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ABSTRACT Identification of quantitative trait loci (QTL) involved in the variation of hybrid value is of key
importance for cross-pollinated species such as maize (Zea mays L.). In a companion paper, we illustrated
a new QTL mapping population design involving a factorial mating between two multiparental segre-
gating populations. Six biparental line populations were developed from four founder lines in the Dent
and Flint heterotic groups. They were crossed to produce 951 hybrids and evaluated for silage perfor-
mances. Previously, a linkage analysis (LA) model that assumes each founder line carries a different allele
was used to detect QTL involved in General and Specific Combining Abilities (GCA and SCA, respec-
tively) of hybrid value. This previously introduced model requires the estimation of numerous effects per
locus, potentially affecting QTL detection power. Using the same design, we compared this “Founder
alleles” model to two more parsimonious models, which assume that (i) identity in state at SNP alleles
from the same heterotic group implies identity by descent (IBD) at linked QTL (“SNP within-group”
model) or (ii) identity in state implies IBD, regardless of population origin of the alleles (“Hybrid geno-
type” model). This last model assumes biallelic QTL with equal effects in each group. It detected more
QTL on average than the two other models but explained lower percentages of variance. The “SNP
within-group” model appeared to be a good compromise between the two other models. These results
confirm the divergence between the Dent and Flint groups. They also illustrate the need to adapt the
QTL detection model to the complexity of the allelic variation, which depends on the trait, the QTL, and
the divergence between the heterotic groups.
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Multiparental populations (MPP) have proved to be efficient for detect-
ing loci involved in the variation of quantitative traits. Compared to
biparental populations, they enable the exploration of more allelic
diversity and improve the power and accuracy of QTL detection.
Contrary to genome-wide association mapping based on panels of
inbred lines, MPP designs composed of several biparental population
families have a clear population structure. Controlling it in statistical
analyses helps to prevent the risk of false positives due to associations
between loci that are not physically linked. Such designs also permit

alleles to be traced from the founder “parental lines” to the segregating
populations, allowing the implementation of several detection models.
The first joint analyses of several segregation populations considered
that each founder line carried a different allele. In the case ofMaize (Zea
mays L.), this joint LA model led to the detection of allelic series for
several traits of interest, i.e., at least three significantly different parental
allele effects (Rebaï et al. 1997; Blanc et al. 2006; Buckler et al. 2009;
Giraud et al. 2014). However, when the number of parents is high, this
model may be overparametrized, especially when founder lines are
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related. Such founder relationships are a common feature in breeding
programs, and lead to local IBD. In such a case, dense SNP genotyping
of the founder parental lines enables application of a genome-wide
association study model to reduce the number of parameters in the
QTL detection and potentially increase the mapping resolution. This
approach (often referred to as LDLA mapping) was first proposed by
Yu et al. (2008) for NAM designs and was applied efficiently in the
US-NAMdesign to fine-map QTL for several traits up to the gene level
(Kump et al. 2011; Tian et al. 2011). It makes the implicit assumption
that the QTL are biallelic and that the allelic effects do not depend on
the genetic background. Several studies evaluated the properties of
these different models by simulations (Li et al. 2016) or empirically
(Kump et al. 2011; Tian et al. 2011; Bardol et al. 2013; Giraud et al.
2014; Garin et al. 2017) and consistently found that the models were
complementary, with efficiencies depending on the trait, the design,
and the QTL considered.

In cross-pollinated species, heterosis is important for traits related to
yield. Hybrids of agronomical interest are derived from crosses between
unrelated individuals belonging to complementary genetic groups
(heterotic groups). In this context, the value of a hybrid can be decom-
posed as the sum of the additive value of each of its parents (their GCA)
and the interaction between its two parents (the SCAof the two parents)
(Sprague and Tatum 1942). Identifying loci involved in these two com-
ponents is of interest in hybrid breeding. Most MPP designs evaluated
so far for intergroup hybrid value have involved crosses of segregating
individuals to a common unrelated line (“tester”). The variation of hybrid
performances in such designs only reflects the allelic variation in the
group of parental founder lines of the MPP. Also, as the GCA allelic
effects are confounded with their SCA with the tester alleles, additive and
dominant QTL effects cannot be distinguished and part of the variation
of the MPP design can be masked by dominant tester alleles.

