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Activation of Group 2 Innate Lymphoid Cells via TL1A/DR3
A Solution to Corticosteroid Resistance?

Airway type 2 inflammation in asthma is associated with enhanced
steroid responsiveness, though a large proportion of nonresponders
have eosinophilic asthma at baseline, which persists despite
treatment. In addition to poor medication compliance, type 2
cytokines may further contribute biologically to this phenomenon;
IL-5 delays or inhibits eosinophil apoptosis (1), whereas IL-13 may
suppress steroid-mediated downregulation of LPS-induced IL-6
production by monocytes (2). In this issue of the Journal, Machida
and colleagues (pp. 1105–1114) shed light on the role of the
TL1A/DR3 (death receptor 3) axis in group 2 innate lymphoid cell
(ILC2) activation in asthma and thus pinpoint the potential of this
pathway as a therapeutic target for modulation of eosinophilia in
those with severe asthma (3).

ILCs consist of a highly heterogeneous and functionally diverse
group of cells, which at barrier surfaces are capable of rapidly
responding to microbial and other antigenic stimuli. Humans and
mice may differ significantly, with circulating ILC progenitors
constitutively present in human peripheral blood and differentiating
into mature ILCs within tissues (4). ILC2s express GATA-3 and
produce the cytokines IL-4, IL-5, IL-9, IL-13, and amphiregulin in
response to pathogens or other stimuli (5, 6) while they are
responsive to IL-25, TSLP, and IL-33, among other mediators.
Impaired regulation of such responses may drive allergic disease
such as asthma, allergic rhinitis, and atopic dermatitis (6, 7). ILC2-
derived IL-4, for example, plays a role in the inhibition of Treg cell
responses (7), and ILC2s produce IL-2 after allergen challenge.
Furthermore, human ILC2s express MHC class II molecules and
present allergen-derived peptides to CD41 T cells, leading to
differentiation and propagation of Th2 cell subsets (8). In
relation to asthma, initial studies were performed in murine models
(5, 6), whereas later increased numbers of ILC2s have been
identified in the sputum and BAL of patients with severe
eosinophilic asthma compared with control subjects (9).
Activated ILC2s also rapidly increase in the airways after
allergen challenge (10). ILC2s may have an even more substantial
role in the persistence of airway eosinophilia among patients
with severe asthma through uncontrolled localized production of
type 2 cytokines despite high-dose oral corticosteroid therapy (9).
Yet, there is an accentuated need for further research regarding
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the anatomical location of ILC2s, their interaction with immune
and nonhematopoetic cells, and their activation signals.

Machida and colleagues performed whole-lung allergen
challenges in patients with mild atopic asthma (n= 10) to investigate
the luminal recruitment of DR31 ILC2s. DR31 ILC2s increased
significantly, from 2056 60 to 9436 316 cells/ml at 24 hours
after challenge, which was accompanied by an increase of TL1A
in sputum. Ex vivo analysis revealed that DR3 expression was
inducible by physiological concentrations of IL-2, IL-33, and TSLP
in a biphasic manner. TL1A in combination with IL-2 induced
significantly intracellular IL-5 expression in these cells, which
was reduced if dexamethasone (at a physiologically relevant
concentration) was present. By costimulation with TSLP (IL-21TL1A),
no corticosteroid treatment effect on IL-5 expression was observed.
Furthermore, DR3 expression was insensitive to dexamethasone
treatment. Patients with severe eosinophilic asthma (n=11) produced
significantly greater sputum TL1A levels than those with mild asthma
(9.696 2.69 vs. 1.066 0.93 ng/ml).

Does this imply that patients with corticosteroid-resistant
eosinophilic asthma truly have ILC2-dominated asthma? Yes
and no! Taking a careful look at the data and also pointed out
by the authors, there seems to be a group of patients with severe
asthma (z50%) with high TL1A levels and those without. Still,
both groups are considered to have oral corticosteroid–dependent
severe eosinophilic asthma. The sputum concentrations of TL1A

are close to what Machida and colleagues used to stimulate DR31

ILC2s ex vivo, so it is reasonable to assume that DR31 ILC2s produce
a significant amount of IL-5, driving the eosinophilic inflammation in
the lung. Ideally, sputum levels of TSLP and IL-2 would have helped
to really corner this particular asthma phenotype and gauge its
clinical relevance. The overall small group sizes of the study pose a
limit on the general extrapolation of this data set, yet Machida and
colleagues pass on an exact recipe for how to identify those ILC2-
dominated 50% of patients with severe eosinophilic asthma for
further studies: detection of high eosinophils/high TL1A and anti-
EPX (eosinophil peroxidase) antibodies in sputum. Anti-EPX
antibodies? In a peculiar observation, the authors traced back to a
potential mechanism how elevated levels of TL1A may be produced.
Monocytes activated by EPX antibody complexes produced
significantly more TL1A, which may lead to ILC2 activation and
aggravation of a type 2 inflammation. This is certainly food for
thought and worth further investigations.

