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Alternaria sp. MG1, an endophytic fungus previously isolated from Merlot grape,

produces resveratrol from glucose, showing similar metabolic flux to the phenylpropanoid

biosynthesis pathway, currently found solely in plants. In order to identify the resveratrol

biosynthesis pathway in this strain at the gene level, de novo transcriptome sequencing

was conducted using Illumina paired-end sequencing. A total of 22,954,434 high-quality

reads were assembled into contigs and 18,570 unigenes were identified. Among

these unigenes, 14,153 were annotated in the NCBI non-redundant protein database

and 5341 were annotated in the Swiss-Prot database. After KEGG mapping, 2701

unigenes were mapped onto 115 pathways. Eighty-four unigenes were annotated in

major pathways from glucose to resveratrol, coding 20 enzymes for glycolysis, 10 for

phenylalanine biosynthesis, 4 for phenylpropanoid biosynthesis, and 4 for stilbenoid

biosynthesis. Chalcone synthase was identified for resveratrol biosynthesis in this

strain, due to the absence of stilbene synthase. All the identified enzymes indicated a

reasonable biosynthesis pathway from glucose to resveratrol via glycolysis, phenylalanine

biosynthesis, phenylpropanoid biosynthesis, and stilbenoid pathways. These results

provide essential evidence for the occurrence of resveratrol biosynthesis in Alternaria

sp. MG1 at the gene level, facilitating further elucidation of the molecular mechanisms

involved in this strain’s secondary metabolism.

Keywords: Alternaria sp., biosynthesis pathway, genes, resveratrol, transcriptome analysis

INTRODUCTION

Resveratrol is a phenolic compound that was found to have multiple functions, including
neuroprotection, with no major adverse effects (Park and Pezzuto, 2015). High quantities of
resveratrol are urgently needed for application in functional food processing (Bhullar andHubbard,
2015). Currently, resveratrol is mainly produced by extraction from plant materials, which is
highly limited by plant growth times and low yields (Kiselev, 2011). Many efforts have been made
to construct resveratrol-producing Escherichia coli or yeast strains through genetic modification
(Kiselev, 2011). Nearly all genes used in currently reported methods are plant based. Identifying
microbial genes would provide new genes formetabolic engineering of resveratrol production using
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microorganisms and thus have great potential in
resveratrol production. However, the microbial resveratrol
biosynthesis pathway has not yet been identified in the
literature.

Currently, the resveratrol biosynthesis pathway is only
found in plants (Figure 1; Tan et al., 2012; Tavares et al., 2013).
The key enzymes of this pathway, in order, are phenylalanine
ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (CYP73A),
4-coumarate-CoA ligase (4CL), and stilbene synthase (STS),
resveratrol synthase (ST), or chalcone synthase (CHS).
Phenylalanine ammonia, cinnamic acid, and 4-coumarate-
CoA are the key intermediates, in order (Sparvoli et al., 1994; Tan
et al., 2012; Tavares et al., 2013). Deamination of phenylalanine,
catalyzed by PAL, is the first step in the pathway, followed
by the conversion of trans-cinnamate into 4-coumaroyl-CoA,
catalyzed by CYP73A and 4CL. Biosynthesis of resveratrol from
one 4-coumaroyl-CoA and three malonyl-CoA units is the last
step in the pathway and is catalyzed by CHS/ST (Jeandet et al.,
2002). The key enzymes of the resveratrol biosynthesis pathway
have been found in some microorganisms, such as PAL in some
yeast strains (Xue et al., 2007; Liu et al., 2015), CHS/ST in
Saccharopolyspora erythraea (Magdevska et al., 2010), and 4CL
in Aspergillus clavatus (Accession No. XM001274066, journal
unpublished). Although, these key enzymes were identified in
microorganisms separately, the complete biosynthesis pathway
has not been predicted in any strain. We previously found
Alternaria sp. MG1, an endophytic fungus isolated from
Merlot grape, could produce resveratrol in vitro (Shi et al.,
2012). Metabolic flux and some enzymatic activities related to
resveratrol biosynthesis were also detected in this strain (Zhang
et al., 2013b). However, the enzymatic activity of key enzymes
in the pathway, such as STS, ST, or CHS has not been identified
before now due to the shortage of proper measurement methods.
Therefore, identification of the candidate genes in this strain

FIGURE 1 | Schematic representation of the resveratrol biosynthesis pathway in plants.

would be helpful in understanding the resveratrol biosynthesis
pathway.

