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Molecular pathways enhance drug 
response prediction using transfer 
learning from cell lines to tumors 
and patient‑derived xenografts
Yi‑Ching Tang1, Reid T. Powell2 & Assaf Gottlieb1*

Computational models have been successful in predicting drug sensitivity in cancer cell line data, 
creating an opportunity to guide precision medicine. However, translating these models to tumors 
remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity 
predicting models from large‑scale cancer cell lines to both tumors and patient derived xenografts 
based on molecular pathways derived from genomic features. We further compute feature importance 
to identify pathways most important to drug response prediction. We obtained good performance 
on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers 
(RMSE = 0.11). Using feature importance, we highlight the association between ER‑Golgi trafficking 
pathway in everolimus sensitivity within breast cancer patients and the role of class II histone 
deacetylases and interlukine‑12 in response to drugs for triple‑negative breast cancer. Pathway 
information support transfer of drug response prediction models from cell lines to tumors and can 
provide biological interpretation underlying the predictions, serving as a steppingstone towards usage 
in clinical setting.

Cancer cell lines have been designed to serve as in-vitro research models to facilitate high-throughput screening 
of cancer drugs. However, cancer cell lines have been shown to be poor predictors of human responses owing to 
factors such as underrepresented tumor heterogeneity and lacking components of the tumor  microenvironment1. 
Facing these shortcomings, there has been a shift towards tailoring drug response profiling using in-vivo tumors 
or patient-derived xenografts (PDX)1. However, the process of deriving PDX remain costly and time consuming, 
which hinders its application into clinical practice. Thus, a computational framework that would leverage the 
plethora of knowledge and data already collected on cancer cell lines to bridge the gap between cell lines and 
in-vivo tumors or PDX data may be useful in addressing the cost and time limitations of PDX.

Using data from cancer cell lines has the potential to enrich the currently scarce tumor data. However, there 
are three additional challenges facing computational methods that aim to translate models developed on cell 
lines to tumor data: mapping genomics data from in-vitro to in-vivo measured data, mapping outcome measures 
and explaining the predictions.

The first challenge involves the differences in collected pre-treatment genomic data. Pre-treatment or baseline 
gene expression data are effective biomarkers for predicting drug response of cell lines, compared to gene-level 
mutation data, copy number variation  data2. However, estimation of gene expression level may vary between 
platforms or between batches, leading to poor  reproducibility3. In order to address this limitation, Geeleher et al4 
introduced a robust statistical correction methodology, showing that cell line model can guide the prediction 
of clinical drug sensitivity when they have similar distributions, with Gruner et al5 successfully applying their 
regression model to cancer sub-types of Triple- Negative Breast Cancer (TNBC) patient tumors. Additionally, 
Turki, Wei, and  Wang6 augmented the cell line training data by including the best matching tumor gene expres-
sion subsets through the Procrustes analysis.

A second challenge is the mapping of aggregates extracted from drug response curves in cell lines, such 
as IC50 or Area under the drug response curve (AUC) to dichotomous values required in making treatment 
decisions in patients, such as responsive/non-responsive. In order to address this challenge, a decision model 
developed by Cheng et al7 first selected the most similar cell lines for each patient and then prioritized therapeutic 
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agents based on the AUC on the most similar cell lines. Another approach by Sharifi-Noghabi et al8 used an ad-
hoc threshold to binarize IC50 of cell lines and trained a classifier incorporating embedded multi-omics data 
to classify clinical outcomes.

The final challenge involves model explainability, which is important to achieve better clinical  utility9.
In this study, we describe a prediction model that addressed these three challenges. We leverage large-scale 

cancer cell line data and biological knowledge in the form of molecular pathways to transfer models trained on 
cell lines in order to predict outcomes in in-vivo tumor and ex-vivo patient-derived xenograft (PDX) data. We 
address the transferability of pre-treatment transcriptomics by mapping them to molecular pathways, which has 
proved robust in our previous publication Tang and  Gottlieb10 and by identifying pathways with large effect on the 
prediction, we increase the explainability of the models, providing mechanistic interpretation of the sensitivity 
or resistance of a drug on a certain tumor.

