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Abstract

We investigated how somatic changes in HNSCC interact with environmental and host risk

factors and whether they influence the risk of HNSCC occurrence and outcome. 180-paired

samples diagnosed as HNSCC in two high incidence regions of Europe and South America

underwent targeted sequencing (14 genes) and evaluation of copy number alterations

(SCNAs). TP53, PIK3CA, NOTCH1, TP63 and CDKN2A were the most frequently mutated

genes. Cases were characterized by a low copy number burden with recurrent focal amplifi-

cation in 11q13.3 and deletion in 15q22. Cases with low SCNAs showed an improved overall

survival. We found significant correlations with decreased overall survival between focal

amplified regions 4p16, 10q22 and 22q11, and losses in 12p12, 15q14 and 15q22. The

mutational landscape in our cases showed an association to both environmental exposures

and clinical characteristics. We confirmed that somatic copy number alterations are an

important predictor of HNSCC overall survival.

Introduction

Head and neck squamous cell carcinomas (HNSCC) constitute a heterogeneous group of can-

cers, which include cancers arising at the oral cavity, nasopharynx, oropharynx, hypopharynx,

and larynx. Collectively, these cancers are the seventh most common malignancy diagnosed

worldwide [1], with areas of high incidence including Mediterranean Europe and South
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America [2]. Despite current therapeutic approaches, the prognosis is quite poor, with a 5-year

survival ranging from approximately 25% to 60%, according to cancer subsite [3].

Cigarette smoking and alcohol abuse are the major risk factors, consistently associated with

the incidence of head and neck cancers [4]. Additionally, human papillomavirus (HPV) infec-

tion is strongly associated with oropharyngeal cancer risk and prognosis, alongside a small

number of other HNSCC [5]. Recent studies have highlighted the association between numer-

ous differential genomic features and these exposures as well as clinical factors, providing

insights for potentially improving prognostic risk stratification for HNSCC[6, 7]. The Cancer

Genome Atlas TCGA has conducted the largest comprehensive genomic study of 528 HNSCC

cases, consisting of an integrative analysis of multi-genomic data including somatic mutations,

gene expression, methylation and miRNAs expression in a clinically and pathologically charac-

terized dataset. The complete data analysis of a subset of 279 patients has allowed the descrip-

tion of the landscape of somatic genomic alterations and the identification of the principal

molecular pathways involved in HNSCC development. Particularly, HNSCC are characterized

by mutation of TP53, whole genome duplications and multiple recurrent chromosomal gains

and losses associated to increased genomic disruption affecting cell cycle checkpoints and

PI3K-AKT signaling[8, 9]. Increased rates of somatic copy number alterations (SCNAs) across

the tumour genome are associated with poor prognosis and therefore it becomes important to

identify SCNAs that might be functionally driving progression and outcome. In addition,

genomic studies have revealed how differential genomic patterns among cases could identify

various subgroups of tumours showing specific associations with histological subtypes, smok-

ing, HPV status and overall survival[6, 10]

The principal objective of this study was to investigate whether somatic genetic changes

identified in two large comprehensive case series in Europe and South America could influ-

ence the risk of HNSCC occurrence and outcome from those areas. A second objective was to

investigate how somatic changes interact with environmental and host risk factors including

HPV infection, alcohol and smoking. We selected 180 paired samples diagnosed as HNSCC

from three multicentre studies representative of high incidence regions in Europe (ARCAGE

study), Brazil (GENCAPO study) and Argentina (LA study); from which both tumour and

blood samples were available in the IARC biorepository, along with complete epidemiological

data.

