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A novel image enhancement approach called entropy-based adaptive subhistogram equalization (EASHE) is put forward in this
paper. The proposed algorithm divides the histogram of input image into four segments based on the entropy value of the
histogram, and the dynamic range of each subhistogram is adjusted. A novel algorithm to adjust the probability density function
of the gray level is proposed, which can adaptively control the degree of image enhancement. Furthermore, the final contrast-
enhanced image is obtained by equalizing each subhistogram independently. The proposed algorithm is compared with some
state-of-the-art HE-based algorithms. The quantitative results for a public image database named CVG-UGR-Database are
statistically analyzed. The quantitative and visual assessments show that the proposed algorithm outperforms most of the existing
contrast-enhancement algorithms. The proposed method can make the contrast of image more effectively enhanced as well as the

mean brightness and details well preserved.

1. Introduction

Image contrast enhancement technology is regarded as
a classical and important area in image processing. It is
widely used in daily photo enhancement, medical image
analysis, remote-sensing imagery, microscopic imaging [1],
and many other areas [2-6]. Histogram equalization (HE)
[7] is most extensively utilized for contrast enhancement.
Good contrast images should have the characteristic that
the histogram uniformly distributes over the entire range of
the intensity. The visual quality of the image is improved by
the HE method based on that fact. HE stretches the dy-
namic range of the histogram by remapping the gray levels
on the basis of probability density function (PDF) of the
image. In general, the HE has the advantages of efficient
computation, quick results, and the usage of real-time
applications. Despite these advantages, the HE method
has some undesirable effects such as saturation effect,
overstretching of input intensities, and so on. It tends to

lose the details of image, shift the mean of the input image
irrespective of image contents, and disturb the brightness
of the image [8].

Substantial HE-based approaches have been developed
to overcome the shortcomings of the HE technique in the
past decades. However, achieving an enhanced image
with high quality in the field of image processing is still
a challenging task. In order to more effectively increase
the contrast of the input image with brightness and details
well preserved, an efficient algorithm named entropy-based
adaptive subhistogram equalization (EASHE) is developed
in this paper. The proposed method is more effective for
preserving the mean brightness and detailed information of
the enhanced image while improving the contrast com-
pared with some other state-of-the-art methods. According
to the experimental results based on 100 images from CVG-
UGR-Database for some state-of-the-art methods and our
proposed method, we know that the EASHE technique can
achieve the multiple objectives of entropy maximization,
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details, and brightness preservation as well as control on
over enhancement. The main contributions of this paper
are as follows: Firstly, we introduce the entropy value-
based algorithm to divide the histogram of the input image.
Secondly, a novel approach for dynamic range adjust-
ment of image gray level is developed to overcome the
grayscale merging and image detailed information missing
problems. Thirdly, we put forward a new algorithm to
adjust the probability density function of the gray level,
which can adaptively control the degree of image en-
hancement, and the output image looks more natural and
clearer. Furthermore, results indicate that the proposed
method is a better approach compared with the state-of-
the-art methods.

The remainder of this paper is organized as follows: In
Section 2, we give an overview of the related work. Section 3
presents the proposed EASHE method. Data samples and
performance evaluations are drawn in Section 4. Section 5
provides experimental results and comparisons with state-
of-the-art methods, and our concluding remarks are in-
cluded in Section 6.

2. Related Works

Several HE-based approaches have been reviewed in this
section. In order to preserve the mean brightness of the
image and improve the contrast, Kim [8] proposes an
algorithm named brightness preserving bihistogram
equalization (BBHE). It separates the input image histo-
gram based on the input image mean value. DSIHE [9]
utilizes input image median to segment histogram, and equal
number of pixels are contained in each subhistogram.
MMBEBHE [10] is the extension of the BBHE method
that provides maximal brightness preservation, which re-
cursively divides the image histogram into multiple groups
based on mean brightness error (MBE). DHE [11] partitions
histogram based on locations of minima present in the
histogram. The span of gray levels in the enhanced image
for each subhistogram is decided based on their span in the
input image and cumulative frequencies. Though these
methods can perform good contrast enhancement, they
cause more annoying side effects, including failing with
images having nonsymmetric distribution [8], failing to
preserve mean brightness [9], producing more annoying
side effects [10], and losing structural information [12]. In
these techniques, however, the difference between input and
output image is minimal, and the desired improvement may
not always be achieved [13].

More recently, recursive mean-separate HE (RMSHE
[14]) is proposed by Chen and Ramli. The RMSHE further
divides the histogram into two parts recursively according to
their respective mean value. Each subhistogram is equalized
independently by performing BBHE [8], and output image is
constructed by the union of all equalized subhistograms. The
mean brightness of enhanced image approaches towards the
mean brightness of the input image. Sim et al. present
another recursively separated (RS) HE method known as
recursive subimage HE (RSIHE [15]), which is similar to
RMSHE proposed by Chen and Ramli in [14]. RSIHE divides
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the histogram of the input image based on median values,
and 2" subhistograms are generated, where each subhisto-
gram has an equal number of pixels.

