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Sarcopenia or loss of skeletal muscle mass is a major compli-
cation of cirrhosis and liver disease.1–6 A large body of
literature exists to support the prognostic significance of
sarcopenia in cirrhosis.1,2,5,7 Independent clinical conse-
quences of sarcopenia in cirrhosis include lower survival
and quality of life, increases risk of complications including
infections and encephalopathy, and lower post liver trans-
plant survival.1–5,7–9 Interestingly, unlike other complications
of cirrhosis, sarcopenia does not reverse and usually worsens
after liver transplantation10–12 that raises an important
question of the utility of targeting sarcopenia for therapy
before transplantation. Because the majority of patients with
cirrhosis do not undergo transplantation and the window of
opportunity is widest prior to transplantation,7 the focus
should be in trying to reduce the severity and frequency of
sarcopenia in cirrhosis prior to transplantation. Even though
clinicians nearly universally recognize the high clinical
significance of sarcopenia in cirrhosis, there are no effective
treatment options.3,7 The major reason for lack of effective
therapies has generally been attributed to a limited under-
standing of the underlying mechanisms of sarcopenia in
cirrhosis. However, other factors include the lack of precise
measures of sarcopenia, absence of sensitive and specific
biomarkers, and therapies that are based on deficiency
replacement rather than mechanistic targets.13

The work by Nishikawa et al. in this issue goes towards
addressing a number of these issues.14 In a very elegant
study, the investigators quantified serum myostatin in a large
cohort of patients with cirrhosis. Subjects were stratified by
gender and median concentration of serum myostatin. Serum
myostatin was significantly higher in males than females.
Myostatin concentrations were higher with worsening
severity of liver disease measured by Child Pugh score, a

standard clinical method to predict outcomes in cirrhosis.
Higher myostatin concentration was an independent predic-
tor of worse survival in both male and female patients with
cirrhosis. Finally, serum myostatin concentrations were
associated with lower muscle mass measured as psoas
muscle index on computed tomography, serum ammonia
concentration, serum albumin, and branched chain to
tyrosine ratios. These studies complement an earlier brief
report that serum myostatin was elevated in cirrhosis, but
one must note that circulating myostatin concentrations are
elevated in heart failure and COPD also.15,16 These studies
are therefore of broad interest to investigators and physicians
taking care of patients with other chronic diseases with
sarcopenia. The present study also reiterates their data that
circulating myostatin is inversely related to skeletal muscle
mass but extends these data by demonstrating the prognostic
significance and relate it to underlying pathophysiological
perturbations. These investigators also report the use of
psoas muscle index as a measure of muscle mass. This
requires the use of imaging techniques while myostatin
measurement is done in blood samples with lower costs
and no risk of radiation exposure. Whether serial myostatin
measurements will correlate with serial changes in muscle
area or provide a better predictor of progressive muscle loss
is an intriguing possibility because more rapid muscle loss
worsens outcome in cirrhosis.17

Since the discovery of myostatin, the number of publica-
tions has increased exponentially with a detailed characteri-
zation of its biological properties.18,19 Even though myostatin
is consistently expressed in skeletal muscle, other tissues
also express and possibly secrete myostatin.18 Signalling
and functional responses to myostatin have focused on a
paracrine effect even though there is increasing interest in
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myostatin as an endocrine factor or myokine. Consistent
with its being a member of the TGFβ superfamily, myostatin
binds to its receptor, activin IIB receptor, a type 2 transmem-
brane protein.19–21 Upon binding with myostatin, activin IIBR
then heterodimerizes with a type 1 receptor, activin-like
kinase 4 or 5 in a context dependent manner, and this
complex functions as a serine threonine kinase to phosphor-
ylate Smad2/3 that in turn transcriptionally regulates target
genes.22 Myostatin has also been reported to regulate a
number of other signalling proteins and transcription factors
including β catenin, forkhead box, and 5’ adenosine
monophosphate-activated protein kinase.23–25 Unlike the
extensive work done on the downstream signalling
responses to myostatin, there is more limited data on the
upstream regulation and the mechanisms of increased
myostatin in disease states.20,24,26–36 A number of promoter
analyses of myostatin in different species have been
reported and targeted studies on specific transcription
factors have been published.20,26,32,33,37–39 However, the
mechanisms of context specificity have yet to be determined
including the possible differential response to exogenous
and endogenous myostatin.28 Most studies that have dis-
sected the biological consequences of myostatin have used
exogenous administration or delivery of myostatin with few
studies on the response to endogenously stimulated
myostatin, and these are of interest to not only translational
scientist but also to clinical investigators because of the
implications for therapy.