The use of large-scale cancer cell line data through transfer learning enable us to address the limited avail-
ability of tumor data and has proven beneficial for transferring different  modalities6,  tissues11 or data  sources12. In 
addition, we integrated both genomic and chemical properties of drugs along with pre-treatment gene expression 
to enable pan-cancer, pan-drug predictions, which has been shown to be beneficial in improving generalizability 
comparing to previous single-drug  models13.

Our transfer learning framework enables us to provide predictions both to dichotomous outcomes (respon-
sive or not) and to continuous outcomes (AUC on PDX data), thus addressing the second challenge, involving 
translating response curves to more clinically-meaningful outcomes. In order to demonstrate this, we validated 
our transfer learning model in three independent scenarios: in in-vivo tumors data from clinical trials and 
in ex-vivo PDX data with both dichotomous and continuous outcomes. To conclude, we demonstrated that 
knowledge of in-vitro cell line drug response can be beneficial for inferring drug sensitivity in tumors and that 
biologically informed computational model can predict drug sensitivity and provide system biology insights 
about drug actions.

Results
Prediction accuracy with transfer learning. We considered clinically relevant data across two axes. The 
first axis is the data type, including human in-vivo tumor drug screen data and ex-vivo PDX data. The second 
axis is whether the response was measured as dichotomous (responsive/non-responsive) or continuous (Area 
under the drug response curve, AUC), which resulted in three scenarios across the two axes: tumor data, consist-
ing of 24 drugs and 16 cancer types, PDX with dichotomous outcomes (PDX-D) consisting of 22 drugs and six 
cancer types measured in PDX models, and PDX with continuous outcomes (PDX-C) which is a screening of 
340 drugs in triple-negative breast cancer (TNBC) measured in PDX models (Methods, Tables 1, S1–S2).

Our pre-trained model is a deep neural network trained on the GDSC cancer cell line data (Methods). In our 
previous study, we demonstrated high prediction performance of our model on cancer cell line data, outperform-
ing previous  methods10. We applied our transfer learning method to the three scenarios following the workflow 
depicted in Fig. 1. For each dataset, we compared the transfer learning model to its corresponding model which 
has no transferred layers. We also compared different sets of pathway features, including the Pathway Interac-
tion Database (PID)  pathways14, REACTOME  pathways15, and the combination of both, to test the contribution 
of these pathways to performance. In the following sections, we analyze each of the three scenarios separately.

The result of five repeats of five-fold cross validation showed that the best AUROC is 0.77 for the tumor data 
and 0.64 for PDX-D. For the PDX-C prediction, the average RMSE was 0.11 (Tables S3–S4, Figs. 2, S1). The best 
performance in the dichotomous predictions (tumor and PDX-D) was obtained when combining both PID and 
REACTOME. In the Tumor data, we obtained better performance when using transfer learning than without 
transfer learning (Mann–Whitney U test p value < 0.002), but for PDX-D, the un-transferred model obtained 
slightly better results. For the predictions of PDX-C, there was minor difference in performance between using 
only PID, only REACTOME or both, with slightly better performance when using the PID pathway. Here too, 
transferred models were better than non-transferred models (Mann–Whitney U test p value < 2E-09). As such, 
we used the best performing model of each dataset for further analysis (Tables S3–S4).

From cell lines to tumor data. The tumor data was assembled from multiple sources (Methods). The best 
performance in a five-fold cross validation was achieved by incorporating both PID and REACTOME pathways 
(AUROC of 0.77 ± 0.06, Fig. 2a and Table S3). Additionally, we compared the contribution of transferred learn-
ing to per-drug (across all tumors treated by the drug) and per-cancer (across all drugs treating that cancer type) 
prediction. Transfer learning improved the AUROC by 49.8% and 47.8% relative to not using transfer learning 
(on average) for the per-drug and the per-cancer predictions, respectively (Fig. 3a).

Table 1.  Datasets used in this study.

