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Abstract Insulin resistance (IR) contributes to the pathophysiology of diabetes, dementia, 
viral infection, and cardiovascular disease. Drug repurposing (DR) may identify treatments for 
IR; however, barriers include uncertainty whether in vitro transcriptomic assays yield quantitative 
pharmacological data, or how to optimise assay design to best reflect in vivo human disease. We 
developed a clinical-based human tissue IR signature by combining lifestyle-mediated treatment 
responses (>500 human adipose and muscle biopsies) with biomarkers of disease status (fasting 
IR from >1200 biopsies). The assay identified a chemically diverse set of >130 positively acting 
compounds, highly enriched in true positives, that targeted 73 proteins regulating IR pathways. 
Our multi-gene RNA assay score reflected the quantitative pharmacological properties of a set 
of epidermal growth factor receptor-related tyrosine kinase inhibitors, providing insight into drug 
target specificity; an observation supported by deep learning-based genome-wide predicted phar-
macology. Several drugs identified are suitable for evaluation in patients, particularly those with 
either acute or severe chronic IR.

Editor's evaluation
This study reports the discovery of EGFR related tyrosine kinase inhibitors as agents that could 
potentially be repurposed to counteract metabolic disturbances arising from insulin resistance. The 
authors have used a computational approach to define a gene signature, which was then inputted to 
identify 130 compounds that interacted with pathways involved in insulin resistance. Important clin-
ical implications may eventually follow from these studies.

Introduction
Systemic insulin resistance (IR) is a multi-organ pathophysiological state and an early character-
istic of type 2 diabetes mellitus (T2DM). IR contributes to the pathobiology of neurodegeneration 
(Norambuena et al., 2017), heart failure (Wamil et al., 2021) and viral infections, such as COVID-19 
(Ceriello et al., 2020; Donath, 2021). Several T2DM drug treatments indirectly reduce IR following 
improved metabolic homeostasis, making them candidate treatments for various diseases (Donath, 
2021; Everett et al., 2018; Norambuena et al., 2017). Drug repurposing (DR) aims to accelerate 
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the discovery and reduce the costs of new treatments. Multiple evolving strategies are being trialled, 
including mining of medical records, development of large databases of drug-gene interactions 
(Subramanian et al., 2017) and virtual compound screening (Himmelstein et al., 2017). Drug tran-
scriptome responses in cells represent one of the most extensive resources (Subramanian et  al., 
2017), while transcriptomics is also an ideal technology to capture complex biological processes in 
human tissues (Jenkinson et al., 2016; Timmons et al., 2018; Timmons et al., 2005). Effectiveness at 
reversing of the molecular responses to disease (Wagner et al., 2015) helps to predict drug efficacy 
in cancer (Brown and Patel, 2018; Iorio et al., 2018; Karatzas et al., 2017; Wang et al., 2016). 
Successful application of DR specifically to oncology may reflect that drug profiles are typically gener-
ated in tumour cell lines (Subramanian et al., 2017) and that barriers to clinical validation can be 
lower compared with many other diseases.

Identifying informative disease signatures for DR in cells is challenging (Chen et al., 2020; Karatzas 
et al., 2017; Regan-Fendt et al., 2019), particularly when no positive controls exist (Williams et al., 
2019). Currently, there are no reliable human cellular models for systemic IR, while it remains unclear if 
multi-gene assays can capture quantitative pharmacological relationships suitable for optimising drug 
design. However, clinically effective drugs typically target several proteins, many of which are unknown 
(Keenan et al., 2018), highlighting the limitations of single-target drug development programmes. 
Network modelling and deep learning (DL) have been utilised to connect the pharmacological prop-
erties of active drugs to their protein targets (Woo et al., 2015; Zeng et al., 2020). For IR we also 
have effective non-drug treatments (Nakhuda et al., 2016; Slentz et al., 2016; Timmons et al., 2018; 
Phillips et al., 2017), and this enabled production of a novel human-based IR-DR assay – using more 
than 2000 tissue profiles generated in our laboratories (Nakhuda et al., 2016; Slentz et al., 2016; 
Timmons et al., 2018) and one other (Civelek et al., 2017). Performance of the present RNA-based 
multi-gene assays was judged against positive control in vivo drug signatures (Stathias et al., 2020), 
genome-wide association (Lotta et  al., 2017; Vujkovic et  al., 2020) and blood proteome-based 
assays (Gudmundsdottir et al., 2020). Validation of the in vitro results for >2500 drugs (Subramanian 
et al., 2017) relied on a variety of protein, drug- and disease-centric (Parisi et al., 2020) criteria: 

eLife digest Developing a new drug that is both safe and effective is a complex and expensive 
endeavor. An alternative approach is to ‘repurpose’ existing, safe compounds – that is, to establish 
if they could treat conditions others than the ones they were initially designed for. To achieve this, 
methods that can predict the activity of thousands of established drugs are necessary.

These approaches are particularly important for conditions for which it is hard to find promising 
treatment. This includes, for instance, heart failure, dementia and other diseases that are linked to 
the activity of the hormone insulin becoming modified throughout the body, a defect called insulin 
resistance. Unfortunately, it is difficult to model the complex actions of insulin using cells in the lab, 
because they involve intricate networks of proteins, tissues and metabolites.

Timmons et al. set out to develop a way to better assess whether a drug could be repurposed to 
treat insulin resistance. The aim was to build a biological signature of the disease in multiple human 
tissues, as this would help to make the findings more relevant to the clinic. This involved examining 
which genes were switched on or off in thousands of tissue samples from patients with different 
degrees of insulin resistance. Importantly, some of the patients had their condition reversed through 
lifestyle changes, while others did not respond well to treatment. These ‘non-responders’ provided 
crucial new clues to screen for active drugs.

Carefully piecing the data together revealed the molecules and pathways most related to the 
severity of insulin resistance. Cross-referencing these results with the way existing drugs act on gene 
activity, highlighted 138 compounds that directly bind 73 proteins responsible for regulating insulin 
resistance pathways. Some of the drugs identified are suitable for short-term clinical studies, and it 
may even be possible to rank similar compounds based on their chemical activity.