In addition to the novel observation by Nishikawa et al.
that circulating myostatin was correlated with overall
survival, another important observation was that these
concentrations related to ammonia concentrations.14

Ammonia has been reported to transcriptionally upregulate
myostatin via an NFkB dependent mechanism in the skeletal
muscle but whether such a mechanism is relevant in other
tissues is currently unknown.40 Ammonia is a cytotoxic
molecule generated by a variety of physiological processes
including amino acid and purine catabolism and gut microbial
metabolism.40,41 The hepatocyte is the only cell that is
capable of metabolizing ammonia to urea, a relatively non-
toxic metabolite that is excreted by the kidneys. In liver
disease, due to a combination of hepatocellular dysfunction
and portosystemic shunting, circulating ammonia concentra-
tions are increased, and the major clinical consequences are
noted in the brain with the development of encephalopathy
or coma. One protective mechanism is the skeletal muscle
uptake of ammonia, and this was has been reported by three
independent groups, but it was always believed that the skel-
etal muscle functioned as a metabolic sink and converted the
ammonia to glutamine.40,42,43 Glutamine has cytoregulatory
properties, and different cells use circulating glutamine as an
anaplerotic substrate to regenerate ammonia that again needs
to be removed by the hepatocytes.44–47 Because ureagenesis is
impaired in cirrhosis, there is no permanent disposal of

ammonia, and the circulating glutamine serves as a source of
ammoniagenesis in those tissues that utilize glutamine, main-
taining hyperammonemia that is taken up again by the skeletal
muscle. This pathway thus essentially transfers the carbon skel-
eton from the tricarboxylic acid (TCA) cycle in the muscle to
other tissues resulting in skeletal muscle bioenergetics dysfunc-
tion and consequent impaired proteostasis and sarcopenia.

In the skeletal muscle, muscle, ammonia enters the
myotubes, most likely by the RhBG class of ammonia trans-
porters.48 Other perturbations in cirrhosis can also activate
myostatin and include a reduction in growth hormone, tes-
tosterone, and increased tumour necrosis factor α. However,
whether reversing these abnormalities can reverse myostatin
is not known.13 In contrast, increased myostatin expression in
response to hyperammonemia was reversed in response to
ammonia withdrawal in myotubes in vitro or ammonia lower-
ing measures in the portacaval anastomosis rat.49

In addition to the myostatin mediated signalling perturba-
tions during hyperammonemia, ammonia is converted to
glutamate in the mitochondria by cataplerosis of the critical
TCA cycle intermediate, α ketoglutarate, and subsequent
conversion of glutamate to glutamine in the skeletal muscle
that is then exchanged for leucine by SLC7A547,50,51

(Figure 1). These reactions can explain elevated circulating
glutamine in cirrhosis. Both hyperammonemia and loss of α
ketoglutarate contribute to the loss of muscle mass and
mitochondrial dysfunction and reduced adenosine triphos-
phate content with impaired contractile function.52 Even
though contractile function was not measured in these
subjects, deconditioning or frailty is being increasingly
recognized as an independent adverse prognostic indicator
in cirrhosis.53,54 Even though contractile function and muscle
mass are not necessarily related, it is, however, possible that
the underlying mechanisms that result in these clinical
manifestations may be common including reduced bioener-
getics as has been reported in the past.52,55 Recent data also
show post-translational modifications of proteins may be
responsible for impaired muscle strength and consequent
frailty.52 This is important because even though myostatin
depletion results in greater muscle mass, over time, muscle
strength is not consistently maintained.56–58

Another interesting observation reported by Nishikawa is
the relation between myostatin and serum albumin and
tyrosine to branched chain amino acid (BCAA) ratios. Even
though these have been considered as measures of
‘nutritional status’ in the past,59 it is increasingly recognized
that the term ‘malnutrition’ in cirrhosis needs to be replaced
by more specific terms.7 Two major components of
‘malnutrition’ in adult patients are being recognized: loss of
skeletal muscle mass or sarcopenia and alteration in energy
metabolism.3 Even though these seem disparate, in
metabolic terms, these are interrelated. Sarcopenia was
initially used by Rosenberg to refer to the progressive loss
of skeletal muscle with weakness that occurs with aging.60
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However, the term sarcopenia is translated to loss of skeletal
muscle mass (sarcos, flesh; penia, deficiency) and is now used
to refer to muscle loss in chronic diseases.57,61 In contrast,
serum albumin is believed to be a measure hepatocyte
synthetic capacity. Current data supports the role of
myostatin primarily in the skeletal muscle.36 However,
albumin synthesis requires essential amino acids that are
derived from dietary sources or endogenous proteolysis.62

However, since cirrhosis is a state of accelerated starvation,63

it is possible that the muscle protein synthesis is restricted to
divert amino acids for synthesis of critical proteins including
albumin in the hepatocytes. This hypothesis this needs to
be explored in metabolic studies using tracer techniques.