In a companion paper, we proposed a new design to extend multi-
parental QTL detection designs to factorials between two heterotic
groups (Giraud et al. 2017). This design relies on two multiparental
maize populations corresponding to the two most important heterotic
groups used in Europe (Dent and Flint). Within each heterotic group, a
multiparental mapping population was developed from six connected
biparental populations of segregating lines, issued from four founder
lines. Instead of using “testers” (a common unrelated inbred line
crossed to all experimental lines) to evaluate their hybrid values, seg-
regating lines were crossed according to an incomplete factorial design
to produce Dent-Flint hybrids. These hybrids were evaluated for bio-
mass production. A first QTL detection was carried out to identify loci
involved in the GCA and SCA components of hybrid value. This anal-
ysis was conducted considering allelic effects transmitted from each
founder line. This model is an extension of joint LA to factorial models.
It proved very encouraging to detect jointly GCA QTL in the two
heterotic groups and test for SCA effects. The results suggested that

most of the GCA QTL were specific to each group and no QTL with
significant SCA effects at the genome level were found. This analysis
raises issues regarding the number of parameters that need to be esti-
mated at each QTL. With four founder lines per group, three indepen-
dent GCA effects per group and nine independent SCA effects were
estimated, leading to a total of 15 effects per locus. This might have
negatively impacted the power of QTL detection. Therefore, the ques-
tion of the potential of allele clustering appears to be particularly im-
portant in this context to (i) restrict the number of parameters to be
estimated and (ii) test the consistency of allelic effects in the two groups.
The first point is particularly critical for dominance effects in designs
that would involve a high number of parents in each group.

The objective of this study is therefore to propose alternative QTL
detection models adapted to the analysis of factorials between segre-
gating populations, and test their efficiency in the factorial design
proposed by Giraud et al. (2017). Comparison of the different QTL
models in such design can provide insight into the importance of allelic
series and the divergence between the Dent and Flint groups.

MATERIALS AND METHODS

Genetic material
The experimental material consists of a Dent-Flint factorial between
segregating lines used in the companion paper by Giraud et al. (2017).
Four founder inbred lines were chosen within each heterotic group
(Dent and Flint): one for its digestibility and the others for their yield
potential. In each group, all crosses between pairs of founder lines were
made to produce six biparental populations (Figure 1). In total,
931 Dent lines and 913 Flint lines were obtained by doubled haploid-
ization and five to six generations of selfing, respectively. From these
parental lines, 863 Dent lines and 879 Flint lines were crossed in an
incomplete factorial design in order to produce 1044 experimental
Dent-Flint hybrids. Each biparental population of one group was
crossed with all the biparental populations of the other group, with
the objective of balancing their contribution. The majority of lines
(699 in the Dent and 732 in the Flint) contributed to only one hybrid,
but some lines contributed twice (163 in the Dent group and 146 in the
Flint group). Only two lines contributed to three or four hybrids. All
founder lines of one group were crossed with the founder lines of the
other group to create 16 hybrids that were used as checks.

Genotyping data
The founder linesweregenotypedwithanIllumina50KSNParray (Ganal
et al. 2011). The founder lines and the parental lines were genotyped for a
subset of 18,480 SNPs with an Affymetrix array designed by Limagrain.
For the analyses, we considered the Affymetrix genotyping data for the
founder lines, and when possible replaced missing data by the genotypes
obtained with the 50 K SNP array. To avoid ascertainment bias, we only
considered the PANZEA markers (Ganal et al. 2011) that were poly-
morphic among the founder lines. We restricted the analyses to loci that
had,20%missing values within theDent and Flint sets of parental lines.
Markers with.5% of heterozygosity among theDent parental lines or in
total, or .10% of heterozygosity among the Flint parental lines (issued
from single seed descent and therefore with some expected residual
heterozygosity) were discarded. Markers with a Minor Allele Frequency
(MAF),5% were discarded. After applying the above-mentioned crite-
ria, 9643 markers were retained for further analyses.

Genotyping failed for nine inbred lines. Genotype consistency be-
tween founder lines andparental lineswas checkedandoff-type lineswere
excluded, as well as inbred lines showing a high level of heterozygosity
(.25 and 10% for the Flint and the Dent lines, respectively). In total,
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875 Dent lines and 883 Flint lines were retained for further analyses. This
data can be found in the supplemental material of Giraud et al. (2017).

These1758 inbred lineswereused tobuild12geneticmaps,one for each
of the 12 biparental populations as well as one Dent-Flint consensus map,
established following the approach described in Giraud et al. (2014). Seg-
regation distortion was tested within each population and markers with
unexpected segregation were discarded prior to map building. Most allele
frequencies ranged from 0.4 to 0.6 except for a few chromosome segments
in some populations (for instance on chromosome 2 for the population
D6), suggesting no strong involuntary selection during line development.
On average, distances between consecutivemap positionswere,2 cMbut
large gaps (.10 cM)were observed (for instance on chromosome 4 for the
population F2), corresponding to chromosome regions where the two
founder lines of the population were IBD (Supplemental Material, Table
S1 in File S5). TheDent-Flint consensusmap comprised 9548markers that
were polymorphic in at least one Dent or one Flint population. This map
has a total length of 1578.6 cM and contains 5216 unique positions (cf. File
S1 for the consensus and individual population maps). Missing genotypes
of parental lines were imputed with Beagle v3.0. (Browning and Browning
2009). As Dent lines were doubled haploids, heterozygous loci for Dent
lines were considered as missing data and were imputed considering that
only homozygous genotypes were possible. Imputations were performed
within each population with the founder lines included. Phasing (for the
Flint lines and the founder lines) and missing genotype imputation were
done at the same time.