Materials and methods

Study population and risk factor data collection

A total of 240 HNSCC cases were selected from three multicentre studies: two conducted in

South America (LA study) between 1998 and 2002, and (GENCAPO study) between 1998 and

2008; and one completed in Europe (ARCAGE study) between 2002 and 2005. Selection of

cases was based on availability for biological samples along with complete epidemiological and

clinical data. However, no treatment information was obtained from most of these cases as this

variable was not included in the original protocols. Extensive details of the three-large multi-

centre case-control studies are included elsewhere [11–13]. Briefly, all subjects underwent

personal interviews to collect information on lifestyle exposures and hospital records were

reviewed to obtain clinical and pathological information. All cases had biological samples col-

lected at diagnosis and before any treatment [11–13]. Centralized HPV testing was completed

for the three participating studies determined on serology testing as described before [14].

HPV positivity was defined based on HPV16 E6 status, which has been shown to be a highly

sensitive and specific marker of HPV16-related oropharyngeal tumours [15–17]. Immunohis-

tochemical evaluation of P16INK4a expression and HPV DNA genotyping were also completed
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for a subset of samples using protocols previously described [12, 14], and these data were also

used to confirm HPV status.

Informed consent was obtained from all participants in the three studies, and the analysis

was approved by the Ethical Review Committee of the International Agency for Research

on Cancer. All experiments were performed in accordance with relevant guidelines and

regulations.

Targeted sequencing

A customized gene panel of 14 genes (GeneRead DNAseq Custom Panels, Qiagen1) was used

for targeted sequencing of tumour-blood pair cases. Gene selection was based on an indepen-

dent analysis of TCGA data on HNSCC using MutsigCV algorithm complemented with the

list of the most frequently mutated genes reported in the literature. Briefly, 20ng of DNA were

used in multiplex PCR reactions using Qiagen1 recommended protocol. For library prepara-

tion, 100 ng of multiplex pools and the NEBNext End Repair Module (New England Biolabs,

Ipswich, MA, USA) following manufacturer’s instructions. Individual barcodes (designed in-

house and produced by Eurofins MWG Operon, Ebersberg, Germany) were ligated to each

multiplex pool for sequencing. Both tumour and blood samples were sequenced at an average

depth of 250X and 50X respectively using the PGM/PROTON™ Systems (Life Technologies,

Carlsbad, CA, USA); sequences used for mutational calling had on target sequencing of 85%,

and uniformity of 80–85%

Mutational calling

Identification of somatic variants was performed using a recently developed statistical model

called Needlestack[18] based on the idea that analysing several samples together can help esti-

mate the distribution of sequencing errors to accurately identify variants. At each position

and for each candidate variant, we model sequencing errors using a robust Negative-Binomial

regression with a linear link and a zero intercept [19]. We calculate for each sample a p-value

for being a variant (outlier from the regression) that we further transform into q-values to

account for multiple testing. Needlestack has a detection limit of variant allelic fractions

between 0.05% and 0.5% depending on the error rate at the base change considered (ranging

from 0.001% to>10% at homopolymers) and the sequencing depth. Needlestack is free and

open-source and is available publicly as a beta version under https://github.com/IARCbioinfo/

needlestack. A detailed description of the Needlestack variant caller has been previously pub-

lished [20, 21]. Variant calls were annotated using ANNOVAR [22] and indels, nonsense,

splicing, or missense variants were only kept for subsequent analyses if reported in COSMIC-

76 and/or classified as deleterious, disease causing or damaging in at least one of the five vari-

ant classification databases (SIFT, Polyphen, MutationTaster, MutationAssessor, FATHMM,

LR) (S3 Table).

Filtering of VCF calls was done using a threshold of 0.5% allelic fraction, minimal read

depth of 100X and minimal phred-scaled q-value of 30. Removal of germline variants was

additionally confirmed by comparison of corresponding paired blood sequences; all filtered

variants were manually curated by inspection of BAM files using the Integrative Genomics

Viewer (IGV) 2.3 (Broad Institute, Cambridge, MA, USA).

Internal technical validation of both the sequencing procedure and the mutational calling

was done by including 10% of samples as technical replicates in each library preparation. Addi-

tionally, an independent library preparation including a random selection of 20 tumour sam-

ples was sequenced and analysed independently and results were 100% concordant. All cases

from the GENCAPO study had been previously sequenced for TP53mutations using Sanger
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sequencing, which we used to further validate our mutational calls and compare them with a

different calling method (GeneRead Panel Variant Calling analysis tool from Qiagen1) (S1

Fig).