This work clearly highlights the need for a continuous search
for mechanisms underlying asthma heterogeneity (see cross-
sectional analysis in Figure 1). Canonical types of asthma such as
T2 high may result as a consequence of a complex interplay of
immunological cells and pathways. As a matter of fact, various
(sub)endotypes may occur simultaneously in one individual (11,
12) and may also change over time (see Figure 1). Considerable
efforts are necessary to approach a longitudinal deep phenotyping,
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Figure 1. Innate lymphoid group 2 cell (ILC2) endotypes contribute to severe asthma phenotypes across all ages. (A) Severe asthma phenotypes (red
circle) are clinically identified in cross-sectional analysis as a result of comparison to symptomatically milder phenotypes (blue/red or green/blue circles) or
control subjects (green circle). These differences may then drive a deep phenotyping approach. (B) Severe phenotypes are analyzed by, for example,
multiomics or hypothesis-specific tools (e.g., flow cytometry of DR3 [death receptor 3]-positive ILC2s as presented by Machida and colleagues in this
issue of the Journal [3]), and a palette of several, possibly coexisting, endotypes emerges. Further characterization of the phenotypic characteristics of
each endotype help to establish “ground truth” for asthma heterogeneity. Importantly, this is not limited to severe phenotypes alone but extends also to
milder asthma and even asthma remission. (C) It is conceivable that these coexisting endotypes may have developed over time by endogenous and
exogenous drivers, but little is known about the prerequisites for many of these endotypes and how they coexist. At young age, risk factors are associated
with asthma pathogenesis; however, phenotypic expression is low (light purple vs., e.g., orange circle). During preschool age, first symptomatic episodes
distinguish between children with an ever-increasing risk to be diagnosed with asthma at school age (dark orange circle) and those with, for example,
intermittent wheeze (purple circle). At which point an ILC2-driven immune response becomes established or even dominates the asthmatic phenotype is
not well understood. Moreover, features such as auto-antibodies against eosinophil peroxidase are not routinely tested, so early emergence of such a
subendotype goes undetected. Longitudinal deep-phenotyping cohorts heavily rely on cross-sectional data (such as Machida and colleagues’) to trace
the origins of these complex endotypes and help to provide other biomarkers, preventive measures, and early disease-modifying strategies.
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and studies have been established to address pediatric/transitional
aspects (All-Age-Asthma-Cohort [13] and Children’s Respiratory
and Environmental Workgroup Birth Cohort [14]) as well as
molecular endotype persistence/evolution in adults (Cohort for Reality
and Evolution of Adult Asthma in Korea [15] and Unbiased Biomarkers
in Prediction of Respiratory Disease Outcomes [16]), to name only a
few. It is thus evident that one-size-fits-all treatment approaches are
inherently flawed, and deeper understanding of the heterogeneous
(targetable) molecular mechanisms in asthma is imperative. n
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High-Flow Aerosol-Dispersing versus Aerosol-Generating Procedures

Hypoxemia is the main symptom and primary reason for hospital
admission among patients with coronavirus disease (COVID-19),
and oxygen therapy is the mainstay therapy to treat hypoxemia.
Among 10,054 patients with COVID-19 admitted to ICUs in the
United Kingdom during the pandemic, more than 70% required
advanced respiratory support, including high-flow nasal cannula
(HFNC) oxygen therapy, noninvasive (NIV) and invasive
ventilation, and extracorporeal membrane oxygenation (1).

HFNC and NIV have been categorized as aerosol-generating
procedures, based on the hypothesis that high-velocity gas flows
may promote aerosolization of patients’ secretions containing
viable virus, which may then be dispersed in the environment and
be inhaled by healthcare workers (2). Indeed, retrospective studies
assessing risk factors of nosocomial transmission of the severe
acute respiratory syndrome (SARS) observed that healthcare
workers caring for patients with SARS treated by NIV had a
twofold higher risk of infection transmission than those who did
not (3). However, the exact infection transmission route, that is,
aerosol versus contact or other routes, was not investigated.

In this issue of the Journal, Gaeckle and colleagues
(pp. 1115–1124) provide evidence that the difference of the aerosol
particle concentrations generated by various oxygenation devices
is clinically insignificant and probably negligible, compared
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