Field trial design and estimation of least
squares-means (ls-means)
Hybrids were evaluated in eight different environments (four locations in
2013and four in2014) in theNorthofFranceand inGermany.Trialswere
conducted following common agricultural practices of the region. Four
traits weremeasured: silage yield (DMY in tons of drymatter per ha), dry
matter content at harvest (DMC in % of fresh weight), plant height
(six environments) (PH in centimeters) and female flowering
(DtSILK in days after January the first, scored as the date at which
50%of the plants of the elementary plot exhibited stigmas, referred to
as “silks” in maize). The field experiments consisted of 1088 exper-
imental units, each a field plot of two 5 m-long rows. The experi-
mental design was laid out as an augmented p-rep design (Williams
et al. 2011). The hybrids between founder lines and �17% of the
experimental hybrids were evaluated twice per environment,
whereas most of the hybrids between the parental inbred lines were
evaluated only once. Trials were laid out in 68 incomplete blocks
consisting of 16 plots each, with five to six plots used for repeated
genotypes (experimental hybrids and checks). In total, 1044 hybrids
were evaluated over the whole experimental design. After removing
outlier observations (at the phenotypic and genotypic level), 951 hy-
brids were considered for QTL detection (950 for PH and DMY),
involving 822 and 802 parental lines in the Flint and Dent group,
respectively. The hybrids retained for the QTL detection belonged to
all of the 36 hybrid populations corresponding to the crosses between
the six Flint and the six Dent line populations [figure 1 and table 1 of
Giraud et al. (2017)].

QTL detection was based on the ls-means of each hybrid over the
environments. For DMY, data from one of eight environments were
excluded as they were not correlated with the other environments.
For each trait, we first corrected single-plot values by spatial effects
obtained by analyzing jointly all the field trials and considering
for each trial the best spatial model (row-column model or block
model). Ls-means of hybrids were derived from the following model:

Yc
hlxyz ¼ mþ ll þ Hh þ Ehlxyz; where Yc

hlxyz is the performance of the
hybrid h located at position x; y, and block z in the environment l;
corrected for the spatial field effects, m is the intercept, ll is the fixed
effect of the environment l, and Hh is the hybrid genetic effect con-
sidered as fixed. Ehlxyz is the residual of the model Ehlxyz /Nð0; s2

EÞ.
Details of the models used for spatial correction are described in
Giraud et al. (2017). The R-script used to estimate ls-means is in-
cluded in the supplemental material of Giraud et al. (2017).

QTL detection
Three models were used for QTL detection differing by (i) the fact that
they consider either the alleles transmitted by the parents of the hybrids
or directly the hybrid genotypes, and (ii) the type of allele coding
considered (Figure 2). The population structure of the design was taken
into account for all models. Also, we included random genetic effects
corresponding to the parents of the hybrids to account for the fact that
some parental inbred lines were involved in several hybrids.

The Founder allelesmodel is the one described inGiraud et al. (2017).
It considers the founder alleles transmitted to the hybrids and makes the
assumption that each of the eight founder lines carries a different allele.

y ¼ 1:mþ A:aþ B:bþ C:ðabÞ þ XFA D:gFA D

þXFA F :uFA F þ XFA DF :ðguÞFA
þZD:uD þ ZF :uF þ e

(1)

where y is a (N · 1) vector of the ls-means of the N experimental
hybrids phenotyped for the considered trait; m is the intercept, 1 is a
(N · 1) vector of 1. The term a (respectively b) is a (6 · 1) vector of
the fixed effects of the Dent (respectively Flint) populations of origin
of the Dent (Flint) parental line, (ab is a (36 · 1) vector of the fixed
interaction effects between the Dent and Flint populations of pa-
rental lines. A, B, and C are the corresponding design matrices. uD
(respectively uF) is a (ND · 1) [respectively (NF · 1)] vector of the
random effects of the Nd Dent (respectively NF Flint) parents,
with uD � Nð0; Is2