Somatic copy number alterations (SCNAs)

DNA from each tumour was hybridized to Illumina HumanCytoSNP-12v2.1 arrays using

standard manufacturer’s protocol. Formalin-fixed paraffin-embedded (FFPE) samples under-

went a quality control assay using the Illumina FFPE QC Kit, samples were selected based on

a ΔCq below or equal to 2 and then restored using the Infinium HD FFPE Restore Protocol.

We included 10% of technical and biological replicates for quality control and validation.

Microarray data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress)

under accession number E-MTAB-4863. The R package crlmm [23] was used for pre-process-

ing, genotyping and calculation of circular binary segmentation to estimate the normalized

copy number. Germline copy number alterations were removed using the Database of Geno-

mic Variants [24]. Identification of significant amplified or deleted regions was performed by

using GISTIC 2.0 [25] using 99% confidence level and q-value threshold 0.25. Focal amplifica-

tion or deletion for all the 14 genes sequenced was determined only using the GISTIC copy

number value 2 or -2 respectively as the true value. OncoPrinter and MutationMapper tools

were used for visualization of mutational data [26, 27]. Integrative cluster analysis of mutation

and copy number data was performed using the R package iClusterPlus [28].

Statistical analysis

Mutual exclusion and co-occurrence test for mutations (including both single nucleotide vari-

ants and copy number alterations) found in the 14 genes evaluated, were based on weighted

permutations assessing the deviation of the observed coverage compared to expected obtained

by permuting events [29]. Fisher exact test was used to determine the relationship of clinical

characteristics in the 3 studies. For each patient, time at risk was calculated from cancer diag-

nosis to death or end of follow up (Last Follow up date: 30/01/2013 for the ARCAGE study,

30/06/2009 for GENCAPO and 30/06/2006 for the LA study). Follow-up was censored at 5

years, given that most cancer related events occur before that time. The Kaplan-Meier estima-

tor was used to estimate the distribution of the 5-year survival. Multivariate Cox proportional

hazard models were used to estimate HRs and their corresponding p values for all candidate

risk factors and genomic biomarkers. Age, subsite, stage, nodal status (defined by pathological

nodal stage), smoking and alcohol status were used as covariates. A correction for multiple-

hypothesis testing was employed using the method of Benjamini and Hochberg [30] Log-rank

test was used to compare the different survival distributions.

Results

Epidemiological description of the three studies

A total of 180 cases had complete sequencing and copy number information (Fig 1). Clinical

and pathologic characteristics of cases in the three studies are described in Table 1. Consistent

with previous reports the majority of the cases were males (82%), current smokers (67%) and

current drinkers (70%). Mean age at diagnosis was 59 years (range 18–88 years). Thirty-three-

percent of all cases were diagnosed with oral cavity cancer, 25% with oropharyngeal cancer,

18% with laryngeal cancer, 7% with hypopharyngeal cancer and 16% with overlapping topog-

raphies. Seventy-percent of all cases presented advanced disease (stages III-IV). The majority

of non-smokers (80%) and oropharyngeal cases (67%) were part of the European study
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PLOS ONE | https://doi.org/10.1371/journal.pone.0191701 January 29, 2018 4 / 18

http://www.ebi.ac.uk/arrayexpress
https://doi.org/10.1371/journal.pone.0191701


(ARCAGE). Fifteen cases out of 180 (8%) were classified as HPV16 positive, 73% of which

were oropharyngeal cases.

Mutational profile of the 14 gene panel in cases

Ninety four-percent of all sequenced cases had at least one alteration (single nucleotide vari-

ants (SNVs) or amplification/deletion) in any of the 14 genes selected (Fig 2) (S3 Table). The

overall frequency of alterations for the 14 genes was similar to previous publications with a

higher enrichment of alterations in the TP53,NOTCH1 and CDKN2A genes [10, 32–34].