Currently, transcriptome sequencing is an effective approach
for mining genetic information from unknown genome
sequences, and is useful in gene sequencing, new gene discovery,
and studying gene regulation (Wang et al., 2009). This method
can produce millions of short cDNA reads and provide useful
information on gene expression, based on RNA abundance (Peng
et al., 2014; Zhang et al., 2015). Next-generation sequencing
technologies such as Roche 454 and Illumina RNA-Seq have
emerged during a golden age of scientific discovery (Margulies
et al., 2005; Metzker, 2010). The Roche 454 platform is capable
of generating 80–120Mb of sequence data in 200–300-bp reads
during a 4 h run, and has seen wide usage in recent times.
For microorganisms, the transcriptome analysis of Pythium
ultimum (Cheung et al., 2008), Sclerotium rolfsii (Schmid et al.,
2010), and Golovinomyces (Wessling et al., 2012) have been
successfully performed using the Roche 454 platform. However,
the pyrosequencing approach is prone to errors that result from
incorrectly estimating the length of homopolymeric sequence
stretches. As of 2015, 454 pyrosequencing is nearing retirement
and will not be supported by the distributing company (Roche)
after 2016 (Bleidorn, 2016). In recent years, a newly developed
platform (Illumina Hiseq 2000/2500) has been successfully
used in de novo sequencing experiments, providing a new
transcriptome sequencing approach for non-model species,
especially fungal species, without a reference genome (Zhang
et al., 2013a; Liu et al., 2014; Lou et al., 2014). This platform can
produce a large amount of genetic information for many analysis
types, such as comparative transcriptome analysis (Quan et al.,
2015; Qiu et al., 2016), SSR identification (Yu et al., 2014; Huang
et al., 2015) and uncovering unknown biosynthesis/metabolism
pathways, in particular (Zhang et al., 2015; Zondag et al., 2016).
Compared with the 454 technology and other sequencing
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platforms, the Illumina platform has optimized the traditional
sequencing method, and is advantageous in its high throughput,
high sensitivity, high accuracy and low cost, distinguishing it
from its competitors. Based on the price, accuracy, and RNA-seq
throughput, using the Illumina platform for this research is a
sensible choice.

Therefore, in order to obtain basic information on potential
genes in the resveratrol biosynthesis pathway of Alternaria
sp. MG1, total mRNA was extracted from the strain at high
resveratrol-producing stages and then used for RNA-seq library
construction. The obtained sequencing data were subsequently
subjected to the following analyses: de novo assembly of unigenes,
bioinformatics analysis, functional annotation, GO classification,
and KEGG pathway analysis. The obtained results revealed
molecular information regarding gene sequence, identity,
and function. Most importantly, the resveratrol biosynthesis
pathway was constructed and illustrated from these identified
genes.

MATERIALS AND METHODS

Materials and RNA Extraction
Alternaria sp. MG1 (code: CCTCC M 2011348), a strain
previously isolated from the cob of Merlot grape, was used in the
study and stored in the China Center for Type Culture Collection
(Wuhan, China; Shi et al., 2012). For preparation ofAlternaria sp.
MG1 cells, the strain was cultivated in a 250 mL flask containing
100 mL liquid potato-dextrose broth [PDB, 200 g potato (peeled
and diced), 20 g glucose, 1000mL water]. The cultivation was
carried out at 28◦C and 120 rpm in a rotary shaker. After a
cultivation time of 21 h, the optimum period previously found
to produce abundant resveratrol (Zhang et al., 2013b), the cells
were collected by centrifugation at 1136 × g for 10 min at 4◦C
using a refrigerated centrifuge (HC-3018R, Anhui USTC Zonkia
Scientific Instruments Co., Ltd., Anhui, China). After washing
twice with sterile water, the collected cells were immediately
stored in liquid nitrogen until further analysis. Extraction of the
total RNA from the cells was performed using a Spin Column
Fungal total RNA Purification Kit [Sangon Biotech (Shanghai)
Co., Ltd., China]. RNA extraction quality and quantity was
analyzed using a NanoDrop 2000 Spectrophotometer (Thermo
Scientific, Massachusetts, USA) gel electrophoresis, and an
Agilent 2100 Bioanalyzer (Agilent Technologies, California,
USA).