GDSC Cell lines

Transfer learning to data source type (outcome type)

Tumors (Dichotomous) PDX (Dichotomous) PDX (Continuous)

Sample size 98,557 517 256 4,641

Number of drugs 142 24 22 340

Number of cancer types 31 16 6 1
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Some of the drugs tested in the in-vivo studies were not tested in the in-vitro panel of GDSC. The result of 
within-sample comparison showed that there is a small difference between drugs/cancer types included in the 
in-vitro cell line panel (0.65 ± 0.2 mean AUROC for drugs in GDSC vs. 0.66 ± 0.2 mean AUROC in the set of 
drugs not in GDSC; 0.62 ± 0.3 mean AUROC for cancer types in GDSC vs. 0.63 ± 0.03 mean AUROC across 
cancer types not in GDSC, Fig. 3a and Table S5).

We highlight one example from our prediction results: our model obtained AUROC of 0.9 ± 0.001 for predict-
ing sensitivity to everolimus, an immunosuppressive drug of type mTOR inhibitor, screened for breast cancer 
patients in our data. Our top eight predictive pathways (using Shapley values) display significantly different level 
of enrichment between responders and non-responders to everolimus (Benjamini–Hochberg FDR adjusted 
p < 0.05, Table S6). These pathways are associated with mTOR pathways in different ways. For example, one of 
the top pathways, Reactome’s VESICLE MEDIATED TRANSPORT (FDR-adjusted p value <  6E−4, Table S6), 
involves ER-to-Golgi transport machinery that co-regulates with the mTOR proteins in proliferation and growth 
of breast cancer  cells16–18. Furthermore, another predictive pathway, Reactome’s CHEMOKINE RECEPTORS 
BIND CHEMOKINES (FDR-adjusted p value <  6E−4), has a reported role in the mTOR function in both immune 
cells and tumor cells through the pairing of chemokine to its  receptor19,20. Notably, chemokine CXCL12, one of 
the components in the predicted pathway, is a mTOR-associated chemokine in breast  cancer20. It has been fur-
ther demonstrated that there is a positive feedback loop between mTOR activation and the binding of CXCL12 
to its receptor CXCR4—inhibiting the mTOR activity may prevent cancer metastasis because it subsequently 
decreases CXCL12 interaction.

In addition, our finding showed that a specific anti-inflammatory response (Reactome’s ANTI INFLAMMA-
TORY RESPONSE FAVORING LEISHMANIA PARASITE INFECTION, FDR-adjusted p value <  E−4) is the key 
linking to resistant response. This pathway has a positive control on the expression of host  mTOR21. Highly active 
the pathway signals, higher expression levels of mTOR proteins. Our result showed that non-responder samples 
had downregulated expression in the pathway, indicating there is a low expression level of mTOR signals in non-
responder samples (Fig. 4). Moreover, signals related to this pathway have been associated with drug resistance 
(or poor clinical outcomes) in breast cancer. For example, CD163-mediated anti-inflammatory  response22,23, 
Adenosine receptor 2B (ADORA2B) mediated anti-inflammatory cytokines  production24 and IL10 synthesis 
that plays a role in immune  escape25. Together, our finding supports the current knowledge that cellular activity 
in the mTOR signaling pathway might affect the drug sensitivity in tumors.

Figure 1.  Workflow of the transfer learning model. From top to bottom, pre-treatment cell line and tumor gene 
expression levels were harmonized. Genomic and chemical features were generated respectively. Cell line data 
were then used to pretrained a cell line model, while tumor data were feed into a new model which was trained 
with the pretrained model.
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From cell lines to PDX with dichotomous outcomes. The ex-vivo PDX-D drug screen dataset was 
obtained from  Gao21, which used modified RECIST criteria for a dichotomous drug response. The PDX-D data-