Beyond giving a glimpse into the complex molecular mechanisms of insulin resistance in humans, 
Timmons et al. provide a fresh approach to how drugs could be repurposed, which could be adapted 
to other conditions.

https://doi.org/10.7554/eLife.68832
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DL-based modelling of drug-to-protein interactions; targeted gene knock down; and published 
evidence that the drug reduced IR in vivo (Figure 1).

Results and discussion
Feature selection and in vivo validation of novel IR-DR assays
Homeostasis model assessment version 2 (HOMA2-IR) was used to quantify IR (Wallace et al., 2004). 
RNA biomarkers consistently related to fasting IR (‘disease’) across tissues were combined with those 
regulated in common across tissues following lifestyle-based reversal of IR (‘treatment’). Biomarkers 
were ranked based on consistent direction and strength of association across two major human organs 
targeted by insulin (human adipose and muscle) because most orally dosed drugs will act systemically. 
Quantitative network modelling (Song and Zhang, 2015) was used to rank genes for their tissue-based 
hub connectedness (Appendix 1—figure 1). In the present study, we considered the performance of 
only four RNA-based IR-DR assays (Appendix 1—figure 1; Ganter et al., 2006); testing their ability 
to match the in vivo directionality of positive controls, thiazolidinedione (TZD) and oestrogen, expres-
sion signatures correctly (Hevener et al., 2018; Sears et al., 2009). The top-scoring RNA signature 
(Signature 3A from Appendix 1—figure 1) was a statistically ranked combination of disease- and 
treatment-associated genes (n = 120 genes) outranked selection by hub connectedness, recapitulated 
cellular gene expression patterns indicative of TZD treatment responses in vivo in muscle (moderated 
Z-score, p<0.0000008, Appendix 1—figure 2) and is referred to as the IR-DR signature/assay here-
after (Appendix 1—figure 1). Lack of superiority for the assay designed using hub connectedness 
may be considered at odds with other studies (Cheng et al., 2012) but could reflect that inclusion 
of multi-tissue treatment response biomarkers supersedes any benefit of using network weighting. 
Several Genome-wide Association Study (GWAS) IR and T2DM (Lotta et al., 2017; Vujkovic et al., 
2020)-derived signatures (e.g. Signature 4, Appendix 1—figure 1) were considered but were unable 
to match positive control drugs in vivo. The T2DM blood proteome signature (Gudmundsdottir 
et al., 2020) had a weak association with one positive control drug. Protein-level network interactions 
formed by each list (Appendix  1—figure 1) were distinct (Appendix  1—figure 2) and were only 
possible to partially recreate from existing databases (Li et al., 2018a).
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Figure 1. The project analysis process. The three major phases of the project are defined by the grey boxes. A limited number of gene signatures 
were considered (four) to limit false-positive associations. The compound (CMPD) selection phase first confirmed that the drug repurposing signature 
provided valid matches with in vivo positive control drugs, and then a full list of in vitro active drug matches was generated. The third phase was an 
iterative process in that validation was considered on several levels. We utilised four main independent validation strategies, incorporating multiple 
data sources, to demonstrate that the insulin resistance drug repurposing (IR-DR) signature produced a high rate of likely true-positive drugs that would 
reverse IR.

https://doi.org/10.7554/eLife.68832
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IR-DR assay identifies drugs and pathways with established links with 
insulin signalling
The largest available database of in vitro drug signatures (Subramanian et al., 2017) was used to iden-
tify cell-type agnostic drug responses. To achieve this, we utilised aggregated scores (the maximum 
quantile statistic from the within-cell line-normalised scores) from across nine human cell lines. This 
approach also increases the sample size per drug by at least ninefold, making any inferences more 
reliable (Subramanian et al., 2017). At the request of a reviewer, we provide results from individual 
cells (Table S3 Appendix 1—figure 3); however, we caution that these within-cell rank-order values 
are known to be less robust (Subramanian et al., 2017; Xu et al., 2018). Critically, we noted that 
members of each drug ‘class’ (drugs sharing a nominal primary protein target in common) were segre-
gated with either active or neutral IR-DR scores, with extremely few drug classes having both positive- 
and negative-scoring compounds. Only 10% of the database matched the IR-DR signature (n = 254, 
Appendix 1—figure 3 and Table S3), and 138 compounds (after excluding assay codes with ambig-
uous compound labels) positively regulated the IR-DR signature (potential treatments), 45% of which 
were kinase inhibitors (Appendix 1—figure 4). Most negative acting drugs targeted tubulin and cell 
cycle proteins or were pro-inflammatory agents (Appendix 1—figure 5). Positive and negative acting 
compounds did not differ in average physiochemical properties (Appendix 1—figure 6), while assays 
based on GWAS-selected genes for IR (Lotta et al., 2017; Vujkovic et al., 2020) and T2DM produced 
no discernible pattern of in vitro hits.