mRNA-seq Library Construction for
Illumina Sequencing
After total RNA extraction, the RNA-seq library was constructed
according to the previously reported method (Tang et al., 2014).
A reverse transcription-PCR system (Promega, Madison, WI,
USA) was used to generate the first DNA strand, and an
amplification reaction containing RNase H, DNA polymerase
I, and dNTPs was used to produce the second and subsequent
DNA strands. A QIAquick purification kit was used to ligate the
adaptor sequences to the ends of their double-stranded cDNA. In
this way, the library was prepared from 200 to 250 bp (average
size, 230 bp) size selected cDNA fragments. The library was

subsequently sequenced using the Illumina HiSeq 2500 Platform
(Illumina Inc., San Diego, CA, USA) to generate 101 bp paired-
end reads.

Sequence Data Analysis and Assembly
Based on sequencing by synthesis (SBS) technology, the quality
reads were assembled using the Illumina HiSeq 2500 platform.
The quality score of the raw reads was set at Q30 or above.
Generally, the raw reads contain tiny minority primer sequences,
adapter sequences, and other potential contaminants. Prior to
subsequent analysis, the clean reads were filtered from the raw
reads by removing the reads with only adaptor and unknown
nucleotides. Data analysis and base calling were performed
using Illumina instrument software. Raw sequence data were
subsequently deposited in the NCBI database with the SRA study
accession number, SRP060338. The trimmed reads obtained for
the samples were then assembled into unigenes using the Trinity
platform1 with the K-mer = 25 and group pairs distance = 500
(maximum length expected between fragment pairs; Grabherr
et al., 2011).

Gene Expression Analysis and Unigenes
Annotation
To evaluate the expression level of all reads, each unigene
was compared with the unigene database by using Bowtie
(http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml) and
normalized into RPKM (Reads per kb per million reads) values
according to formula (1).

RPKM =
Map the unigene reads

Map all unigenes reads
(

million
)

× The unigene length
(

kb
)

(1)

Functional annotation of each unigene was searched against
various protein databases, and identified by referring to the
annotation information of the given unigene that has the highest
sequence similarity with the tested one. All unigenes were also
searched against the NCBI non-redundant protein database (Nr),
Swiss-Prot, TrEMBL, and Cluster of Orthologous Groups of
proteins (COG) using BLAXTX, and against the NCBI nucleotide
database (Nt) using BLASTN, with a cut-off E-value of 10−5

for both. The Blast2 GO program and WEGO software were
also used to obtain the gene ontology (GO) annotations and the
distribution of gene functions for each unigene using a cut-off
value of 10−5 (Conesa et al., 2005; Ye et al., 2006). Assignment of
each unigene to different pathways was performed by searching
against the Kyoto encyclopedia of genes and genomes (KEGG
databases) using BLASTX and KEGG automatic annotation
server (KAAS2; Moriya et al., 2007).

Phylogenetic Analysis
To align the sequences and construct the phylogenetic tree,
the chalcone synthase amino acid sequences of Alternaria sp.
MG1 were translated from a nucleotide sequence using a web
translate tool3. A phylogenetic tree was constructed with MEGA

1http://trinityrnaseq.github.io/
2http://www.genome.jp/tools/kaas
3http://web.expasy.org/translate/
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(Molecular Evolutionary Genetics Analysis) software version 5.04

using the minimum-evolution method with bootstrapping (1000
replicates). Amino sequence alignment was performed using
ClustalW (opening = 10, extension = 0.2), and displayed using
GENEDOC version 2.6.0025.

RESULTS

Sequence Analysis and Assembly
To obtain an appropriate overview of the transcriptome and
gene activity at nucleotide resolution of Alternaria sp. MG1, a
mixed cDNA sample representing the high resveratrol-producing
phase of this strain was prepared and sequenced. Each sequenced
sample yielded 2 × 100 bp independent reads from either end
of a cDNA fragment. After stringent quality assessment and data
filtering, 22,954,434 reads (4.64 Gb) with 53.73% (GC%) and
89.42% Q30 bases (those with a base quality higher than 30) were
selected as high quality reads for further analysis (Table 1).