DÞ; (respectively uF � N ð0; Is2
FÞ). ZDand ZFare

the corresponding design matrices. uD and uF are GCA effects not
accounted for by the QTL. e is a (N · 1) vector of the residuals of the
model with e � Nð0; Is2

e Þ: The QTL effect is decomposed into three
terms: gFA D; uFA F , and ðguÞFA: The first term gFA D (respectively
uFA F) is the (4 · 1) vector of the allelic effects at themarker associated
with each Dent (Flint) founder line. These effects correspond to the
GCA effects of the QTL. For each marker, XFA D (respectively XFA F)
is a (N · 4)matrix of the probabilities that the hybrid received its Dent
(respectively Flint) allele from each of the four Dent (respectively
Flint) founder lines. ðguÞFA is the (16 · 1) vector of the interactions,
or SCAs, between the founder alleles; XFA DF is a (N · 16) matrix
corresponding to the elementwise product between each column of
XFA Dand each column of XFA F : As the sum of probabilities for each
allele equals 1, this model has three d.f. for the additive effects of the
founder alleles (GCAs) in each group and nine d.f. for the interaction
effects (SCA). Probabilities that a hybrid received one of the four Dent
(respectively Flint) founder alleles were inferred for each position of
the 9548 mapped markers based on the genotypes of its parental lines
at the closest informative markers. These probabilities were computed
with PlantImpute (Hickey et al. 2015) using 10 iterations.

The SNPwithin-groupmodel considers the observed alleles at SNPs
received from the parental inbred lines, assuming different effects in the
twoheterotic groups. Thismodel assumes that two inbred lines from the
samegroupsharing the sameallele at a givenSNPare IBDat thisposition
and transmit the same QTL allele to the hybrids.
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y ¼ 1:mþ A:aþ B:bþ C:ðabÞ þ XSNP D:gSNP D

þXSNP F :uSNP F þ XSNP DF :ðguÞSNP
þZD:uD þ ZF :uF þ e

(2)

All effects are defined as in the Founder alleles model, except that for
the QTL effects two alleles segregate in each group instead of four. The
model estimates the contrast between these two allelic effects by
performing a regression on the SNP minor allele frequencies. The
first term gSNP D(respectively uSNP F) is the GCA effect associated
with the Dent (respectively Flint) minor allele, XSNP D (respectively
XSNP F) is a (N · 1) vector of marker genotypes for the Dent (re-
spectively Flint) parent of the hybrid, coded as 0 for homozygotes for
the major allele, 1 for homozygotes for the minor allele, and 0.5 for
heterozygotes (only Flint lines, see above). ðguÞSNP is the SCA effect
between the minor SNP marker alleles of each group, XSNP DF is a
(N · 1) column vector corresponding to the Hadamard product of
XSNP D and XSNP F : This model has one d.f. for the GCA effect of each
group and one d.f. for the SCA.

The Hybrid genotype model considers the marker genotypes of the
hybrids and ignores the group origin of the alleles transmitted by the
parents. It assumes that the QTL effects are the same in both heterotic
groups and decomposes the QTL effect into additivity and dominance
terms.

y  ¼ 1:mþ A:aþ B:bþ C:ðabÞ þ Xa:v

þ Xd:dþ ZD:uD þ ZF :uF þ e
(3)

Compared to the previous models, QTL effect is decomposed into two
terms v and d, which are, respectively, the additive and dominance
effect at the marker. Xa is a (N · 1) vector coded in 21, 20.5, 0, 0.5,

and 1, corresponding to the genotypes of the hybrids, inferred from
the genotypes of their parental lines. XaðhÞ = 21 when the hybrid is
homozygous for the major allele, 1 when it is homozygous for
the minor allele, 0 when it is heterozygous, and 20.5 (respec-
tively 0.5) when the Dent parent is homozygous for the major
(respectively minor) allele and the Flint parent is heterozygous.Xd is a
(N · 1) vector coded in 0, 0.5, and 1.XdðhÞ equals 0 when the hybrid is
homozygous, 0.5 when the Dent parent is homozygous and the Flint
parent is heterozygous (note that the reverse is not possible as Dent
parents are doubled haploids), and 1 when the hybrid is heterozygous.
This model has one d.f. for the additive effect and one d.f. for the
dominance effect.

QTL detection was performed with the package ASReml-R (Butler
et al. 2007) of R (R Core Team, 2013) considering the level of signif-
icance of the Wald test for the QTL effects. For the SNP within-group
and the Hybrid genotype models, QTL detection was performed on the
4758 mapped markers that were polymorphic (MAF . 5%) in both
heterotic groups, whereas for the Founder alleles model it was per-
formed on the 9548 mapped markers. For each model, we considered
a 5% genome-wide significance threshold based on the number of
effective markers (Gao et al. 2008). The total effect at each marker
position was tested using the “group” function of the ASReml-R pack-
age (Butler et al. 2007). After the first initial single-marker scan along
the genome, a multimarker procedure was implemented using a for-
ward and backward marker selection process, similarly to the one
presented in Giraud et al. (2017). Only markers with significant effects
were kept in the final model. The R-scripts used to perform QTL de-
tection are included in File S2.