The pharmacology of the 138 positive compounds indicated that a substantial number of targeted 
aspects of insulin signalling were known, empirically, to reverse IR in vivo (Table 1). Compounds iden-
tified varied in nature from inhibitors of glucosylceramide synthase, which reverses IR and fatty liver 
disease (Aerts et al., 2007; Herrera Moro Chao et al., 2019), to 10 mTOR inhibitors. The mTOR 
complex, mTORC1, coordinates a negative feedback loop on insulin signalling, for example, through 
activation of GRB10 or via S6K1 (Um et al., 2004). mTORC1 signalling is also regulated by protein 
kinase C (PKC) (Zhan et al., 2019), and specific PKC isoforms are dysregulated in ageing, metabolic, 
neurodegenerative and inflammatory diseases (Li et al., 2015; Sajan et al., 2018; Sharma et al., 
2019). We observed that the broad-spectrum PKC inhibitor, bisindolylmaleimide I, induced a strong 
positive IR signature score (+87) and the related compound, ruboxistaurin, reverses IR in vivo (Guo 
et al., 2020; Naruse et al., 2006). In contrast, bisindolylmaleimide IX, a 20-fold more potent broad-
spectrum PKC inhibitor, was inactive in the IR-DR assay, probably reflecting its greater non-specific 
pharmacology (against other kinase families). Three so-called PKC activators (French et al., 2020; Lee 
et al., 2020) induced negative IR-DR scores (phorbol-12-myristate-13-acetate = –87, ingenol = –96 
and prostratin = –97). RNAi targeting of individual PKC isoforms (clue.io) demonstrated that the IR-DR 
assay was sensitive to specific PKC isoformactivity. While >95% of all RNAi assays produced no signif-
icant scores, knock-down (KD) of PKC-beta (+74) and PKC-theta (+97) yielded positive IR-DR scores, 
while loss of PKC-alpha (–75) and -eta (–75) produced negative IR-DR scores and overexpression (OE) 
of PKC-alpha was positive scoring (+85). The multi-gene IR-DR assay therefore identifies numerous 
true-positive drugs (Table 1) and reflects isoform-specific activity, strongly validating the cell-agnostic 
aggregation methodology.

Identification of the active drug-protein targets through single-gene 
targeting and network biology
The 138 positive scoring IR-DR drugs target 1007 proteins (Mendez et al., 2019; Moret et al., 2019). 
Of these, 465 genes had single-gene KD or OE scores, aggregated across 6–9 cell lines (Appendix 1—
figure 7). Seventy-three targets (15.7%) yielded a significant IR-DR score; double the assay hit rate 
(p<0.0001, see Methods and Figure 2). Predictably, due to input bias (Timmons et al., 2015), these 
targets regulated ‘peptidyl-serine phosphorylation-related processes’ (q-value  <1 × 10–23). None 
belonged to the IR-DR gene signature (Appendix 1—figure 8), but they did belong to numerous 
common pathways (Appendix 1—figure 8). These observations are consistent with the idea that an 
effective DR signature captures the pathway biology of the disease and/or treatment (Brown and 
Patel, 2018; Chen et al., 2020; Karatzas et al., 2017; Keenan et al., 2018; Regan-Fendt et al., 
2019; Wagner et al., 2015; Woo et al., 2015) but does not necessarily include the nominal drug 
targets (Figure 2).

https://doi.org/10.7554/eLife.68832
https://clue.io/
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Network representation of how these 73 independently validated target proteins of active drugs 
(Appendix 1—figure 4) interact with IR-DR signature at a pathway level is presented in Figure 2A 
(Benjamini-Hochberg corrected p-values). The GO terms are scaled by the total number of significant 
terms and labelled by the top-level category (Figure 2B). Coloured orange (Figure 2B), a module of 
the ‘carboxylic acid biosynthetic process’ pathway contains genes that, when more ‘active,’ positively 
modulate the IR-DR signature (Z = 8.3, p=1 × 10–9). Each pathway is also coloured (Figure 2C) to 
indicate whether it contains a known drug target or was part of the IR-DR signature. The IR-DR assay 
genes formed eight pathway clusters, of which the majority directly contain some RNAi validated 
protein targets, for example, ‘negative regulation of phosphate metabolic process’ (coloured brown, 
q-value 1 × 10–7). As with the analysis of the individual PKC isoforms, there are compelling examples 
of proteins contributing to metabolic disease, for example, SMAD3 (+87 IR-DR score from OE and 
–95 IR-DR score from RNAi) is an in vivo-validated IR pathway (Budi et al., 2019; Sun et al., 2015; 
Tan et al., 2011). However, if multi-gene DR assays are to be used for optimising drug properties, it 
is critical to establish that they can produce quantitative pharmacological feedback when comparing 
related drugs (Hopkins, 2008).

� � ��

��������������������
������������������
���������������������
���������������������

Figure 2. The overlap between protein targets of positively acting drugs and the insulin resistance-drug repurposing (IR-DR) input signature. (A) A 
network of significant pathways coloured by p-values, derived from the IR-DR input genes and the 73 validated protein targets of the 150 positively 
acting drugs. (B) Edges represent connected Gene Ontology (GO) biological processes (>0.3), and nodes within each cluster are coloured/named by 
their most statistically enriched GO term. (C) Each node is presented as a pie chart, scaled in size by the total number of terms represented by that (top-
scoring) ontology, and with the ‘slices’ coloured to indicate which gene list the terms originate from. The same network structure is separately colour-
coded by list membership to identify when pathways include members of Signature 3A (red), or protein targets which are negative acting genes (blue, 
where inhibition yields a positive and overexpression yields a negative IR-DR score) or genes appear to be positively acting (green).

https://doi.org/10.7554/eLife.68832
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Aggregated IR-DR assay score directly relates to pharmacologically 
derived in vitro potency
The relationship between in vitro drug potency and IR-DR assay score for 37 compounds 
(Appendix  1—figure 5), nominally targeting epidermal growth factor receptor (EGFR or HER1) 
tyrosine kinase, was investigated. This stress-induced inflammatory protein has recently emerged 
as a target for treating metabolic disease and neurodegeneration (Donath, 2021; Menden et al., 
2019; Norambuena et  al., 2017). One endogenous EGFR ligand, amphiregulin, is induced by 
high-fat feeding to drive TNF-mediated IR (Skurski et al., 2020), while EGFR is overexpressed in 
astrocytes of Alzheimer’s disease (AD). The EGFR inhibitor afatinib (IR-DR score = 77) attenuates 
astrocyte activation (Chen et al., 2019) while inhibition of EGFR can reduce FOXK1 and FOXK2 
phosphorylation (Klaeger et al., 2017) to normalise mTORC1-regulated autophagy and reduce IR 
(Bowman et al., 2014; Jahng et al., 2019). Nine EGFR inhibitors have been screened against >300 
kinases (Davis et al., 2011; Klaeger et al., 2017), which enabled us to directly contrast laboratory-
derived kinase selectivity with the IR-DR score. Potency versus EGFR directly related to IR-DR assay 
score (Figure 3A), yet this could not fully explain why certain compounds were inactive. Cluster 
analysis of the most targeted proteins (<300 nM potency for at least one compound) illustrated that 
alisertib, the only potent EGFR inhibitor with a negative IR-DR score (–90), inhibited PLK4, AURKB 
and AURKA (Figure 3B). Orantinib, a 24 nM inhibitor of AURKB, also had a negative IR-DR score 
(–77), as did MK-5108, an inhibitor of AURKB and AURKA (–90), indicating that alisertib’s profile 
reflects pharmacology beyond EGFR (probably AURKB as AURKB KD had an IR-DR score of –83, 
Table S3).