Figure 2.  Box plot of performance score distribution across repetitions of cross validation. Brown boxes are 
transfer learning models, and blue boxes are models without transferred layers (n = 25 scores per model for each 
box). White circles are mean lines. (a) and (b) are the Area Under the Receiver Operating Curve (AUROC) for 
the tumor dataset, and the PDX-D datasets, respectively. (c) the Root Mean Squared Error (RMSE) obtained 
from the PDX-C dataset.
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Figure 3.  Bar plot of per-drug and per-cancer performance averaged across drugs (left panel) and cancers 
(right panel). Comparison is between predictions made on drugs or cancer types that exist in the cell line 
repository of GDSC (panels titles “GDSC Drug = Yes” or “GDC cancer = Yes”) and drugs/cell lines that appear 
only in the tumor or PDX samples (panels titles “GDSC Drug = No” or “GDC cancer = No”). Bar lengths are 
mean values, and error bars represent one standard deviation. (a) Area Under the Receiver Operating Curve 
(AUROC) for the tumor data averaged across 15 drugs (n = 8, 7 for GDSC drugs and non-GDSC drugs), and 
10 cancers (n = 8, 2 for GDSC cancer types and non-GDSC cancer types). (b) The average of AUROC over the 
PDX-D predictions consisting of 12 drugs and 5 cancer types (n = 3, 9 for GDSC drugs and non-GDSC drugs; 
n = 2, 3 for GDSC cancer types and non-GDSC cancer types). (c) The average Root Mean Squared Error (RMSE) 
for 340 drugs and 1 cancer type in the PDX-C predictions (n = 30, 310 for GDSC drugs and non-GDSC drugs, 
n = 1 for GDSC cancer types).
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set is highly imbalanced with 64 responders and 1628 non-responders, and the number of non-responders per 
drug is 4–43 times larger than the number of responders. To address this imbalance, we subsampled from the 
non-responders (see Methods). In this case, the best AUROC (0.63 ± 0.11) was obtained when integrating the 
PID pathways only (Table S3).

Our transfer learning approach was beneficial for both drugs that are included in GDSC and drugs not 
included in it, where AUROC of the drug included in GDSC increased from 0.60 ± 0.2 (without transfer learn-
ing) to 0.68 ± 0.2 (with transfer learning), while for drugs not in GDSC improved from 0.60 ± 0.2 to 0.63 ± 0.1. 
Similarly, the improvement in the cancer types appearing in GDSC improved from 0.66 ± 0.05 to 0.68 ± 0.04 and 
those not appearing in GDSC improved from 0.49 ± 0.07 to 0.56 ± 0.01 AUROC (Fig. 3b and Table S4).

We compared per-drug AUROC for three drugs that appear in our dataset and were also reported in previous 
 studies4,13, including paclitaxel, gemcitabine and erlotinib. Our pathway-based transfer learning model achieved 
better performance on paclitaxel and erlotinib with 0.8 ± 0.1 and 0.67 ± 0.16 AUROC, respectively but achieved 
lower performance on gemcitabine than Geeleher et al4 (AUROC of 0.53 ± 0.09 vs. 0.59, Table 2). We note that 
one of the compared methods,  MOLI13, showed improved performance by incorporating mutation and copy 
number variation data on both gemcitabine and erlotinib. For the purpose of comparing with the multi-omics 
models of MOLI, we incorporated mutations and copy number variations to our pathway-based model. As a 
result, our multi-omics model achieved an AUROC of 0.83 ± 0.2 for erlotinib, improving upon the best MOLI 
model but did not improve on gemcitabine (MOLI complete pan-drug multi-omics, Table S7).

From cell lines to PDX with continuous outcomes. The ex-vivo PDX-C drug screen dataset was 
obtained from  Powell22, that reported normalized dose-dependent AUC. We framed the PDX-C as a regression 
problem. We tested two scenarios: one using the original GDSC drug response curve AUC and one by adjusting 
the GDSC AUC calculation to match the PDX data AUC calculation. (Methods). Our transfer learning approach 
achieved good performance using both drug AUC measures, but the model using the adjusted AUC values dis-
played higher benefit from transfer learning (Fig. S1). Our model incorporating PID pathways obtained RMSE 
of 0.1 ± 0.005 in cross validation, which is only slightly lower than when using REACTOME alone or the com-
bination of both (Table S4). There is a small improvement (RMSE of 0.02) over model trained without transfer 
learning (Fig. 3c and Table S4).