The tyrosine to BCAA ratio is another measure that the
authors have used as a measure of hepatic protein synthesis
but is truly reflects the severity of liver disease and is due to
skeletal muscle proteolysis and BCAA utilization.47,64,65 It is
also recognized that BCAA are a metabolized primarily in
the skeletal muscle as a source of energy and for potential
detoxification of ammonia via anaplerotic influx into the
TCA cycle (Figure 1).47,51,65 BCAA especially leucine and
isoleucine can also function as a source of acetyl coenzyme
A (CoA) independent of pyruvate because ammonia inhibits
pyruvate dehydrogenase.66–68 These provide a mechanistic
basis for low plasma BCAA in cirrhosis. Interestingly, L-leucine
also activates mammalian target of rapamycin complex 1 that
increases protein synthesis and decreases autophagy that
restores proteostasis or protein homeostasis and reverse
sarcopenia.51,69

In addition to myostatin dependent dysregulated
proteostasis and sarcopenia, cellular stress pathways are

activated during hyperammonemia.51 Unlike canonical stress
pathways mediated via a number of eukaryotic initiation
factor 2α kinases including general control non-derepressed
2 that is activated in response to amino acid deficiency and
during protein kinase R-like endoplasmic reticulum kinase
that is activated during unfolded or misfolded proteins.70–72

During hyperammonemia, a novel stress response has been
reported that results in phosphorylation of the α subunit of
the eukaryotic initiation factor with inhibition of protein
synthesis.51 Even though hyperammonemia activates both
myostatin and the HASR, the crosstalk between these path-
ways needs investigation (Figure 1).

The implications of the report by Nishikawa et al. for
developing treatment options cannot be overemphasized.14

Currently, the major approach to therapy in medicine is
based on targeting deficiency rather than focusing on the
mechanisms.13 Their report shows that myostatin and
hyperammonemia are potential mechanistic treatment
targets. Unfortunately, myostatin antagonists have not yet
become clinically available and ammonia-lowering therapies
have been used in human subjects only to reverse hepatic
encephalopathy, the best-known consequence of hyperam-
monemia.36,49 However, as mentioned above, preclinical
data do support the use of long-term ammonia lowering as
a potential treatment option that should be evaluated in
randomized trials with serum myostatin as a measure of
therapeutic response. BCAA have been used to treat the
consequences of hyperammonemia in cirrhosis with limited
benefit. One potential reason may be the selective
partitioning into the mitochondria to provide the carbon
skeletons for anaplerosis as well as acetyl-CoA as a TCA cycle

Figure 1 Of the various metabolic, hormonal and cytokine abnormalities in cirrhosis, hyperammonemia perturbs a number of signalling and molecular
pathways. Myostatin is transcriptionally upregulated in the muscle that impairs mammalian target of rapamycin complex 1 signalling that decreases
protein synthesis and increases autophagy. As a metabolic response, ammonia disposal occurs via glutamine synthesis that is in turn exchanged for
leucine (and potentially other branched chain amino acid) that enter the muscle cell providing an explanation for decreased plasma branched chain
amino acid in cirrhosis. An additional cellular response via the general control nondepressible 2-eukaryotic initiation factor 2α axis impairs protein syn-
thesis. There are a number of potential points of cross talk between these metabolic and molecular responses to hyperammonemia, all of which con-
tribute to dysregulated proteostasis and sarcopenia.
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substrate (Figure 2).51 These molecular and metabolic
alterations formed the rationale for a high-dose leucine
supplementation to satisfy the mitochondrial metabolic
demand during hyperammonemia so that leucine in the
cytoplasm can activate mTORC1 to restore proteostasis. Data
from preclinical and clinical studies have supported such a
beneficial mechanism and hold potential for long-term
treatment with such supplements.51,73 However, since
leucine supplementation did not lower blood ammonia,
myostatin expression was not altered but mTORC1, the
direct target of leucine was activated with restoration of
proteostasis.73 The reasons for the high significance of the
study by Nishikawa et al. is that in addition to providing a
compelling rationale for the use of serum myostatin as a
potential biomarker for muscle loss and prognosis in
cirrhosis, they also lay the foundation for the use of serial
measurement of circulating myostatin as a potential strategy
to evaluate response to interventions targeting sarcopenia in

cirrhosis and possibly other chronic diseases. Currently,
there are no non-invasive circulating biomarkers to deter-
mine response to treatments to prevent or reverse
sarcopenia in liver and chronic diseases and if serum
myostatin is indeed such a marker, it will fill a longstanding
need in the field of muscle loss.
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