Multiple protein targets help explain the positive activity of EGFR 
targeting drugs
A broader exploration of ‘EGFR’ inhibitor targets provides a better understanding of the activity of 
this group of compounds in the IR-DR assay. For example, neutral scoring bosutinib and neratinib 
target several mitogen-activated protein kinase (MAPK) family members, and some of these oppose 
positive IR-DR scoring, for example, MAP2K2 (–78, Table S4). Neutral scoring, yet potent EGFR inhib-
itors (e.g. neratinib, bosutinib and lapatinib) also inhibit the related proteins, ERBB2, ERBB3 and 
ERBB4 (<5 nM, HER2-4). Some of these family members may represent beneficial ‘off targets’ while 
others may be detrimental (Moret et al., 2019). For example, hyperglycaemia induces erbb4 in mice 
and erbb4 expression is increased in AD (Huh et al., 2016; Woo et al., 2011), where OE increases tau 
phosphorylation via mTOR activation (Nie et al., 2018b). Gefitinib (an EGFR inhibitor) reduces IR-me-
diated glucose excursions in vivo in a RIPK2-dependent manner (Duggan et al., 2020) and rescues 
memory deficits in mice at a very low chronic dose of 0.01 mg/kg (Wang et al., 2012). Loss of RIPK2 
(or a dominant-negative mutant of RIPK2) prevents excessive NFκB activation (Chin et al., 2002), and 
RIPK2 is a downstream effector of innate immunity (TLR signalling).

Some EGFR targeting drugs also potently inhibit the tyrosine kinase ABL1, and loss of adipose 
ABL1 reduces obesity-induced IR in the mouse (Wu et al., 2017). Erlotinib (IR-DR score = +72), 
which also inhibits ABL1, reduces kidney inflammation and preserves pancreas function and insulin 
sensitivity in a mouse model of diabetes (Li et al., 2018b). Furthermore, Aβ activates neuronal 
ABL1 in vitro, intra-hippocampal injection of Aβ fibrils increases expression of ABL1 in vivo and 
imatinib (STI571), a 90 nM inhibitor of ABL1, inhibits ABL1-mediated Aβ neurodegenerative path-
ways (Cancino et  al., 2011; Cancino et  al., 2008; Gutierrez et  al., 2019). However, imatinib 
does not yield a significant IR-DR score (nor inhibit EGFR), indicating that targeting ABL1 alone 
might be insufficient to treat human IR. Importantly, potency of the EGFR inhibitors against ABL1 
also correlates with their potency against several ephrin receptors (EPHA5 R = 0.74, EPHA6 R = 
0.95 and EPHA8 R = 0.76), as well as with RIPK2 (R = 0.77). Oral dosing of the ephrin A receptor 
inhibitor, UniPR500, reverses high-fat feeding-induced glucose intolerance without changes in 
plasma insulin (Giorgio et al., 2019), and these benefits likely reflect UniPR500 targeting proteins 
in common with our top-ranked ‘EGFR’ kinase inhibitors. Thus, while drug potency against EGFR 
quantitatively tracks with the IR-DR score (Figure 3A), this may reflect binding affinity at other 
related protein kinases, and identification of these additional targets is important (Redhead et al., 
2021).

https://doi.org/10.7554/eLife.68832
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A DL model of genome-wide binding affinity ranks compound affinity 
in the IR-DR assay
Thus we find that (Figure 3A–C) the best scoring potent ‘EGFR’ kinase inhibitors reflect a balance of 
activities against positively and negatively acting kinases and that this is partly interpretable versus 
the extensive in vitro screening data for those drugs (Davis et  al., 2011; Klaeger et  al., 2017). 
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Figure 3. An analysis of the relationship between the insulin resistance-drug repurposing (IR-DR) score and laboratory-based pharmacological potency 
and selectivity or deep learning-based predictions of compound potency and selectivity. (A) Inhibitory constants (nM) derived from laboratory assays 
against top-ranked targets for a series of epidermal growth factor receptor (EGFR) inhibitors. (B) Relationship between IR-DR score (100 = best score) 
and log potency against EGFR. (C) Expanded range of known targets, for at least one of the inhibitors, helps identify potentially positive (red box) and 
negative (blue box) off-target inhibitory actions. (D) Rank order score (RS, 1–19211) of predicted compound binding for all protein-coding genes using 
the DeepPurpose ML model; lab-validated targets feature in top 0.15% of target predictions. Log rank order (‘predicted potency’) for EGFR, over the 
protein-coding genome, partly predicts efficacy in IR-DR assay, confirming that the ML model matches the relationship observed using the laboratory 
pharmacology. (E) Using the predicted protein targets and the DeepPurpose rank order scores, it is possible to cluster positively acting ‘EGFR’ 
compounds from less active or negatively acting compounds.

https://doi.org/10.7554/eLife.68832
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Genome-wide pharmacological profiles are however prohibitively costly and thus often unavailable. 
Predicted drug-protein interactions, using emerging techniques from graph machine learning (Sturm 
et al., 2020), aim to overcome this lack of laboratory data. Using the DeepPurpose DL suite of algo-
rithms (Huang et al., 2021), we modelled EGFR family kinase inhibitors as simplified molecular-input 
line-entry system (SMILES) string and all proteins by their amino acid sequence (a strategy that obfus-
cates the need for 3D structures obtained by costly experimental models). This expanded the scope 
of drug target information of the EGFR inhibitors discussed above to a genome-wide level (Tables 
S6-S8). Each of the EGFR inhibitors was scored against 19,211 proteins using 14 pre-trained models 
(Table S9), and we relied on a fusion of ranking scores across models to identify the top protein targets 
of each compound.