We exemplify a PDX from a specific PDX with high correspondence between the observed drug sensitivity 
and the model predicted one. Our model obtained a high correlation between predicted drug response and actual 
response values with  R2 = 0.86, Pearson’s ρ = 0.93 for PIM137 (Fig. S2). Our model identified two pathways that 
are correlated with individual variation in drug response, which are PID’s HDAC_CLASSII_PATHWAY (Pear-
son’s ρ = 0.12, p value <  4E-16) and PID’s IL_12_2PATHWAY (ρ = 0.1, p value <  4E-10). Both pathways play a role 
in the immune response. Histone deacetylases (HDACs) regulates enzyme activity responsible for inflammatory 
development while interleukin 12 (IL-12) is responsible for balancing autoimmune attack and immune response 
against foreign  antigens26,27. Class II HDAC inhibitors have shown efficiency in reducing cell proliferation in 
breast tumors, both in-vivo and in-vitro28. Indeed, a previous study showed improved immune responses in 
TNBC patients treated with combination of HDAC inhibitor and immune checkpoint  inhibitor29. IL-12 also has 
well-documented in-vivo and in-vitro antitumor  activity30. Through promoting antitumor immunity that acti-
vates natural killer (NK) and T cells, IL-12 demonstrates potential potency in combination with immunotherapy. 

Figure 4.  Top pathways contributing to prediction of everolimus treatment outcomes that are also significantly 
different between everolimus responders and non-responders.

Table 2.  Methods comparison based on area under the receiver curve (AUROC) of three drugs in the PDX-D 
dataset. The best performance is in bold. a The performance scores were adopted from Sharifi-Noghabi (2015)’s 
paper.

Drug Our model Geeleher et al., Expression MOLI complete,  Expressiona

Paclitaxel 0.80 ± 0.1 0.52 0.69

Gemcitabine 0.53 ± 0.09 0.59 0.52

Erlotinib 0.67 ± 0.16 0.67 0.39
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For example, TNBC patients that were unresponsive became sensitive to anti-PD-L1 immunotherapy after 
injecting IL-1231. The combination of HDAC inhibitor and immunocytokine NHS-rmlL12 improved protective 
immunity in breast tumors that have inherited immune  deficiency32.

We note that the remaining eight out of top ten pathways for PIM137 across all tested drugs were features 
derived from the molecular fingerprints of the drug structure.

Discussions
We have developed a new transfer learning model for predicting drug sensitivity in pre-treatment in-vivo and 
ex-vivo tumor data based on mapping of pre-treatment genomic data to molecular pathways. Our approach 
utilized a model pre-trained on large-scale cancer cell line drug screening data and incorporates both genomic 
and chemical features. We demonstrated that our pathway-based method achieved good performance in different 
scenarios, including in-vivo tumor data and ex-vivo PDX data in a cross-validation and had better, or comparable 
performance to previous expression-based models for specific drugs. Our approach proved especially robust 
when dealing with tumor data from different sources and using different measures to determine drug sensitivity.

The proposed approach supports a flexible model architecture that is adaptable to data representation from 
one task to other related tasks, enabling information extraction directly from cell line response without contin-
uous-discrete conversion. We showed that in general, knowledge transferred from cell lines improves prediction 
accuracy in tumor or PDX drug sensitivity data. The only exception was in the dichotomous PDX data, where 
transfer learning did not manage to improve the results. A possible reason is that the PDX-D data shared the least 
number of drugs and cell types with the GDSC cell line data. Only 3/12 drugs and 2/5 cell lines in the PDX-D 
data exist also in GDSC (Table S5). In contrast, 8/15 of the drugs and 8/10 of the cell lines in the tumor data 
appear also in GDSC, where the difference between transferred and untransferred models was to most profound. 
In PDX-C, only 30/340 drugs were in GDSC, but the only cell type used appears also in GDSC, suggesting that 
existence of shared cancer cell types has larger influence on the improvement of the transfer learning than the 
number of shared drugs.