By using the Trinity de novo assembly program, the
distribution of data assembly was obtained and shown in Table 2.
It was found that all high-quality reads produced 2,010,245
contigs with an N50 length of 45 bp and a mean length of 45.84
bp. A total of 37,163 transcripts were obtained with anN50 length
of 5004 bp and a mean length of 2358.86 bp. In total, there
were 21,020 transcripts longer than 1 kb and 14,042 transcripts
longer than 2 kb. Finally, 18,570 unigenes were identified from
the contigs data set with an N50 length of 2153 bp and a mean
length of 1122.38 bp, of which 6471 genes (34.85%) were >1 kb.
These results indicated that the obtained transcriptome data were
acceptable and reliable in quality.

Unigenes Expression Analysis and
Functional Annotation
After comparison of sequencing reads and the unigene database,
identification, and functional annotation of unigene expression
was obtained. By uniting RNA-Seq by Expectation-Maximization
(RSEM) with the comparison results, the gene expression level
was estimated. Here, the RPKM values were used to represent the
expression abundance of each unigene. The distribution of each
gene’s expression is shown in Figure 2.

Several complementary approaches were also used to annotate
the assembled sequences, including aligning the sequences with
those deposited in diverse databases such as Nr, Nt, Swiss-
Prot, COG, GO, and KEGG. The best alignment was selected
from matches with an E-value of <10−5. The obtained overall
functional annotation is depicted in Table 3. In total, 14,186
unigenes were successfully annotated in the transcriptome
database, including 11,201 unigenes with a length >300 nt and
6291 unigenes with a length >1000 nt. Due to a unigene may be
annotated inmore than one database, the total annotated number
was less than the sum of all database. The functional annotation
of each database is detailed below.

The Gene Ontology (GO) project is a collaborative effort to
address the need for consistent descriptions of gene products

4http://www.megasoftware.net/mega.html
5http://www.softpedia.com/get/Science-CAD/GeneDoc.shtml

TABLE 1 | Illumina transcriptome sequencing summary for Alternaria sp.

MG1.

Sample Read length Read number Base number GC (%) %≥Q30 (%)

MG1 PE100 22,954,434 4,636,177,982 53.73 89.42

TABLE 2 | Assembled data for contigs, transcripts, and unigenes in the

transcriptome of Alternaria sp. MG1.

Length range Contigs Transcripts Unigenes

200–300 1,996,791 (99.33%) 5850 (15.74%) 5170 (27.84%)

300–500 3842 (0.19%) 4894 (13.17%) 3755 (20.22%)

500–1000 3062 (0.15%) 5399 (14.53%) 3174 (17.09%)

1000–2000 3201 (0.16%) 6978 (18.78%) 3298 (17.76%)

2000+ 3349 (0.17%) 14,042 (37.78%) 3173 (17.09%)

Total number 2,010,245 37,163 18,570

Total length 92,148,728 87,662,222 20,842, 526

N50 length 45 5004 2153

Mean length 45.84 2358.86 1122.38

across databases. A further functional classification of all
unigenes was performed using a set of plant-specific GO slims
(Figure 3). A total of 8190 unigenes (5773%) were assigned to
51 functional groups using GO assignments, including cellular
component, molecular function, and biological process. For
the three major GO categories, cellular component (12,265
unigenes), molecular function (10,491 unigenes), and biological
process (17,720 unigenes), the dominant subcategories were
metabolic process (5749 unigenes), catalytic activity (4911
unigenes), cellular process (4047 unigenes), and binding (3926
unigenes), respectively. Cell part (2534 unigenes), organelle (1989
unigenes), biological regulation (1013 unigenes), and transporter
activity (605 unigenes) were also well represented. However, a
few genes were assigned to the categories cell killing (1 unigene),
channel regulator activity (1 unigene), and metallochaperone
activity (1 unigene).