The nine EGFR inhibitors described above inhibit 25 proteins with nanomolar potency (<300 nM), 
and the DL model accurately ranked these proteins in the top 0.1–1.7% of all 2,420,586 predictions 
(median = 0.15%, Table S6). The DL-predicted rank score (‘potency’) against EGFR strongly related 
to the measured IR-DR score (Figure 3D), replicating the potency-activity relationship noted using 
laboratory data (Figure 3A) correctly clustering the nine compounds (Figure 3C, Appendix 1—figure 
9A). DL also ranked several proteins that we already identified may compromise a positive IR-DR 
score (Figure 3E, Appendix 1—figure 9). For example, AURKB was a top-ranked predicted target 
for alisertib (26/19211), aligning with the data that inhibition of AURKB drives a negative IR-DR score. 
Additional predicted protein targets (Table S8) will also influence the IR-DR score, independently 
of EGFR, for example, MERTK, KCNH6 and PTK2B (Appendix 1—figure 9). Loss of PTK2B (focal 
adhesion kinase 2 [FAK2]), a risk gene for the development of tauopathy in AD (Tan et al., 2021), can 
promote the development of IR in vivo and in adipocytes (Luk et al., 2017; Yu et al., 2005) while 
inhibition of KCNH6 should probably be avoided,as it regulates insulin secretion (Yang et al., 2018). 
In contrast, a genetic loss-of-function variation in MERTK appears protective against IR, fatty liver 
disease and pro-inflammatory mediators in humans (Musso et al., 2017), and thus it represents a 
potential protein target against which current ‘EGFR’ inhibitors should be screened against. Therefore, 
we applied the same modelling strategy to 16 of the 28 less well-characterised EGFR inhibitors with 
proven sub-micromolar activity. Each was ranked highly by the model against EGFR (Table S7), with 
MAP3K19 being one of the highest ranked additional targets (Appendix 1—figure 10), and there was 
a negative correlation between predicted MAP3K19 binding and IR-DR score (Appendix 1—figure 
10). Little is known about MAP3K19 (a ‘dark’ kinase) other than that it may contribute to ERK pathway 
activation (Hoang et al., 2020) – and some ERK inhibitors proved positive scoring in the IR-DR assay 
(Appendix 1—figure 3) – and thus MAP3K19 may be a novel positive effector of insulin signalling. 
MAP3K19 is not abundantly expressed in adipose or muscle tissue (lowest 10th percentile of gene 
expression in our studies) such that net compound efficacy in vivo may also reflect tissue-specific 
patterns of protein activity.

General conclusions and limitations
We illustrate that a cell-line transcriptome-based high-throughput DR assay yields interpretable and 
quantitative pharmacological data when designed around robust clinical RNA signatures, and that 
DL-based drug target predictions can be used to interpret assay scores. Some of the drugs we iden-
tified may be suitable for treating acute IR, such as occurring during infection (Ceriello et al., 2020; 
Donath, 2021), and encouragingly several positive scoring drugs appear tolerable in longer-term 
preclinical models of metabolic or neurogenerative disease (Li et al., 2018b; Wang et al., 2012). The 
present approach could be extended to include a stratified medicine component, where evaluation 
of positively acting compounds is first trialled in T2DM patients with extreme IR (Choi et al., 2019). 
A number of positively acting IR-DR compounds, including selected mTOR inhibitors (Appendix 1—
figure 3), are able to mimic a longevity-related RNA signature (Timmons et al., 2019) and thus may 
be potential geroprotectors (Fuentealba et  al., 2019). A more extensive multi-disease signature 
approach could ultimately help tailor the DR process to the individual patient. We do acknowledge 
that some IR-DR assay negative scores may be false negatives, for example, selective HDAC inhibition 
(HDACi) can, through lower and shorter daily exposure (Sartor et al., 2019; Volmar et al., 2017), be 
beneficial (although positive attributes of HDACi on IR appear to reflect non-specific actions; Martins 
et al., 2019). Furthermore, despite correctly matching with nuclear receptor-induced muscle tran-
scriptome signatures in vivo, there was a dearth of matches in vitro indicating that further optimisation 

https://doi.org/10.7554/eLife.68832
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of the IR-DR assay format is merited. It can be the case that certain classes of ligand require more 
sophisticated assay condition or require the use of primary cells. In conclusion; human transcriptome 
signatures, classic pharmacological assays, drug action in vivo and DL-based target prediction consis-
tently link with drug transcriptional profiles in cell lines, establishing that expansion of such resources 
represents an important strategy for future DR efforts.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm R https://www.r-project.org/ 3.6.3 and 4.04  �

Software, algorithm Python https://www.python.org/ D1306

Software, algorithm DeepPurpose

https://github.com/ 
kexinhuang12345/ 
DeepPurpose.git;  
Huang et al., 2021 2020  �

Software, algorithm Venny
https://bioinfogp. 
cnb.csic.es/tools/venny/ 2.10  �

Software, algorithm Metascape
http://metascape.org/ 
gp/index.html#/main/step1 2020  �

Software, algorithm CLUE https://clue.io/ March 2020  �

Software, algorithm PubChem
https://pubchem. 
ncbi.nlm.nih.gov/

December 
2020  �

Software, algorithm PubMed
https://pubmed. 
ncbi.nlm.nih.gov/

December 
2020  �

Software, algorithm SMS
https://labsyspharm. 
shinyapps.io/smallmoleculesuite/

December 
2020  �

Software, algorithm iLINCS
http://www.ilincs.org/ 
ilincs/signatures/search/ March 2020  �

Software, algorithm Morpheus https://clue.io/morpheus 2021  �

Software, algorithm Code ​Source_​code_​file.​docx -
R/Python code used in 
project

 

We utilised human muscle and adipose tissue transcriptome profiles from multiple large studies 
(Civelek et al., 2017; Nakhuda et al., 2016; Slentz et al., 2016; Timmons et al., 2018). The indi-
vidual sample identifiers utilised in this study are reported (Appendix 1—figure 10) and deposited 
online at GEO. Gene expression (IRON-normalised data; Welsh et al., 2013) was contrasted against 
log-transformed HOMA2-IR values (measured in fasting blood [Wallace et al., 2004] using the Excel-
based version of http://www.dtu.ox.ac.uk/homacalculator, adjusting for patient age) using ANOVA 
and linear regression (Timmons et al., 2018). A robust transcriptional signature of IR shared across 
two human insulin-targeted tissues was identified (from a total of 337 genes significantly regulated 
in muscle, FDR < 5%, absolute correlation-coefficient (CC)  >0.15); this represented our ‘disease 
signature’ (Appendix 1—figure 11). Gene expression responses that are proportional to treatment 
efficacy (reduced IR) and consistent across two human tissue types have not been previously investi-
gated. Change in gene expression was derived from biopsy samples obtained before and following 
supervised lifestyle intervention. Lifestyle intervention ranged from aerobic to resistance training with 
modest calorie restriction, and varied in duration from 15 min (e.g. high-intensity cycle-based exer-
cise) to >1 hr 3 days a week, as previously detailed (AbouAssi et al., 2015; Nakhuda et al., 2016; 
Phillips et al., 2017; Slentz et al., 2011). In short, we located genes tracking with efficacy, regardless 
of clinical protocol or ‘dosage’. Change in gene expression was related to change in HOMA2-IR iden-
tifying a consistent ‘treatment signature’ for muscle (mean q-value < 0.08, CC values consistent in 3/4 
of muscle studies), and then those similarly regulated in adipose tissue were retained.
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Feature selection and in vivo DR validation step
The disease and the treatment genes lists represent the pool of features from which we selected IR-DR 
signatures. Quantitative network modelling (Song and Zhang, 2015) was applied to tissue expression 
values of these genes, as previously described (Timmons et al., 2019), to identify hub genes; genes 
with greater connectivity (Appendix 1—figure 1). Four alternative similarly sized sets of genes were 
selected for validation, comprising 60 positively associated and 60 negatively associated RNAs. The 
final models shared only two genes named as candidates from genome-wide IR association studies 
(Lotta et al., 2017), and those genes (INSR and GRB14) were not essential for our analysis. To rank 
the performance of each of our four RNA assays (Table S1), we utilised DrugMatrix, a database of 
in vivo rodent tissue drug-response signatures (http://www.ilincs.org/ilincs/) that includes TZD and 
oestrogen-related molecules known to reverse IR in vivo (Hevener et al., 2018; Sears et al., 2009) 
and target IR pathways in cell models (Sood et al., 2016). Signatures validated at this stage were 
considered suitable for further use. Lists that failed this step (lists 4 and 5) included genes inferred 
from genome-wide IR association studies, and T2DM proteome biomarkers (Gudmundsdottir et al., 
2020; Lotta et al., 2017; Vujkovic et al., 2020) were modelled in vitro only to produce summary 
statistics for Table S1.

In vitro DR analysis
The in vivo-validated IR signatures were screened using the largest public database of in vitro drug 
signatures (Subramanian et al., 2017) via the clue.io resource (version 1, 2020). These drug tran-
scriptional signatures were generated in nine cell lines, and while each cell line captures some unique 
signals from each compound (Baillif et al., 2020), part of this will be noise, reflecting the small sample 
size (typically n = 3). Therefore, we used aggregated signature matching across the nine human cell 
lines (PC3, VCAP, A375, A549, HA1E, HCC515, HT29, MCF7 and HEPG2) to both deliberately reduce 
the influence of cell line-specific effects (Xu et al., 2018) and to increase the sample size ninefold 
(Subramanian et al., 2017). Active compounds were those with scores exceeding ~10th percentile 
of positive and negative scores (Appendix 1—figure 3), a value that represents the mean threshold 
(±1 standard deviation) of scores exceeding the assay scoring threshold (Subramanian et al., 2017). 
The use of aggregated scores across cell types was validated using an extensive validation process 
(Figure 1). In addition to our IR-DR assay, we considered two additional in vivo RNA models. One is a 
novel 141-gene human-derived muscle growth signature (Stokes et al., 2020), which demonstrated 
– as expected – that the clue.io database contains a sizeable number of compounds known to inhibit 
cell growth (negative-scoring compounds, Appendix 1—figure 2 and Appendix 1—figure 3). The 
second was an IR-adjusted longevity-associated signature (Timmons et al., 2019), which identified 
relevant drug matches from the cell-line perturbagen database (Appendix 1—figure 2 and ‘Discus-
sion’). The output from each assay was a list of >2500 DR scores, each assigned to a particular assay 
ID and drug name. There then followed a laborious manual annotation process, reflecting that study 
of drugs is challenging (Christmann-Franck et al., 2016), and annotation errors populate all data-
bases, including iLINCS. For all of the active compounds, we carried out a manual check to ensure that 
compound labels in CLUE were verifiable in Chembl (Mendez et al., 2019), and that both were consis-
tent with the data deposited in the small molecule suit (Moret et al., 2019). The manually confirmed 
data progressed to the next phase of the analysis.