From the final multilocus model, we estimated the percentage of
phenotypic variance explained by the detected QTL ðR2

QTLÞ and the

Figure 1 Schematic representation of the experimental design. The table shows the number of Dent-Flint hybrids retained for QTL detection for
each of the 36 Dent-Flint combinations of biparental populations. QTL, quantitative trait loci.
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percentage of within-population phenotypic variance explained by the

detected QTL, R2�
QTL ¼

R2
QTL

12 R2
pop
; where R2

pop is the percentage of vari-

ance explained by the population effects in a model without QTL. We
also estimated the individual R2 of each QTL [see Giraud et al. (2017),
for more details].

To evaluate the quality of predictionof thesemodels, we performeda
cross-validation approach following the procedure described in Giraud
et al. (2017). Eighty percent of the data (training set) was sampled in
each population and used to identify QTL, estimate the population and
QTL effects, and predict the values of the hybrids on the remaining 20%
(test set). Sampling was repeated 100 times. To limit computation time,
for each sampling, the training set was used to test the significance of
the QTL detected in the whole data set and only significant QTL were
considered in the prediction model. The percentages of variance
explained by the models were estimated by the squared correlation
between the predicted and observed hybrid values of the test set.
This procedure was conducted (i) without taking into account SCA/
dominance QTL effects and (ii) taking them into account for QTL for
which they were significant at a 5% individual risk level. A model in-
cluding only the population effects and no QTL was also considered.

Data availability
The consensus map and individual maps are available in File S1. File S2
contains the R-scripts used to perform QTL detection. The p-values of

each marker in the single-marker scans for all traits and QTL models
are included in File S3. Table S1 in File S5 contains information about
the genetic maps. Table S2, Table S3, and Table S4 in File S5 present the
QTL detection results of the final multimarker models. Figure S1, Fig-
ure S2, and Figure S3 in File S5 show the comparison of the QTL results
obtained with the different models for DMC, DtSILK, and PH. Figure
S4 in File S5 shows an overview of the QTL detected in this study. File
S4 contains a description of the genetic material and the supplemental
material. Pedigrees of the segregating populations, raw phenotypic data,
adjustedmeans of hybrid performances, and genotypic data of parental
lines are available as supplemental files of the companion paper
(Giraud et al. 2017).

RESULTS

Thresholds for QTL detection
The thresholds at a 5% genome-wide level used for QTL detection were
determined as 2log(p-value) equal to 4.53 for the Hybrid genotype
model, 4.40 for the SNP within-group model, and 3.84 for the Founder
alleles model. These differences reflect that, in the Founder alleles
model, genotypic data at closely linked loci are highly correlated, lead-
ing to a lower threshold.

Detection of QTL for all trait 3 model combinations
We detected QTL for all trait · model combinations. Note that re-
sults for the Founder alleles model are identical to those shown in a

Figure 2 Workflow of data analysis for the phenotypic data, genotypic data and QTL detection. For each QTL model we indicated the number of
d.f. corresponding to the QTL effects. Methods and results of the estimation of variance components are presented in Giraud et al. (2017). GCA,
General Combining Ability; LD, linkage disequilibrium; ls-means, least squares-means; SCA, Specific Combining Ability; SNP, single nucleotide
polymorphism; QTL, quantitative trait loci.
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companion paper Giraud et al. (2017). As expected, we observed that
the test statistics at adjacent positionswere closer for the Founder alleles
model than for the two others (Figure 3). For a given trait and a given
QTLmodel, the number of detectedQTL in the final multilocusmodels
varied between 9 (DtSILK, Founder alleles model, and DMY, SNP
within-group model) and 16 QTL (DtSILK and Hybrid genotype
model) (Table 1). In total for the four studied traits, the SNP within-
group model and the Hybrid genotype model detected more QTL
(51 and 54, respectively) than the Founder alleles model, which de-
tected in total only 42 QTL (Table 1). Nevertheless, the Founder alleles
model detected more QTL for DMY. To compare the QTL detected by
the different models (Figure 3 and Figure S4, Table S2, Table S3, and
Table S4 in File S5), we considered that QTL detected within 10 cM of
each other were identical. With this assumption, 59 QTL were specific
to one model and only 16 QTL were detected with all the three models.

For all models, the majority of the QTL explained ,5% of the
variation (see Table S2, Table S3, and Table S4 in File S5). The only
notable exception was a QTL detected by the three models on chro-
mosome 10 at 44.5 cM, which explained�8% of the variance for DMC
and 13% of the variance for DtSILK for all the detection models. Other
QTL regions showed pleiotropic effects on different traits (Figure S4,
Table S2, Table S3, and Table S4 in File S5).