To evaluate the completeness of our transcriptome library
and the effectiveness of our annotation process further, we
used the annotated unigene sequences to search for the genes
in the COG classifications. All unigenes were subjected to a
search against the COG database for functional prediction and
classification. Overall, 4954 sequences showing a hit with the
Nr database were successfully assigned to COG classifications
(Figure 4). COG annotated putative proteins were functionally
classified into at least 25 protein families. The cluster for
general function prediction (1489; 30.06%) represented the
largest group, followed by amino acid transport and metabolism
(767; 15.48%), carbohydrate transport and metabolism (724;
14.61%), inorganic ion transport and metabolism (532; 10.74%),
translation, ribosomal structure, and biogenesis (437; 8.82%),
replication, recombination, and repair (425; 8.58%), energy
production and conversion (345; 6.96%), lipid transport and
metabolism (338; 6.82%), transcription (313; 6.32%), post
translational modification, protein turnover, and chaperones
(307; 6.20%). Only a few unigenes were assigned to cell

Frontiers in Microbiology | www.frontiersin.org 4 August 2016 | Volume 7 | Article 1257

http://www.megasoftware.net/mega.html
http://www.softpedia.com/get/Science-CAD/GeneDoc.shtml
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Che et al. Resveratrol Biosynthesis Pathway in Alternaria

FIGURE 2 | Quantification and distribution of gene expression in the Alternaria sp. MG1 unigenes.

TABLE 3 | Functional annotation of the Alternaria sp. MG1 transcriptome.

Annotated database Annotated number 300–1000 bp ≥1000bp

COG_annotation 4954 1386 2943

GO_annotation 8190 2595 3958

KEGG_annotation 2701 683 1696

KOG_annotation 6306 1713 3881

Pfam_annotation 7823 2140 4851

Swissprot_annotation 5341 2216 3543

TrEMBL annotation 8201 2216 5051

Nr_annotation 14,153 4983 6297

Total 14,186 4994 6299

motility and nuclear structure (5 and 1 unigenes, respectively).
No unigene was found in extracellular structure. In addition,
419 (8.46%) unigenes were assigned to secondary metabolite
biosynthesis, transport and catabolism, and coenzyme transport
and metabolism (173; 3.49%).

To demonstrate the potential application of the generated
unigenes of Alternaria sp. MG1 in the present study, biochemical
pathways were also represented by the unigene collection.
Annotations of the obtained unigenes were fed into the
KEGG Pathway Tools, an alternative approach to gene function
categorization, with an emphasis on biochemical pathways. This
process predicted 115 pathways represented by 2701 unigenes
(Table 4). Most pathways fell into the categories “metabolic
pathways,” “genetic information processing,” “environmental
information processing,” “cellular processes,” and “organismal
systems.”

The annotated glycan biosynthesis and metabolism
pathways (84 unigenes) were “N-glycan biosynthesis” (41
unigenes) and “various types of N-glycan biosynthesis” (11
unigenes), “glycosaminoglycan degradation” (2 unigenes),
“glycosylphosphatidylinositol (GPI)-anchor biosynthesis” (21
unigenes), and “glycosphingolipid biosynthesis” (11 unigenes),
and “other glycan degradation” (9 unigenes). The annotated
pathways involved in terpenoid and polyketide metabolism

(35 unigenes) were “terpenoid backbone biosynthesis”
(14 unigenes), “limonene and pinene degradation” (11
unigenes), “diterpenoid biosynthesis” (2 unigenes), and
“carotenoid biosynthesis” (8 unigenes). Metabolism pathways
for the biosynthesis of secondary metabolites (58 unigenes) were
also annotated as “phenylpropanoid biosynthesis” (23 unigenes),
“flavonoid biosynthesis” (7 unigenes), “flavone and flavomol
biosynthesis” (3 unigenes), “stilbenoid, diarylheptanoid, and
gingerol biosynthesis” (3 unigenes), “isoquinoline alkaloid
biosynthesis” (10 unigenes), “caffeine metabolism” (4 unigenes),
and “glucosinolate biosynthesis” (1 unigene).

Key Genes Annotated in Resveratrol
Biosynthesis Pathway
In order to reveal the genetic basis of the resveratrol biosynthesis
pathway in Alternaria sp. MG1, all unigenes involved in
resveratrol biosynthesis were specifically selected in the study. As
expected, many genes involved in the pathway were successfully
annotated in COG and KEGG databases. A total of 84 unigenes
were annotated in the four major metabolism pathways leading
to the formation of resveratrol, including glycolysis (ko00010),
phenylalanine biosynthesis (ko00400), phenylpropanoid
biosynthesis (ko00940), and stilbenoid biosynthesis (ko00945).
The annotated unigenes and corresponding RPKM values are
indicated in Figure 5.