Among the 10 cases without alteration in the 14 genes, 4 corresponded to HPV positive cases

(S4 Fig).

TP53, FAT1, MLL2 and NOTCH1 were the genes more frequently altered by single nucleo-

tide variants (SNVs) (Fig 2). As previously described [35, 36], TP53mutation was mostly prev-

alent in HPV negative tumours (only three out of 15 HPV16 positive tumours harboured a

TP53mutation, and all three cases were current smokers) (S4 Fig). TP53mutations clustered

predominantly in DNA binding domains, particularly in hotspot codons 175, 248, 249, 273

and 282 (S3 Fig). Forty-four-percent of all mutations were classified as disruptive mutations

according to the definition by Poeta and colleagues[37]. Fifty-five-percent of all TP53 SNVs

were missense mutations and from those 64% were classified as high-risk mutations based on

the evolutionary action score EAP53[38]. FAT1, MLL2 and NOTCH1mutations (missense and

truncating mutations) were distributed along the gene coding region and did not show muta-

tional enrichment of specific protein domains (S3 Fig).

Mutual exclusive alterations were identified between genes with recognized activity in the

same signalling pathway, suggesting overlapping functional consequences of those mutations.

This included TP53 and PIK3CA (p<0.001), both involved in cell cycle control and survival,

and NOTCH1 and TP63 (p = 0.003) genes, which play important functions of squamous cell

differentiation (S2 Fig).

Fig 1. Workflow of processing and analysis of HNSCC samples from the three different studies. QC for copy

number evaluation: Quality control of samples based on signal to noise ratio>5.0. Maps show estimated age-

standardized incidence rates for HNSCC (other pharynx sites) in Europe and South America. [31].

https://doi.org/10.1371/journal.pone.0191701.g001
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Table 1. Clinical and epidemiological description of 180 HNSCC cases from the three studies.

STUDY

ARCAGE

(Czech Republic, Italy,

Greece)

GENCAPO

(Brazil)

LA

(Argentina)

Total

Sex� n % n % n % n %

Female 26 28.57 2 3.85 5 13.51 33 18.33

Male 65 71.43 50 96.15 32 86.49 147 81.67

Age group

18 to 50 18 19.78 9 17.31 7 18.92 34 18.89

51 to 60 25 27.47 28 53.85 14 37.84 67 37.22

61 to 70 28 30.77 10 19.23 9 24.32 47 26.11

>70 20 21.98 5 9.62 7 18.92 32 17.78

Subsite�

Oral cavity 32 35.16 14 26.92 13 35.14 59 32.78

Oropharynx 30 32.97 10 19.23 5 13.51 45 25

Hypopharynx 2 2.2 11 21.15 0 0 13 7.22

Larynx 17 18.68 3 5.77 12 32.43 32 17.78

Overlapping 10 10.99 12 23.08 7 18.92 29 16.11

No information 0 0 2 3.85 0 0 2 1.11

Stage�

T1 8 8.79 1 1.92 0 0 9 5

T2 25 27.47 9 17.31 0 0 34 18.89

T3 16 17.58 17 32.69 3 8.11 36 20

T4 40 43.96 19 36.54 34 91.89 93 51.67

No information 2 2.2 6 11.54 0 0 8 4.44

Nodal Status�

N0 50 54.95 14 26.92 3 8.11 67 37.22

N+ 38 41.76 27 51.92 8 21.62 73 40.56

No information 3 3.30 11 21.11 26 70.27 40 22.22

Smoking�

Non-smoker 18 19.78 1 1.92 3 8.11 22 12.22

Former smoker 13 14.29 14 26.92 6 16.22 33 18.33

Current smoker 60 65.93 32 61.54 28 75.68 120 66.67

No information 0 0 5 9.62 0 0 5 2.78

Alcohol�

Non-drinker 7 7.69 2 3.85 6 16.22 15 8.33

Former drinker 11 12.09 18 34.62 4 10.81 33 18.33

Current drinker 73 80.22 26 50 27 72.97 126 70

No information 0 0 6 11.54 0 0 6 3.33

HPV Status (HPV16E6 serology)