Decomposition of the global effect of the QTL in its
different components
We tested the level of significance of GCA/SCA or additive/dominance
components for all QTL that were detected (Table S2, Table S3,
and Table S4 in File S5). Whatever the model considered, none of

the detected QTL showed a significant dominance/SCA effect at a 5%
genome-wide level. Some markers had significant dominance effects in
the single-marker QTL detection scan with the Hybrid genotype model
but their effects were not significant in the final multilocus model
(see Figure 3 for DMY). However, some QTL were significant for
SCA/dominance with an individual risk at 5%: 9 for the Hybrid geno-
type model, 6 for the SNP within-group model, and 13 for the Founder
alleles model (Table 1 and Table S2, Table S3, and Table S4 in File S5).
Among them some were significant at a 1% risk level. QTL showing
SCA/dominance effects were located all over the genome. However,
one region on chromosome 2, between 82.3 and 135.8 cM, stands
out for presenting SCA for both DMC and DMY (Table S2, Table
S3, and Table S4 in File S5).

The Founder alleles and the SNP within-groupmodels decomposed
the QTL effects into its Dent and Flint components. A majority of QTL
appeared specific to one group. For the SNPwithin-groupmodel, 9QTL
were significant for both GCA effects, 23 only for the Dent GCA effect,
and15only for the Flint one (Table S3 inFile S5). For the Founder alleles
model, sevenQTLwere significant for bothGCA effects, 21 only for the
Dent GCA effect, and 12 only for the Flint GCA effect (Table S4 in File
S5). The other QTL correspond to QTL with significant global effect
but no significant individual GCA component. For QTL detected at
close positions with several models, GCA/additive QTL effects of the
founder lines were consistent between models (result not shown).

Variation explained by the QTL
The detected QTL explained jointly between 19.7% (DMY, Hy-
brid genotype model, without dominance) and 37.6% (DtSILK,

Figure 3 QTL detection for DMY with (A) the Founder alleles model, (B) the SNP within-group model, and (C) the Hybrid genotype model for the
single-marker analysis. The chromosome number is indicated on the x-axis. For each model, graphics correspond to the test of the global effect (on
the top) or of one component (Flint GCA, Dent GCA, and SCA effects for the Founder alleles and SNP within-group models; and additive and
dominance effects for the Hybrid genotype model). The blue (black) dots correspond to positions that were above (below) the threshold in the single-
marker analysis (see File S3). The red squares correspond to the2log(p-value) of the QTL that were included in the final multilocus model, with tests
conditioned by the other QTL effects of the model. DMY, Dry Matter Yield; GCA, General Combining Ability; LD, linkage disequilibrium; ls-means,
least squares-means; SCA, Specific Combining Ability; SNP, single nucleotide polymorphism; QTL, quantitative trait loci.
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SNP within-group model, with SCA) of the total phenotypic vari-
ance, and between 26.8 and 47.1% of the within-population pheno-
typic variance (Table 1). The model that explained the largest
fraction of the phenotypic variance was the Founder alleles model
for DMY, DMC, and PH, and the SNP within-group model for
DtSILK. The increase in percentage of explained phenotypic vari-
ance when taking into account dominance/SCA was low for the
SNP within-group model (+0.2 for DMY to +1.9 for PH) and for the
Hybrid genotype model (+0.6 for DMC to +1.5 for DtSILK), whereas
it was more important for the Founder alleles model (+4.1 for PH to
+6.5 for DMY) (Table 1).

Cross-validations were performed to eliminate potential bias in the
R2 values of Table 1 that were computed on the data also used to
estimate QTL parameters, potentially advantaging models with a high
number of parameters. The highest R2 of models combining population
and QTL effects were obtained with the Founder alleles model for PH
and the SNP within-group model for DtSILK, and to a lesser extend
DMC and DMY (Table 2). We observed a reduction of the R2

obtained by cross-validation compared to the R2 evaluated on the
whole data set (R2

pop+QTL column of Table 1) for all the models. This
reduction was stronger for the Founder alleles model. It has to be
noted that, for this model, the number of QTL found to be signif-
icant when considering only four-fifths of the data were lower than
the number of QTL detected using the whole data set (results not
shown). The same tendency was observed, but to a lesser extent, for
the other QTL models. Taking into account the dominance/SCA for
the QTL for which it was significant at a 5% individual risk always
had a small negative impact on the R2 of the models, especially for
the Founder alleles model.