Glycolysis (ko00010) contributes to the early stage of
resveratrol biosynthesis by converting different substrates (e.g.,
α-D-glucose and β-D-glucose) to phosphoenolpyruvic acid (PEP;
Figure 5A-1). In total, 48 unigenes, coding 20 enzymes such
as HK, PGI, pfkA, ALDO, tpiA, GADPH, PGK, PGAM, and
ENO were identified in this pathway. The unigene expression
analysis showed the annotated unigenes encoding these enzymes
exhibited a wide range of abundance variation (Figure 5B-1).
For example, c10831 and c3258 showed an abundance of 2697.6
and 1093.4 RPKM in GADPH and pfkA, respectively. However,
c5248 and c1093 had abundances of only 0.56 and 0.62 RPKM,
respectively. Such great deviations in the gene expression level
were also observed in different unigenes encoding the same
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FIGURE 3 | Functional annotation of the assembled sequences based on gene ontology (GO) categorization.

FIGURE 4 | Classification of the clusters of orthologous groups (COG).
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TABLE 4 | Pathway classification of Alternaria sp. MG1 unigenes.

Category Pathway Count

Metabolism Amino acid metabolism 379

Biosynthesis of other secondary metabolites 58

Carbohydrate metabolism 491

Energy metabolism 145

Glycan biosynthesis and metabolism 84

Lipid metabolism 242

Metabolism of cofactors and vitamins 106

Metabolism of other amino acids 100

Metabolism of terpenoids and polyketides 35

Nucleotide metabolism 164

Genetic information

processing

Translation 420

Folding, sorting and degradation 39

Transcription 52

Replication and repair 46

Transcription 111

Folding, sorting, and degradation 47

Replication and repair 137

Folding, sorting, and degradation 182

Environmental

information processing

Membrane transport 18

Signal transduction 22

Cellular processes Transport and catabolism 168

Organismal systems Immune system 8

Environmental adaptation 20

enzyme. For example, in the two unigenes encoding the enzyme
HK, c11299 had an abundance of 57.32 RPKM, whereas c5761
had an abundance of 1.59 RPKM only.

Meanwhile, 16 unigenes were annotated in phenylalanine
biosynthesis (ko00400; Figure 5A-2). This pathway is essential
for the biosynthesis of resveratrol by shikimic acid formation
and subsequent conversion to L-phenylalanine. A single unigene
encoding one enzyme was widely found in this pathway. The
annotated 16 unigenes encoded 10 key enzymes in the pathway,
with the unigene expression levels ranging from 0.96 to 78.21
RPKM. The abundance of the key unigenes were 78.21 for
GOT1, 64.6 for aroF, 60.6 for chorismate synthase, 9.48 for aroD,
6.26 for hisC, 5.46 for aroB, and RPKM < 5 for the other
enzymes.

Finally, key genes contributing to phenylpropanoid
biosynthesis and stilbenoid biosynthesis, the most important
pathways for resveratrol biosynthesis were also identified in the
study. Overall, 20 unigenes (Supplementary Material) encoding
four enzymes were annotated in the two pathways for converting
L-phenylalanine into resveratrol (Figure 5A-3). Important
enzymes in phenylpropanoid biosynthesis (ko00940) and
stilbenoid biosynthesis (ko00945) were successfully annotated
in our transcriptome database. The expression of the unigenes
encoding essential enzymes for resveratrol biosynthesis,
PAL, 4CL, and CYP73A were 48.6, 11.57, and 14.38 RPKM,

respectively (Figure 5B-3). Resveratrol synthase, the key enzyme
catalyzing the last step of resveratrol biosynthesis in plants, was
not annotated in the study. However, chalcone synthase (CHS)
was successfully annotated in our transcriptome database. CHS
was reported as an isoenzyme of resveratrol synthase, having
activity on resveratrol biosynthesis, but with low efficiency (Lanz
et al., 1991; Jeandet et al., 2010). Three unigenes were annotated
for encoding CHS in this study, and their expression levels were
2.65 (c8532), 1.38 (c4454), and 1.16 (c13368) RPKM.