Negative 82 90.11 47 90.38 34 91.89 163 91.57

Positive 9 9.89 3 5.77 3 8.11 15 8.43

No information 0 0 2 3.85 0 0 2 1.11

�p value<0.05

https://doi.org/10.1371/journal.pone.0191701.t001
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Significant co-occurring alterations were found principally in the TP63 and PIK3CA genes

(p<0.001), both genes located on a frequently amplified region (3q) along with concomitant

alterations in HRAS and NOTCH1 genes (p<0.001).

Somatic copy number alterations (SCNAs)

Overall, cases were characterized by low chromosomal instability represented by a low copy

number burden (mean 23 alterations included amplifications and deletions) compared to the

TCGA dataset [10]. We found a total of 47 significantly recurrent amplified regions and 69

deleted regions (q-value<0.1) (Fig 3 and S1 and S3 Tables). The most recurrent focal amplified

region was 11q13.3 including the CCND1 and FGF3 genes amplified in 40% of samples (60/66

with smoking history), consistent with a region preferentially amplified on smoking related

tumours [10, 42]. In addition, we identified regions harbouring oncogenes frequently activated

in HNSCC as previously described [10, 32, 33, 39, 40]: 11q22 (BIRC2), 3q26 (SOX2, PIK3CA),

3q28 (TP63), 7p11 (EGFR), 17q12 (ERBB2), along with amplification of regions 8p11, 13q22

and 7q22.

The most frequently deleted region was 15q22, including the locus of the ANXA2 gene that

has been previously found to be downregulated in both head and neck dysplasia and HNSCC

[43, 44]. Additionally, recurrent focal deletions were present in cases, particularly at three

regions on chromosome 11 (11p15-p15.5, 11q13-q13.3 and 11q23-q24) previously identified

as being of frequent microsatellite instability and/or loss of heterozygosity (MSI/LOH) in

HNSCC. We also identified deletions in regions of commonly described transcription regula-

tors and tumour suppressor genes in HNSCCs [10, 45]: 5q35.2 (NSD1), 20p11 (NKX2-2),

8p22.2 (CSMD1), 9q34.3 (NOTCH1); together with loss of 9p21.3 containing the CDKN2A
gene which was found almost exclusively in HPV negative tumours (deletion in 1 out of 15

HPV positive cases) (S4 Fig).

Comparison of copy number alterations based on HPV16 status showed a lower proportion

of significantly altered regions in HPV positive cases. In particular, the 11q24.3 region (con-

taining the ATM and APLP2 genes) was differentially lost in HPV positive cases (S4 Fig). Addi-

tional losses in the 6p region, close to the HLA class I genes loci, were also identified in HPV

positive cases.

Fig 2. OncoPrint diagram of mutational frequencies and types of alterations of the 14 genes sequenced. Only

altered samples are shown. Rows are sorted based on the frequency of the alterations in all samples and columns are

sorted to visualize the mutual exclusivity across genes. Frequency of mutations for the following Head and Neck cancer

publications are shown: Head & Neck (TCGA)[10], Head & Neck (JHU)[39], Head & Neck (Broad)[32], Head & Neck

(MDA)[40], Head & Neck (MSKCC)[41]. NA: Not available.

https://doi.org/10.1371/journal.pone.0191701.g002
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Integrated analysis

Integrative cluster analysis of both mutational and copy number data identified three distinct

clusters with major genomic features including TP53, FAT1 and FBXW7 SNVs and low, inter-

mediate and high genomic instability. The FBXW7 gene was significantly mutated in both

groups with high and intermediate SCNAs (Fig 4). Eighty-percent of total cases were clustered

in the low SCNAs group (mean copy number events = 19). The intermediate SCNAs group

(mean copy number events = 39) had only advanced cases (11) and the high SCNAs group

(mean copy number events = 43) clustered only cases from Brazil with history of alcohol and

smoking exposure (23 cases).