DISCUSSION

Comparison of QTL detection models showed the
predominance of group-specific GCA QTL
Compared to the Founder alleles model, the SNP within-group and the
Hybrid genotypes models consider alleles defined at the level of SNPs
(with the SNP within-group and Hybrid genotype models). These

models areclose totheonesusedforassociationmapping (LDmapping),
except thatweused theknownpopulation structureof thedesign instead
of a kinship matrix to control for false positives. They correspond to
an extensionof themodels proposed forNAMdesigns (Yu et al.2008) to
the case of hybrids. The three models used for QTL detection per-
formed differently depending on the trait and the genomic region
considered. As they rely on different assumptions in terms of allelic
effects, they are expected to performdifferently depending on the actual
distribution of QTL effects. The Hybrid genotypemodel considers only
two d.f. per marker and is thus expected to be more powerful than the
other models, which have more parameters per marker. However, it
makes the strong assumptions that (i) the QTL are biallelic; (ii) they
have the same effect in both heterotic groups; (iii) the marker-QTL
phase is also conserved between groups; and (iv) there is no epistasis.
The other models have more parameters but make fewer assumptions:
(i) the effect of a given QTL and/or the marker QTL-phase depend on
the heterotic group for the SNP within-group model and, in addition,
(ii) each founder line has a different allele at the QTL for the Founder
alleles model.

The SNP within-group model found more QTL than the Founder
allelesmodel for all traits butDMY. This is consistent with observations
by Giraud et al. (2014) for European NAM designs and supports the
hypothesis that allelic series for yield are more complex than for other
traits [see figure 3 from Giraud et al. (2017)].

The Hybrid genotype model detected the highest total number of
QTLbut it almostnever explained the largest part of the genetic variance
(considering direct adjustment of the data or cross-validations). The
strong constraints it considers for estimating genetic effects therefore
counterbalanced its advantages in termsofpower.This is consistentwith
the detection of QTL specific to Dent or to Flint GCA by the other
models. Thus, the Founder alleles and the SNP within-group models
seem better adapted to QTL detection in such a design. This is in
agreement with Giraud et al. (2014), who found different QTL in the
Dent and Flint heterotic groups. The same conclusion was drawn by
van Eeuwijk et al. (2010) when analyzing a maize factorial between two
other heterotic groups for ear height and by Parisseaux and Bernardo
(2004) considering intergroup hybrids obtained by crossing lines issued

n Table 1 QTL detection results with the different detection models for the different traits

Without SCA With SCA

Trait Model Nb R2pop R2pop+QTL R2QTL R2�QTL R2pop+QTL R2QTL R2�QTL

DMC Founder alleles 10 (4) 32.4 60.1 27.6 40.9 63.8 32.4 47.9
SNP within-group 12 (2) 32.4 58.3 25.5 37.7 58.9 26.1 38.6
Hybrid genotype 14 (1) 32.4 58.6 25.6 37.9 59.0 26.2 38.8

DMY Founder alleles 12 (5) 21.9 49.5 27.7 35.5 55.1 34.2 43.9
SNP within-group 9 (0) 21.9 42.7 20.3 26.0 42.8 20.5 26.3
Hybrid genotype 11 (3) 21.9 42.0 19.7 25.2 43.2 20.9 26.8

DtSILK Founder alleles 9 (2) 15.0 46.6 31.4 36.9 51.5 36.7 43.2
SNP within-group 15 (0) 15.0 53.1 37.3 43.9 53.3 37.6 44.3
Hybrid genotype 16 (3) 15.0 49.9 34.1 40.2 51.3 35.6 41.9

PH Founder alleles 11 (2) 33.8 60.0 26.6 40.2 63.0 30.7 46.4
SNP within-group 15 (4) 33.8 58.7 24.7 37.3 60.3 26.6 40.2
Hybrid genotype 13 (2) 33.8 54.6 20.4 30.8 55.2 21.2 32.0

Total Founder alleles 42 (13) 25.8 54.1 28.3 38.4 58.4 33.5 45.3
SNP within-group 51 (6) 25.8 53.2 26.9 36.2 53.8 27.7 37.4
Hybrid genotype 54 (9) 25.8 51.3 24.9 33.5 52.2 26.0 34.9

For each method and trait, we indicate the number of QTL detected (Nb) and between brackets the number of these QTL showing significant SCA effects at a 5%
individual risk level, the proportion of the phenotypic variance (R2QTL, in %), and of the within-population phenotypic variance (R2�QTL, in %) explained by the detected
QTL (with and without including dominance/SCA effects in the model). The percentage of variance explained by the population effect is also indicated (R2pop). The
total number of detected QTL and the average percentages of variance explained over the different traits are also shown. Nb, number of QTL detected; SCA, Specific
Combining Ability; DMC, dry matter content; DMY, dry matter yield; DtSILK, female flowering time; PH, plant height; QTL, quantitative trait loci.
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from a total of nine different heterotic groups. Group-specific GCA
QTLmay be due to actual differences in QTL allelic variability but may
also result from epistatic effects. Differences in linkage disequilibrium
phases between heterotic groups [as found by Lehermeier et al. (2014)
between the Dent and Flint groups] may partly explain the lower
efficiency of the Hybrid genotype model.

