baseline ADC is then measured using 𝑏𝑠 = 𝑏1 + 𝑏2. Indeed, a similar approach to fitting the exchange time804
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was presented by Scher et al. [107], also using constant gradients. We stress, however, that the FEXSY model is805

fundamentally different in that it looks at an ADC recovery, which does not account for non-Gaussian diffusion. The806

downstream analyses to yield 𝑓𝐼 and 𝑅eff are unique to this work, as is the estimation of the VACF. FEXSY also does807

not account for a diffusion-weighted 𝑇1 in its original conception.808

Parallels can also be drawn to the “temporal diffusion ratio” (TDR) described recently by Warner et al. [108]. In809

TDR, the ratio of two acquisitions with varying diffusion times but fixed total 𝑏-value is assessed to yield microstruc-810

tural contrast, similar to 𝑆mid and 𝑆end acquired here. Like FEXSY, however, TDR produces an empirical contrast811

between these acquisitions, without attempting to extract quantitative microstructural parameters. Once again, it is the812

modelling and analysis that separate the DEXR method and make it uniquely information-rich. A further advantage of813

DEXR is its ability to vary the time-domain weighting via 𝑡𝑚, which gives a wide range of time sensitivity compared814

to TDR and even TDS based on oscillating gradients. We also point out that while stimulated echoes have been used815

as a means to probe long-time diffusion (e.g., by Fieremans et al. [109]), the time-domain weighting of a typical816

diffusion-weighted stimulated echo as given by C(𝑡) in Eq. (38) would be very broad, spanning all observed times.817

As such, the ability to resolve long-time behavior using this approach is limited. DEXR has the advantage of truly818

isolating the variation at long diffusion times.819

5.5. Concluding remarks820

While challenges remain, particularly in adapting the DEXR method to PG experiments and in validating VACF821

measurements, we demonstrate in this work that the method can yield quantitative exchange, restriction, and time-822

dependence information from sparse diffusion MR data. Compared to other approaches, the method is highly specific823

and efficient. We have provided herein a thorough description, validation (via simulation), and proof-of-concept824

(mouse spinal cord, with the PM-10) for the DEXR method and pave the way for future applications. The method825

may be especially useful in hitherto difficult to characterize samples that have overlapping exchange and restriction826

effects such as GM.827
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