Survival analysis

Survival data was available for 154 cases (Fig 1). Age and nodal status were the only clinical or

demographic variables significantly associated to overall survival (p = 0.01) (Fig 5 and S2

Table). Multivariate analysis including each of the 14 genes sequenced showed no association

with overall survival. Further analysis of TP53mutational status showed no association

between mutation type (either disruptive/non-disruptive or EAP53 score of missense muta-

tions) and overall survival (S2 Table).

Analysis of the most frequently focal SCNAs showed significant associations between the

amplified regions 4p16, 10q22 and 22q11 and a reduction in overall survival. We found addi-

tional associations between losses in regions 12p12, 15q14 and15q22 and decreased overall

survival (Fig 5 and S2 Table). Although individual candidate genes in these regions were diffi-

cult to identify due to the large number of enclosed genes (>20), we identify some genes that

Fig 3. Diagram of significant focal copy number alterations. FDR (Top) and q-values of the alterations are shown in

each panel. (A) Copy number gains (B) Copy number losses. Selected associated genes in some regions are shown. (�)

Regions significantly associated with overall survival.

https://doi.org/10.1371/journal.pone.0191701.g003
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Fig 4. Integrative cluster analysis plot. Cases are grouped by mutation and SCNA status. Top panel: only significant

clustering genes are shown (0 = non-mutated, 1 = mutated), middle panel: SCNAs. Amplified (red) and deleted (blue)

chromosomal regions. Altered regions are arranged vertically and sorted by genomic locus, with chromosome 1 at the

top of the panel and chromosome 22 at the bottom, lower panel: colour coded clinical and epidemiological

characteristics.

https://doi.org/10.1371/journal.pone.0191701.g004
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Fig 5. Kaplan-Meier curves showing overall survival outcome for nodal status, significant focal copy number alterations in 22q11.2,15q22 and

12p12 regions associated to smoking and advanced stage, amplification in 4p16.3 and for the three SCNAs clusters.

https://doi.org/10.1371/journal.pone.0191701.g005
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have been previously altered in HNSCC (S2 Table) and have been included in our discussion

below.

Our integrative clustering approach based on copy number events was also associated with

improved overall survival for cases clustered in the low copy number group (p = 0.01) (Fig 5

and S2 Table).

Discussion

Head and neck carcinomas show common genomic features determined by SNVs and copy

number events in driver genes and cellular pathways associated to the common histology of

squamous cell types. However, there is broader genomic heterogeneity due to the variability in

anatomic subsite location and the interaction of multiple risk factors such as alcohol and

tobacco exposure as well as HPV infection.

Even though we limited our sequencing study to 14 genes, our results showed that most of

the mutations described in these genes are representative of the mutational profile of head and

neck cancer cases (mutations in 94% of cases). Additionally, the mutational frequency in all 14

genes was comparable to the frequencies observed in previous publications from the largest

sequencing projects of Head and Neck cancer cases. In future studies, inclusion of some addi-

tional genes such as AJUBA, HLA-A/B, NFE2L2,KRAS, FGFR2/3 and TRAF3 could improve

mutation detection and better capture the mutational landscape of HPV positive tumours, as

well as favour the understanding of additional cellular and molecular mechanisms involved in

tumour development such as the oxidative stress pathway.

The predominance of low SCNAs in our cases confirms previous studies that differentiate

subsets of head and neck tumours (described as M-mutational class tumours) characterized

predominantly by mutations rather than chromosomal instability events [8]. A subclass of

these low SCNAs group is enriched with alterations in the PIK3CA-AKT and p53-mediated

apoptosis pathways, in agreement with the number of alterations in TP53, CDKN2A and

PIK3CAwe observed in our cases.