One strength of our approach is the explainability of our model via the functional roles of molecular pathways. 
Pathway-based features can reflect molecular interactions between genes active in tumors and the downstream 
effect of drug-targets, as we exemplify for everolimus.

There are three major limitations of our method. First, the use of Shapley values and statistical significance 
infers associations, not causal relation. Experimental validation is thus needed in order to further identify the 
possible roles the top predictive pathways play in drug sensitivity/resistance. Second, we have used only tran-
scriptomic data in our study, owing to lack of other genomic data from the studies we assembled. This enabled 
our models to transfer learn predictions for hundreds of drugs across multiple types of cancer, which has pre-
viously limited methods relying on multi-omics data. Thus, the higher prevalence of transcriptomic data in 
clinical cancer studies together with the observation that transcriptomic data has been proven to be the best 
predictor of drug  response2 supports a practical direction towards clinical application. However, there might 
be cases where other types of genomics data help obtain a significant performance of the models. Two such 
examples are responses to gemcitabine and erlotinib. Since our method is capable of incorporating other types 
of genomic data, such as mutation and copy number variation data, we demonstrate that we are able to improve 
significantly our performance on erlotinib through the incorporation of these types of genomics data. However, 
we failed to improve upon previous methods for gemcitabine, either with only transcriptomic data or with 
multi-omics approach. One possible explanation is the existence of specific mutations in TP53 that were shown 
to be predictive of gemcitabine sensitivity in a clinical  trial33 and might have not have been as well represented 
in our pathways as in methods relying on individual genes. Finally, in this study, we focused on monotherapy 
prediction and excluded drug combination data. While we previously presented a pathway-based deep neural 
networks to predict in-vitro drug  combination34, the large space of drug combination and the relative scarcity 
of in-vivo drug combination screens limit the transferability of our models in this scenario.

A noticeable trait of our method is that performance was largely dependent on sufficient sample size, such 
that our method tended to perform much better on drugs and cancer types that had relatively large sample size. 
This is evident from the fact that the overall AUROC is much higher than the average on the drugs/cancer types 
as the overall AUROC is influenced more from drugs/cancer types with large sample size while averaging on 
the individual performance of each drug/cancer type assigns equal weight to drugs/cancer-types regardless of 
sample size. Similarly, we obtained relatively lower performance on the PDX-D dataset, owing in part to the low 
number of the responders within the dataset. It is thus imperative to continue to conduct more experiments on 
underrepresented drugs/cancer-types in order to improve the prediction power of computational methods like 
the one we presented.

Conclusion
We demonstrate that through a pathway-based transfer learning model, we are able to transfer information 
from large compendia of cancer cell line data to in-vivo and ex-vivo data. This is yet another steppingstone in 
the move from research to clinical application, where our model may be potentially used as a pre-screening tool 
for patients.

Materials and methods
Data. In-vitro human cell lines screen was obtained from the Genomics of Drug Sensitivity in Cancer 
(GDSC)35. We filtered cell lines that had no gene expression profile or no measured drug response value. Human 
tumor drug screening datasets were collected from  literatures36–39 and GEO search using the same keyword 
searching strategy that was described Lee et al.  paper39 with the following search terms: “pre-treatment OR base-
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line transcriptome AND cancer patient survival”, “pre-treatment gene expression AND cancer drug response” 
performed in November 2021. We considered only tumor samples that had available pre-treatment gene expres-
sion and drug response and patients that have been treated with only one drug during the treatment period in 
order to avoid combinatorial effect. Most in-vivo studies use the Response Evaluation Criteria in Solid Tumors 
(RECIST) criteria to categorize clinical drug sensitivity (i.e., responder, non-responder), while some measures 
were based on the time from treatment to disease progression, such as Progression Free Survival (PFS), Recur-
rent Free Survival (RFS) and Time to Progression (TTP) (Table S1). Ex-vivo PDX data was downloaded from 
Gao et al36 (dichotomous response) and for primary treatment-naïve triple-negative breast cancer from Powell 
et al38 (AUC measured response). Notably, the Powell et al. dataset was aimed at drug repurposing and thus 
tested a panel of FDA approved agents, including drugs not intended for cancer, with the hope of finding new 
drug mechanism of action and shorten the translational time line. We downloaded  PID14 and  REACTOME15 
pathway gene sets from  MSigDB40,41.