Phylogenetic Analysis of Annotated
Chalcone Synthase
Chalcone synthase was reported as an isoenzyme of resveratrol
synthase having low activity in resveratrol biosynthesis (Lanz
et al., 1991; Jeandet et al., 2010). Three chalcone synthases
were annotated in the obtained transcriptome database. They
were c8532 (GEMY01016815), c4454 (GEMY01012697), and
c13368 (GEMY01001602), with fragment lengths of 1153,
348, and 447 bp and predicted protein sequences of 314,
115, and 149 amino acids, respectively. According to the
BLASTP results, c8532 and c4454 had high sequence homology
with chalcone synthase and stilbene synthase from different
species. Phylogenetic analysis of the CHS-like domain revealed
that c8532 and c4454 were located in the same cluster of
chalcone and stilbene synthase, while c13368 was located in
another outgroup (Figure 6). Comparatively, c8532 was closer to
Aegilops tauschii stilbene synthase (EMT02178.1) and A. tauschii
chalcone synthase (EMT09075.1) than other enzymes, while
c4454 was similar to Alternaria alternata polyketide synthase
(JX103640) and Pyrenophora tritici-repentis chalcone synthase
(XM001934899).

As shown in Figure 7A, c8532 CHS-like domains were
aligned with the corresponding sequences of many reported
CHS proteins. There was a more than 50% similarity between
c8532 and A. tauschii chalcone synthase (68%) and Oryza sativa
chalcone synthase (54%). The sequence homology of c8532 with
selected proteins was 42% for Persicaria minor, 45% for Vitis
vinifera, 43% for Arachis hypogaea, and 42% for Polygonum
cuspidatum. c4544 had the highest homology with Alternaria
alternate polyketide synthase (96%), and less homology with P.
tritici-repentis (78%), Neurospora crassa (49%), Colletotrichum
graminicola (47%), and Aspergillus oryzae (45%) (Figure 7B).
The two CHS-like domains, N-terminal domain and C-terminal
domain of chalcone synthase and stilbene synthase were marked
in the sequence alignment (Figure 7). The amino acids indicated
by a black asterisk were the conserved domains for the active
site. The product binding sites were marked with a black dot.
Overall, the phylogenetic analysis indicated that c8532 and
c4454 might have the same function as chalcone and stilbene
synthase.

DISCUSSION

As a newly explored biological resource, endophytic fungi
offer an excellent opportunity to produce active compounds
without the same limitations as plant resources. However, critical
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FIGURE 5 | Annotated unigenes (A) and the level of gene expression (B) involved in resveratrol biosynthesis pathway annotated in Alternaria sp. MG1.

obstacles such as low and unstable production of metabolites
greatly inhibit the application of these fungi (Zhang et al.,
2015). Understanding the biosynthesis pathway and relative
key genes is essential for an intensive control of their viability
and stability. To our knowledge, many resveratrol-producing
endophytic fungi have been found in some plants (Donnez et al.,
2009; Mei et al., 2015). However, the genomics, transcriptome
data, or pathway for resveratrol biosynthesis in microorganisms
(including endophytic fungi) has not been elucidated before
now.

Alternaria is a genus of ascomycete fungi. Many strains of
this genus have been identified as saprophytic and as major
plant pathogens (Dang et al., 2015). Alternaria species have
been found to be a widespread, naturally occurring fungal
flora. Approximately 95% of species within this genus were
found to be facultative parasites in plants (Neergaard, 1945;
Pedras et al., 2009). Some species of Alternaria were found
not only to be responsible for huge economic losses in the
agricultural industry (Andersen et al., 2015; Ntasiou et al.,
2015), but also directly responsible for the development of
severe and potentially fatal diseases such as asthma, psoriasis,
and jaw osteomyelitis, especially in people with compromised
immune systems (Liu et al., 1991; Gabriel et al., 2016).

Despite the clear adverse effects to public health and industry
associated with this fungal genus, many species of Alternaria
are a biological resource for a variety of active compounds
with potential beneficial application. One such compound that
has recently been identified in Alternaria is resveratrol (Shi
et al., 2012). However, the pathways and molecular mechanisms
involved in the production of the harmful and beneficial
compounds within this genus remain largely unexplored in the
literature.