Eight percent of all cases were HPV 16 positive and 73% corresponded to oropharyngeal

tumours. The reduced number of oropharyngeal tumours in the study (25%) and the predomi-

nance of older cases, current smokers and drinkers, characteristics preferentially associated to

non-related HPV HNSCC[46], might account for the low number of HPV positive cases. In

addition, half of our study cases were from Brazil and Argentina which could contribute to the

low percentage of HPV positive HNSCC, as it has been previously described in South America

[12, 47]. Despite of the limited number of HPV positive cases in our series, we established that

HPV positive tumours remain a distinct subset characterized by lower somatic copy number

events and differential mutation patterns [36, 48, 49]. Loss of the 11q24.3 region which con-

tains both ATM and APLP2 genes, is a frequent alteration in HPV positive cases[48]. More-

over, the APLP2 gene is related to tumour immunology as it regulates surface expression of the

MHC class I molecules[50, 51]. These results suggest that alterations related to immunological

responses might differentiate infection related HNSCC tumours. Further characterization

should however, be performed for this group particularly to address the associations between

genomic alterations and smoking and alcohol exposure and a differentiated analysis by histo-

logical subsite.

Our results confirmed that somatic copy number alterations are an important predictor of

overall survival. We have described an improved overall survival for those cases with low

SCNAs. These results are in agreement with recent observations showing the direct association

between low copy number events, intratumour heterogeneity and clonality with genomic

instability and how the joint effect of these factors might influence survival [10, 52–54].
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Recently, Andor and colleagues analysed clonality across 12 cancer types from the TCGA data-

set, including head and neck cancer cases, and showed that intratumour heterogeneity levels

above or below an intermediate measure of clonality were associated with significantly reduced

risk of mortality. Moreover, they used copy number alteration abundance as a surrogate mea-

sure of genomic instability and found that when SCNAs were present either in a low or a high

fraction of the tumours, cases had an improved survival [53]. The high SCNAs group in our

study showed the lowest overall survival and clustered only samples from Brazil, all character-

ized by higher stage and history of both smoking and alcohol exposure. These results give addi-

tional evidence to support the rise in mortality due to this malignancy in this country [55].

The mutational profile described in our series of cases showed a clear association to both

environmental exposures and clinical characteristics including associations with overall sur-

vival. We found that both mutational and focal copy number alterations were correlated with

genetic alterations previously described for smoking related head and neck cancers as well as

for biomarkers of late stage tumours [10, 32]. Alterations exclusively found in cases with his-

tory of both smoking and alcohol consumption included 5q35.3 amplification and 11p14.3

deletion. This last region is of interest as it encloses the FANCF gene, involved in the Fanconi

anemia pathway and commonly associated to squamous cell carcinoma susceptibility. In addi-

tion, FANCF inactivation has been previously related to chromosomal instability on sporadic

HNSCC [56].

Additionally, focal copy number alterations were found to be significant prognostic mark-

ers: 22q11.2 amplification and deletions in 15q22 and 12p12 regions have been associated to

smoking related tumours and advanced stage. The 22q11 region contains the CRKL gene,

which has been characterized as an oncogene in lung SCC [57] and as a promoter of cell

growth, motility and adhesion during HNSCC tumorigenesis [58]. Decreased survival in cases

with loss of 12p12.1 region, locus of the PIK3C2G gene, showed a HR of 3.0 95% CI [1.2; 7.77].

Advanced stage HNSCC tumours have shown mutations in more than one PI3K pathway mol-

ecule: PIK3CA, PTEN and described alterations in PI3C2G [59, 60]. Moreover, the 15q22

region, locus of the ANXA2 gene, has been previously shown to be associated with poorly dif-

ferentiated tumours in advanced cases. Decreased ANXA expression has not however, been

formerly shown to be an independent prognostic factor for disease-specific survival in

HNSCC [43, 44]. We report for the first time an association between decreased overall survival

and amplification of the region 4p16.3, locus of the FGFR3 gene. High expression levels of

FGFR3 contribute of tumour initiation and early-stage progression in HNSCC[61]. More

importantly, preclinical studies have demonstrated that FGFR inhibition reduced cell prolifer-

ation and increased cell apoptosis in head and neck cancer in vitro and in vivo[62], highlight-

ing the potential prognostic and therapeutic role of FGFR3 in HNSCC.