Characterisation of active compounds
Active compounds belonged to a wide range of distinct pharmacological classes (Appendix  1—
figures 4 and 5). To identify if positive and negatively acting compounds (from IR-DR score) could 
be easily distinguished from each other, we calculated simple molecular descriptors. A set of 2837 
compounds for which in vitro results were available was considered, and chemical structures were 
extracted from the CLUE database (https://clue.io/) as SMILES strings. These were parsed with RDKit 
(version 2020.03.6), with 14 compounds failing to parse correctly. For each compound, a set of 13 
physicochemical descriptors was calculated with RDKit including molecular weight, heavy atom count, 
number of heteroatoms, LogP, number of rotatable bonds, topological polar surface area (TPSA), 
number of rings, number of aromatic rings, number of saturated rings, number of aliphatic rings, Bala-
ban’s J index, number of hydrogen bond donors and number of hydrogen bond acceptors. Positive 
acting compounds were coloured in orange, and negative acting in blue (Appendix 1—figure 6). For 
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each compound active against list 3A IR-DR signature (Appendix 1—figure 3), we identified their 
protein targets using a variety of resources (Christmann-Franck et al., 2016, https://www.ebi.ac.uk/​
chembl/, https://clue.io/, and https://pubchem.ncbi.nlm.nih.gov/). The small-molecule suite was used 
to extract laboratory-derived potency values against each protein (https://labsyspharm.shinyapps.io/​
smallmoleculesuite/). Very few compounds are profiled against the majority (>300) kinases. For those 
that had values, in vitro potency values (log10) were plotted against the IR-DR scores and Pearson’s 
correlation coefficients calculated in Excel, allowing us to establish the relationship between potency 
against a protein and the IR-DR score. Very extensive manual PubMed searches were then undertaken 
to characterise the positive and negative acting drugs using the terms ‘drug name’ ‘alternative drug 
name’ with the following terms used in sequence until either relevant publications were identified 
or no hits were obtained; insulin, diabetes, obesity, dementia, Alzheimer’s disease, COVID-19 and 
inflammation (during 2020).

Single-gene manipulation and network biology
The in vitro drug signatures in clue.io are the most robust data from that project (Subramanian et al., 
2017). However, the database also contains gene KD (n = 3799 genes) and OE (n = 2161 genes) data, 
making it possible to link the IR-DR signature with specific protein targets. The KD or OE activity 
score was again averaged across 6–9 cell lines, and we considered protein targets derived from the 
known targets of the active compound list (to limit the known higher false-positive rate with the KD/
OE data; Subramanian et al., 2017). As stated in the results, >15% of IR-active drug targets yielded 
a significant IR-DR score. In comparison, a total of 459 genes were associated with an IR-DR score at a 
threshold of >70 or <-70, representing 265 positive associations (mean = 85) and 194 negative IR-DR 
scores (mean = –83), equalling only ~7% of all 5954 genomic assays. The pathway biology of the 73 
independently validated protein targets was analysed using Metascape (Zhou et al., 2019), along 
with the IR-DR signature (Table 1, Appendix 1—figure 2), where ‘Combo_sig’ represents the IR-DR 
pathways, and the 73 genes split into two lists depending on how KD or OE impacted on the IR-DR 
signature match (Table S4). For the data plot, edges represent connected GO biological processes 
(>0.3), and nodes within each cluster are coloured/named by their most statistically enriched GO term 
(Figure 3B). Each node is presented as a pie chart, scaled in size by the total number of terms repre-
sented by that (top-scoring) ontology, and with the ‘slices’ coloured to indicate from which gene list 
the terms originate. The network structure is separately colour-coded (Figure 3C) by list membership 
to identify when drugs directly target IR-DR assay pathways (red); when KD or OE genes negatively 
correlated (blue) with the IR-DR score (inhibition yields a positive or OE yields a negative IR-DR score) 
or positively correlated (green) with the IR-DR score.

Drug-target interaction prediction with DeepPurpose
To investigate the mechanisms of action of positively acting IR-DR compounds, we extended the 
existing pharmacological data with computationally derived drug-target interaction (DTI) predic-
tions. Publicly available chemogenomic databases are very far from complete, and therefore, ML 
modelling approaches can be used to provide estimates for missing data. DL-based models have 
shown promise in this context (Gaudelet et al., 2021; James et al., 2020). We used DeepPurpose, 
a DL library for DTI prediction (Huang et al., 2021) that takes as an input SMILES of the small mole-
cules of interest and the amino acid sequences of the protein-coding genome. Different encoders 
were implemented to provide a compound and a protein embedding. The small molecule and 
protein embeddings are concatenated and fed to a multi-layer perceptron that predicts the binding 
affinity as a dissociation constant (Kd). DeepPurpose provides a set of pre-trained models that can 
be used ‘off-the-shelf’. We used 14 pre-trained models that were available as of 01/12/2020. Those 
models differ from one another depending on the encoders and on the DTI training set. Drug 
encoders included convolutional neural network (CNN), daylight fingerprints, Morgan fingerprints 
and message-passing neural network (MPNN), while protein encoders amino acid composition 
(AAC) and CNN were used. The training sets were BindingDB (Liu et  al., 2007), DAVIS (Davis 
et al., 2011) and KIBA (Tang et al., 2014). A list of the models used is shown in Table S9. All DTI 
models described above were applied to obtain 14 rankings of 19,211 human proteins as potential 
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targets for each compound. A final score was obtained by an average ranking of each protein across 
14 models, with the final top-ranking targets predicted to be the most likely protein targets of the 
input drug list. Comparable consensus-oriented strategies are often applied in virtual screening to 
exploit the strengths of multiple models (Gaudelet et al., 2021; James et al., 2020) and achieve 
improved performance (Palacio-Rodríguez et al., 2019; Perez-Castillo et al., 2017). DeepPurpose 
models showed promising performance in various testing scenarios, and we refer to the original 
publication for further details. The code used for the entire analysis can be located in the supple-
mental document.
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Appendix 1
Appendix figures (Appendix 1—figures 1–11).

Appendix 1—figure 1. Network analysis statistics from MEGENA. Analysis of the combined ‘disease’ 
insulin resistance (IR) and ‘treatment’ response IR genes using tissue gene expression data (Timmons 
et al., 2018; Timmons et al., 2019) identified those genes that had the greatest connectivity in 
tissue. These values were used to re-rank and select the top 60 upregulated (positively correlating) 
and 60 downregulated (negatively correlating) genes regulated in common in adipose and muscle 
tissue (see Methods).