Transcriptome sequencing has been widely used in gene
annotation, marker development, complex transcriptional
regulation, and active compound metabolic pathway research in
the fields of medical science (Quan et al., 2015), phytology (Wang
et al., 2015), and fishery science among others (Chinchilla et al.,
2015). In microbiology especially, transcriptome sequencing is
a powerful tool to investigate microbial interactions in mixed
populations, pathogenicity, evolutionary history, pathogenesis
upon host infection and the key enzymes and associated
metabolic pathways of active compounds (Krajaejun et al., 2014;
Irla et al., 2015). As a tool with high throughput, low cost and
great output, the Illumina HiSeq 2500 sequencing platform was
selected for this study. Transcriptome analysis on Alternaria sp.
MG1 provided useful and important information for subsequent
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FIGURE 6 | Phylogenetic relationships of chalcone synthase between Alternaria sp. MG1 and other known species using a minimum evolution

phylogeny test and 1000 bootstrap replicates.

study of the secondary metabolites in this strain and their
associated biosynthetic pathways. In addition, the sample of
Alternaria sp. MG1 was produced under the optimum conditions
for resveratrol production in order to construct the RNA-seq
library. Therefore, it was speculated that the transcriptome
sequencing database and de novo analysis would reveal important
information regarding the different genes and their associated
functions in the primary and secondary metabolite biosynthesis
of this fungus, particularly resveratrol. These unigene sequences
and their annotations would provide a valuable resource for
investigating specific pathways, processes, and functions in
Alternaria sp. MG1, and will allow the identification of novel
genes involved in the primary and secondarymetabolite synthesis
pathways, and thus promote the developmental regulation of this
fungus.

So far, three (PAL, 4CL, and CHS/ST) of the four key
enzymes have been identified in minority microorganisms
respectively. There was little published regarding these key
enzymes, but some genes have been recorded in the genebank.
For example, PAL in Rhodotorula glutinis (KF770992.1) and
Trichosporon asahii (XM014326038.1); 4CL in Rasamsonia
emersonii (XM013469671.1) and Colletotrichum gloeosporioides
(XM007280559.1); and CHS/ST in Marssonina brunnea
(XM007294196.1) and Aspergillus flavus (XM002380742.1).
However, no complete pathway for microorganisms has been

predicted. In this study, a total of 115 pathways represented by
a total of 2701 unigenes were predicted in Alternaria sp. MG1.
The predicted metabolic pathways in this strain contributing to
resveratrol biosynthesis were that of glycolysis/gluconeogenesis
(ko00010), phenylalanine, tyrosine, and tryptophan biosynthesis
(ko00400), phenylpropanoid biosynthesis (ko00940), and
stilbenoid, diarylheptanoid, and gingerol biosynthesis (ko00945).
Overall, 20 unigenes encoding four enzymes were annotated
in the resveratrol biosynthesis pathway. This work not only
presented the first de novo transcriptome sequencing analysis
of RNA from Alternaria sp. MG1, but also revealed the possible
candidate genes of relative pathways in this fungus for the
first time. Two unigenes were successfully located in a cluster
of chalcone synthase and stilbene synthase by phylogenetic
analysis, with high sequence homology within the CHS-like
domain of active and product binding sites. In addition, we
obtained abundant transcriptomic data for Alternaria sp.
MG1, and carried out an integrated analysis on the gene
expression of resveratrol biosynthesis. These results can be
used to discover the genetic foundation of Alternaria sp.
MG1, especially the resveratrol biosynthetic pathway, as well
as the synthesis pathways of other active compounds. This
understanding could pave the way for genetically improved
varieties of Alternaria sp. MG1 with increased secondary
metabolite yields.
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FIGURE 7 | Comparison of deduced Alternaria sp. MG1 CHS proteins with corresponding sequences of other CHS proteins. Amino acids identical to

Alternaria sp. MG1 are highlighted in black. Numbers indicate the amino acid positions. Black asterisks indicate active sites, and black dots indicate product binding

sites. (A) Alternaria sp. MG1 c8532 comparison with CHS amino acids sequences from Aegilops tauschii (EMT09075.1), Oryza sativa (XM015790505.1), Persicaria

minor (JQ801338.1), Vitis vinifera (NM001280950.1), Arachis hypogaea (AY735111.1), and Polygonum cuspidatum (EF090266.2). (B) Alternaria sp. MG1 c4454

comparison with Alternaria alternata (JX103640.1), Pyrenophora tritici-repentis (XM001934899.1), Neurospora crassa (XM955334), Colletotrichum graminicola

(XM008101261.1), and Aspergillus oryzae (XM001823672.2).
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More importantly, the putative transcriptome information
obtained in this study will provide a significant contribution
toward understanding resveratrol metabolism and
biosynthesis and may help in facilitating elucidation of
secondary metabolite molecular mechanisms in other
microorganisms.
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