Most studies on HNSCC have documented a decreased overall survival associated to TP53
mutations[6, 37, 63]. Our study, however, did not find any association between the mutational

status of the 14 genes sequenced and overall survival. A specific analysis based on TP53muta-

tion type (disruptive vrs nondisruptive or EAP53 score of missense mutations) showed no

association to overall survival, either. In agreement to our results, Kim and colleagues, found

that patients diagnosed with oral squamous cell carcinoma of the gingivo-buccal region

(GBSCC) from the Indian Team project of the International Cancer Genome Consortium

(ICGC), did not showed an association between TP53mutation status and overall survival

[64]. Similar to the epidemiological and clinical characteristics of our study cases, GBSCC

patients from the ICGC study were most exposed to tobacco and/or alcohol, presented

advanced stage (III/IV) and half of the cases had confirmed nodal metastasis [33].

One of the main limitations of our study is the reduced number of HNSCC cases with early

stage tumours. It would be important to further characterize the genomic alterations in early
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stages of head and neck cancer cases in order to identify biomarkers for early detection and

prognostic stratification especially for the high-risk groups in regions of increase incidence. In

addition, our survival analysis was limited due to the lack of complete treatment information

for most cases. Treatment regimens have an important association with Head and Neck cancer

overall survival and should be included in future analysis specially those involving multicentre

studies[65].

In summary, we have identified HNSCC cases with low SCNAs that differentiate as a subset

of head and neck cancers driven predominantly by gene mutations and focal alterations rather

than chromosomal instability events and are characterized by an improved overall survival.

The mutational landscape described in our series of cases showed a clear association to both

environmental exposures (alcohol and smoking consumption and HPV infection) and clinical

characteristics. Further studies integrating genomic, clinical and epidemiological data, espe-

cially in high-risk populations, are necessary to better identify high-risk stratification and char-

acterize prognosis of head and neck cancer cases.
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5. Castellsagué X, Alemany L, Quer M, Halec G, Quirós B, Tous S, et al. HPV Involvement in Head and

Neck Cancers: Comprehensive Assessment of Biomarkers in 3680 Patients. J Natl Cancer Inst. 2016;

108(6). https://doi.org/10.1093/jnci/djv403 PMID: 26823521.

6. Gross AM, Orosco RK, Shen JP, Egloff AM, Carter H, Hofree M, et al. Multi-tiered genomic analysis of

head and neck cancer ties TP53 mutation to 3p loss. Nat Genet. 2014; 46(9):939–43. Epub 2014/08/05.

https://doi.org/10.1038/ng.3051 PMID: 25086664.

7. Reddy RB, Bhat AR, James BL, Govindan SV, Mathew R, Dr R, et al. Meta-Analyses of Microarray

Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer. PLoS One.

2016; 11(1):e0147409. https://doi.org/10.1371/journal.pone.0147409 PMID: 26808319.

8. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of onco-

genic signatures across human cancers. Nat Genet. 2013; 45(10):1127–33. https://doi.org/10.1038/ng.

2762 PMID: 24071851.

9. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of

somatic copy number alteration. Nat Genet. 2013; 45(10):1134–40. https://doi.org/10.1038/ng.2760

PMID: 24071852.

10. The Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous

cell carcinomas. Nature. 2015; 517(7536):576–82. https://doi.org/10.1038/nature14129 PMID:

25631445

11. Lagiou P, Georgila C, Minaki P, Ahrens W, Pohlabeln H, Benhamou S, et al. Alcohol-related cancers

and genetic susceptibility in Europe: the ARCAGE project: study samples and data collection. Eur J

Cancer Prev. 2009; 18(1):76–84. Epub 2008/10/03. https://doi.org/10.1097/CEJ.0b013e32830c8dca

PMID: 18830131.
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