Ethical approval. All data used in this study were downloaded from publicly available repositories and 
require no additional institutional ethical approval.

Preparing pathway‑based gene expression features. Harmonization: To make expression values 
generated from different platforms comparable (Table S1), all data were log-transformed and harmonized. We 
selected common gene set in cell line gene expression data and tumor gene expression data to perform data har-
monization following previously published procedures for batch  correction4,42. In short, each dataset was treated 
as a batch, and then was standardized gene-wise to have a mean of zero and standard deviation of one. Random 
effects across batches were then estimated via the Bayesian method developed by Johnson et al42. Third, scaled 
data was adjusted based on the estimators obtained from the previous step. All three steps were completed by 
using the pyCombat package.

Pathway enrichment analysis: We conducted single-sample Gene Set Enrichment (ssGSEA) analysis on the 
harmonized gene expression data to quantify pathway activity in each sample using the PID and REACTOME 
 pathways14,15. We ran permutation tests 1000 times using the python library GSEApy to establish significance 
scores. We termed the resulting pathway features as EXP.

Preparing drug features with chemical structure and target information. Drug features were 
represented by canonical SMILES and drug targets, respectively. We used one-hot vectors with a fixed size of 
256 bits of Morgan fingerprint to encode chemical structure for each drug (CHEM features). For drug target 
data, we performed the Network-based Pathway Enrichment Analysis (NetPEA)43 with PID and REACTOME 
 pathways14,15 to quantify the propagated effects of therapeutic targets on pathway genes within the protein–pro-
tein interaction network which was downloaded from the STRING  database44. Detailed procedures for both 
feature types were described in our previous  work10 (DGNet features).

Building pre‑trained cell line model using in‑vitro drug sensitivity data. After data preprocessing 
described above, input features consisting of CHEM, DGNet and EXP were concatenated and fed into a deep 
neural network with four hidden layers with 1000, 800, 500, and 100 neurons respectively. Dropout was applied 
to the neuron level with 10% probability to drop as described in previous  studies10. Other hyperparameters were 
also adopted, including learning rate of 0.0004, early stopping at 30 patience (the number of epochs to wait 
before early stop if no progress on the validation set), ELU activation function for each hidden layer except for 
the output layer, and the weight values after a gradient update were clipped between −5 and 5. The loss func-
tion is RMSE, and the optimization function is Adamax. We performed five-fold cross validation and then used 
the best model to refit the whole dataset to obtain a pre-trained cell line model. The drug sensitivity data in 
the GDSC dataset were quantified using two continuous variables, IC50 and AUC, representing half maximal 
inhibitory concentration and the area under the fitted dose response curve, respectively. We converted IC50 to 
-log10IC50 and use 1-AUC to define drug sensitive as the AUC values ranges from 0 to  145. We eventually used 
only the model that predicts 1-AUC as the final pre-trained model because it had better performance in terms 
of Root Mean Squared Error (RMSE) on the GDSC data, with an average RMSE of 0.096 across five test folds, 
comparing to mean RMSE of 0.42 achieved by the model that used −  log10IC50 as the response variable.

Fine‑tuning the transfer learning model. We considered different parameter settings for the pretrained 
model, including the number of pre-trained layers to transfer and whether to retrain the pretrained parameters 
or no retraining at all. We also investigated several hyperparameter spaces, including the choices of optimizer, 
activation function, batch size, dropout rate, learning rate, the number of neurons for the newly added layers, 
and the number of new hidden layers. The range of parameter values explored is detailed in Table S8. The best 
set of parameters was determined using the Bayesian optimization via the BayesianOptimization python library. 
The final parameters used for model comparison are listed in Table S9.