Appendix 1—figure 2. Network-based analysis of the gene lists from Table 1 analysed using protein-
protein interaction data. A notable characteristic of these gene lists was that prior knowledge using 
multi-omic interaction databases (http://apps.broadinstitute.org/genets) was unable to connect the 
members of the list, indicating that previously unknown information was contained within each list 
Appendix 1—figure 2 continued on next page

https://doi.org/10.7554/eLife.68832
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and our novel analysis. There were <3% overlap of genes across the signatures considered in this 
study (Table S1) and only two genes common between signatures 3A and 4 (INSR, GRB14), and these 
were not essential for the performance of the RNA-based insulin resistance-drug repurposing (IR-DR) 
signature. See Figure S3 and ‘Discussion’ for reference to additional human signatures beyond IR.

Appendix 1—figure 3. Distribution of scores from clinical input signatures. Using the input gene 
lists from Table 1 and the CLUE dataset of >2500 compound signatures, the degree of match (-100 to 
+100) was established across nine cell types. (A) Distribution of scores was plotted and demonstrates 
that the majority of compounds are not significantly active. (B) For comparison, it can also be 
observed that a human muscle in vivo pro-growth signature (Stokes et al., 2020) yields an excess of 
negatively acting compounds, confirming as expected that the drug database may be biased for anti-
tumour/anti-growth compounds.

Appendix 1—figure 2 continued

https://doi.org/10.7554/eLife.68832
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Appendix 1—figure 4. Breakdown of the drug classes of positive scoring insulin resistance-drug 
repurposing (IR-DR) compounds based on their known primary pharmacological actions. From 
>250 active compounds, 140 were associated with a positive action on the IR-DR signature and 
thus predicted to treat IR. Using the pre-assigned pharmacological descriptors of each compound, 
they were groups into general classes of compound and represented by a pie-chart. Over 45% of 
the compounds were classed as kinase inhibitors, while the remaining positively acting compounds 
belonged to a broad range of pharmacological classes

https://doi.org/10.7554/eLife.68832
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Appendix 1—figure 5. Breakdown of the drug classes of negatively scoring insulin resistance-
drug repurposing (IR-DR) compounds. From >250 active compounds, ~100 were associated 
with a negative action on the IR-DR signature and thus predicted to aggravate IR. Using the pre-
assigned pharmacological descriptors of each compound, they were grouped into general classes 
of compound. 17% of the compounds were classed as tubulin inhibitors, while the remaining 
compounds belonged to a relatively narrow range of pharmacological classes including compounds 
associated with activation of pro-inflammatory pathways and disruption of cell cycle.

Appendix 1—figure 6. Calculated physicochemicals do not distinguish between positive and negative 
acting drugs. Calculated physicochemical descriptors (RDKit) were used to compare positively or 
negatively acting on the insulin resistance-drug repurposing (IR-DR) signature for systemic properties 
that might contribute to assay score (MolWt, HeavyAtomCount, NumHeteroatoms, MolLogP, 
NumRotatableBonds, TPSA, NumAromaticRings, NumSaturatedRings, NumAliphaticRings, RingCount, 
BalabanJ, NumHAcceptors, NumHDonors). The results were plotted using mean and standard deviation.

https://doi.org/10.7554/eLife.68832
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Appendix 1—figure 7. Venn diagram overlap of putative drug targets. Comparison of drug 
signature, estimated protein targets of active drugs and knock-down (KD) and overexpression (OE) 
resources in CLUE that could be cross-compared with the insulin resistance-drug repurposing (IR-DR) 
signature.

Appendix 1—figure 8. Contrast between gene list and pathway-level connections. Comparison of 
insulin resistance-drug repurposing (IR-DR) drug signature genes with 73 knock-down/overexpression 
(KD/OE) validated proteins from the positively acting IR-DR drug list. This demonstrates that while 
(A) no individual validated protein targets were in the drug repurposing signature, many belonged to 
pathways that contained the known drug targets (B). Blue lines connect common pathways.

https://doi.org/10.7554/eLife.68832
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Appendix 1—figure 9. DeepPurpose-based target protein predictions. (A) Identification of predicted 
positive mediators of a positive insulin resistance-drug repurposing (IR-DR) score agrees with the 
pharmacological analysis. (B) Identification of predicted negatively acting proteins, diminishing the 
strength of a positive IR-DR score, or cancelling out any positive activity, agrees with and extends the 
known pharmacology.

https://doi.org/10.7554/eLife.68832
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Appendix 1—figure 10. Exploratory analysis of predicted protein target affinity. (A) Drugs that 
positively or negatively associate with the insulin resistance-drug repurposing (IR-DR) score applied 
to compounds with limited or no existing pharmacological data (other than for epidermal growth 
factor receptor [EGFR]). (B) Correlation between fusion rank score and IR-DR assay score for individual 
protein targets. For example, the more potent the predicted action was against MAP3K19 (smaller 
value) the poorer the IR-DR score was.

https://doi.org/10.7554/eLife.68832
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Appendix 1—figure 11. Transcripts related to HOMA2-IR, independent of donor chronological age, 
in muscle and adipose tissue. Primary analysis relied on identifying RNA that tracked with HOMA2-IR 
in muscle as this tissue represented the largest number of independent data sets – for both fasting 
tissue status and response to lifestyle intervention. Thereafter the candidates identified in muscle 
were examined in adipose tissue. The statistical ‘significance’ of the relationship (e.g. FDR < 5%), 
the magnitude and direction of the linear relationship (correlation coefficient) all informed the final 
selection of marker genes. As can be observed, in this analysis, the fasting HOMA2-IR genes and 
the treatment response HOMA2-IR genes represent a largely independent pool of genes (only VCL, 
GSTO1, SEC31B, FERMT2, OGFOD3, CENPV and NDUFAF5 were common to both states).

https://doi.org/10.7554/eLife.68832
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