Whatever the model considered, we did not detect QTL with SCA/
dominance effects significant at a 5% genome-wide risk level. We
nevertheless detected dominance and/or SCA effects significant at a
5% individual risk level for some QTL (at a 1% individual risk level for
three of them).As for the Founder allelesmodel, cross-validation results
showedthataddingSCAQTLeffects to themodels slightlydecreased the
quality of prediction of hybrid values, suggesting that these moderate
QTL SCA effects may not be well estimated in training sets whatever
themodel considered. Reducing the number of parameters via the use of
the SNP within-group or the Hybrid genotype models instead of the
Founderallelesmodeldidnothelp to identifyQTL involved inSCA.This
suggests that SCA is due to numerous small effects that are difficult to
detect and/or that they involve allelic interactions (dominance) that
cannot be captured by a single parameter (as assumed by models based
on SNP genotypes). Another explanation might be that SCA is due to
epistasis that was not included in our detection models.

Hence, results from the different models consistently show that
performance of hybrids between lines from different heterotic groups is
mostly affectedbyGCAQTL that are located at different positions in the
two groups of interest. As discussed in Giraud et al. (2017), this result is
consistent with the strong divergence between the two groups that were
considered in this study and with GCA explaining 80% of hybrid
variation (Reif et al. 2007). The small percentage of SCA variance
certainly partly explains why we did not detect QTL with significant
SCA at the genome level. Therefore, it would be interesting to compare
the efficiency of our different models for detecting dominance/SCA
effects in other experiments showing a higher contribution of SCA/
dominance to the total hybrid variation. This may also be done by
simulations but this is beyond the scope of this paper.

Potential improvement of QTL detection models for a
higher number of founder lines
Our results are consistent with those of Bardol et al. (2013) and Giraud
et al. (2014), who also found that the model considering that each
founder line carried a different allele (the Founder alleles model) was
more adapted to complex traits such as yield than to simpler traits such

as flowering time. As discussed in Giraud et al. (2017), one of the main
drawbacks of this QTL detectionmodel is that it requires the estimation
of many parameters. This phenomenon is reinforced in the present
hybrid design, with 35 d.f. for the combinations between the Dent
and Flint populations and nine d.f. for the SCA per QTL, in addition
to six d.f. for the GCA effects per QTL. This certainly explains the
strong reduction of R2 observed for this model in cross-validation
results compared to other models. Use of this model makes it necessary
in practice to develop large segregating populations from few founder
lines to get enough power and accurate QTL effect estimates. The SNP
within-group model that was tested seems to be a good alternative for
more complex designs, at least for traits that are expected to show
“simple” allelic series (such as DtSILK). An intermediate strategy
between the Founder alleles and the SNP within-group models would
be to cluster the parental alleles based on their local similarities, as
proposed by Leroux et al. (2014) and evaluated experimentally by
Bardol et al. (2013), Giraud et al. (2014), and Han et al. (2016). Re-
cently, Garin et al. (2017) reanalyzed part of the Dent NAM design of
Giraud et al. (2014) and showed that it can be useful to mix in the same
model QTL with different types of effects (parental, ancestral based on
allele clustering, or biallelic). It would be interesting to adapt this strat-
egy to factorial designs. Another possibility for more complex pedigree
could be to consider QTL effects as random and use markers to com-
pute local similarity, as done by Crepieux et al. (2004) on wheat inbred
line data and recently by Tisné et al. (2015) in oil palm hybrids. van
Eeuwijk et al. (2010) performed QTL detection in a factorial design
issued from a private breeding program that was derived by crossing a
large number of parental lines (but not structured in balanced families
as in our design). Their analyses were based on a Bayesian model that
used both molecular markers and pedigree to trace back ancestral
founder alleles at QTL, assumed to be biallelic, and compute local
similarity. SCA was not included in their analysis. Another improve-
ment could be to use markers to compute kinship matrices to handle
covariances between individuals due both to the population structure
and the effect of unlinked QTL, as proposed by Xu (2013), and applied
to QTL mapping in MAGIC populations by Wei and Xu (2016). Nev-
ertheless, this approach needs to be adapted to factorial designs.
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considering different allele codings. For these later models, for each sampling, QTL detected in the whole data set had their effects in the training set tested following
a backward procedure and only the significant QTL were considered in the prediction model. Predictions were based on GCA/additive effects only or on models
considering also SCA/dominance effects significant at a 5% individual risk level. DMC, dry matter content; DMY, dry matter yield; DtSILK, female flowering date; PH,
plant height; QTL, quantitative trait loci; Pop, population; GCA, General Combining Ability; SCA, Specific Combining Ability; Add, additivity.
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