Transfer learning from cell lines to tumors. Harmonized expression levels from the GDSC cell lines 
and the tumor/PDX datasets were converted into pathway-level features following the procedure described 
above. Drug features were obtained using the same processing procedures. Features from the pre-trained cell line 
in-vitro model were used to fit a deep classifier (Fig. 1). Hyperparameters were fine-tuned as outlined above. The 
sigmoid function was used in the output layer to generate prediction in the form of probability. Before training, 
clinical responders were coded as 1 while non-responders were coded as 0. During training, binary cross entropy 
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was optimized based on training and validation data. The model performance was evaluated by the rest of test 
set. We performed five-fold cross validation for five times and averaged 25 folds the area under the receiver 
operating curve (AUROC) for model comparison.

Transfer learning from cell lines to PDX. We tested our transfer learning models on two types of PDX 
outcomes: dichotomous (responsive/non-responsive) and continuous AUC.

For the dichotomous outcome (PDX-D), we designed a classification task that used the same workflow 
described for the tumor transfer learning model, but due to the large class imbalance between responders and 
non-responders, we randomly subsampled from the non-responder class, so that every drug has a ratio of 1:3 
for responders and non-responders. This ratio achieved the best performance relative to compared ratios of 1:2, 
1:3 and 1:4, achieving mean AUROC 0.58, 0.61, 0.58, respectively.

For the PDX-C regression task, we used mean squared error (MSE) as the loss function, and no activation 
function was used in the output layer to restrict output range. Root mean squared error (RMSE), averaged over 
five folds, was used to evaluate model performance. Other procedures such as expression data harmonization, 
feature engineering, pretrained model construction, transfer learning model tuning, and validation were also 
performed following the same practice as detailed for tumors. This dataset used a customized AUC measures 
which has an inverse relationship with the dose-dependent AUC of GDSC (Fig. S3). Therefore, the higher the 
adjusted AUC value, the more sensitive to a drug. In order to generate comparable AUC values between the two 
studies, we downloaded the raw drug screening data from GDSC (ftp:// ftp. sanger. ac. uk/ pub/ proje ct/ cance rrxge 
ne/ relea ses/ curre nt_ relea se/ GDSC2_ public_ raw_ data_ 25Feb 20. csv) and applied the same statistical workflow 
as previously  described38.

Compare between‑sample and within‑sample performance. We compared prediction performance 
with/without using the transfer learning method by averaging AUROC scores for dichotomous predictions, and 
RMSE values for continuous outcomes. For within-sample comparison, we further broke down samples into 
GDSC drugs/GDSC cancer types and non-GDSC drugs/non-GDSC cancer types. We focused on drugs/cancer 
types that have at least five samples to calculate performance scores on a single drug/single cancer type basis. 
Finally, we averaged scores across GDSC samples, and non-GDSC samples, respectively for comparison.

Explaining prediction outcomes by molecular pathways. We estimated the contribution of input 
features to the prediction values based on Shapley  values46 via the DeepExplainer function of the  SHAP47 pack-
age. Feature importance is quantified by the mean of absolute Shapley values across samples. The higher the 
value, the greater contribution to the prediction.

For dichotomous predictions, we used true positives and negatives to define responders and non-responders, 
respectively as they are accurately labeled by our models. After prediction categorization, we identified top con-
tributing pathways for two groups of samples, respectively.

For continuous predictions, we ordered features by ranked importance across all samples. Enrichment of 
each pathway was compared for two groups using Mann–Whitney U test, and the corresponding two-sided p 
values were adjusted with Benjamin-Hochberg false discovery rate method. We set the significance level at 0.05 
for the FDR-adjusted p values.

Statistical analysis. Results of repeated cross validation are presented in the format of mean ± SD. Statisti-
cal tests, significance, and the number of samples are presented followed by the respective data or figure legends.

Data availability
Sources of raw drug screening data are described in this manuscript. Processed data (molecular fingerprint, 
pathway enrichment scores for drug targets and pre-treatment gene expression) are available at https:// doi. org/ 
10. 5281/ zenodo. 60938 18.

Code availability
Python code that are critical to the analysis and generation of figures are available at https:// github. com/ TangY 
iChing/ TranP athDSP.
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