In addition to histogram segmentation (i.e., BBHE,
DSIHE, RSIHE, etc.), in order to improve HE, histogram
clipping also has been developed. Histogram clipping can
reduce the domination effect of high frequency bins during
HE by controlling the enhancement rate. Examples of his-
togram clipping-based methods developed by scholars in-
clude bihistogram equalization with a plateau limit (BHEPL)
[16] and bihistogram equalization median plateau limit
(BHEPL-D) [17]. BHEPL is the combination of BBHE and
clipped HE. First, the input image is separated by using the
mean brightness of image, and then the subhistograms are
clipped by using their plateau limits. Then, these sub-
histograms are separately equalized. The BHEPL-D is similar
to the BHEPL, and the difference is that the BHEPL-D clips
each subhistogram based on the median of the occupied
intensity in the subhistogram.

In [18], Singh et al. recently propose an image en-
hancement technique using exposure-based subimage his-
togram equalization (ESIHE). The ESIHE method clips the
input histogram at the average number of intensity occur-
rences and segments the clipped histogram using a threshold
based on the image exposure. Singh et al. present a recursive-
division-based extension of ESIHE, referred as RS-ESIHE
[19]. RS-ESIHE performs recursive divisions of the histo-
gram based on the image exposure. The algorithms based on
the recursive division may fail to give natural-looking results
due to inappropriate subdivisions. Moreover, deciding the
number of division is a critical issue, which may degrade the
performance of the algorithm. Singh and Kapoor propose
median mean-based subimage clipped histogram equaliza-
tion MMSICHE [20] algorithm for image enhancement,
which firstly performs histogram partition based on median
intensity and then divides each subhistograms based on
mean intensity.

Additionally, many researchers also propose other HE-
based enhancement methods with contrast improvement
and brightness and details preservation. For example,
modified histogram equalization (MHE) is proposed by
Abdullah-Al-Wadud [21]. The proposed MHE approach
manipulates the accumulation in the input histogram
components before equalizing the histogram. It focuses on
preserving the small parts in images. The dynamic histogram
specification introduced by Sun et al., which can preserve the
shape of the input image histogram, unfortunately, makes
limited contrast enhancement [22]. Tsai et al. developed
a contrast enhancement algorithm for color images [23, 24].
Huang et al. proposed an adaptive gamma correction with
weighting distribution (AGCWD [25]), which enhances the
contrast and preserves the overall brightness of an image. In
the algorithm, the probability distribution for luminance
pixels and the gamma correction is used. The AGCWD
approach may not give desired results while it may lose
details in the bright regions of image when there are high
peaks in the input histogram [26]. Bihistogram equalization
using modified histogram bins (BHEMHB) was proposed by
Tang and Isa [27], and the algorithm segments the input
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histogram into two subhistograms according to the median
value of the image. BHEMHB alters the histogram bins
before HE is applied, but unfortunately limited improve-
ment of contrast is achieved.

3. Proposed Image Enhancement Method

3.1. Entropy-Based Threshold Calculation. The proposed
approach provides an optimal division of the original his-
togram. It is achieved by performing division of the histogram
based on the entropy. A subhistogram is divided into two
subhistograms with equal entropy. The histogram of an image
is divided into four parts with three thresholds which are
adaptive and obtained by the same method. The procedure to
obtain the thresholds will be presented in detail as follows:

Consider an input image I with intensity levels in the
dynamic range of [k;, k,], and let H[k;, k,] be the global
histogram of the input image I, where k; and k, denote lower
and uppermost intensities of the image I. H (k) is the his-
togram of the gray level k, which is defined as

H(k)=mn,, for k=k,..., k, (1)

u

where n, is the gray level of k in the image I. The pdf of the
image, pdf (k), can be described as

pdf (k) = I:](k)’ for

um

k=ky..., k,, (2)

u

where N, is the total number of pixels in the input image I.
The entropy of H can be represented as

k

E(H) =~ Y pdf (k) log pdf (k) 3)
Kk

The threshold value for histogram segmentation can
be obtained: First, we divide the whole histogram into
two parts by an adaptive threshold k,. Then, the two parts
can be presented as Suby{k;~k,} and Sub,{k,+ I~k}.
The entropy of H can be calculated by

K,

E(H) = - ) pdf (k)log pdf (k). (4)
k=ki

The intensity level k is obtained by solving
k

=Y pdf (k) log pdf (k) = %E(H). (5)
K=k,

We can obtain the threshold k, by (5), which is utilized to
segment the histogram of image. Note that we set kg, = k,,
and the optimal thresholds ky; and kg of the two parts up
and down the threshold k, can also be obtained in the same
way as the above. Finally, the histogram H [k, k] is seg-
mented into four subhistograms, that is,

4
Hlko k] = U, [, ©)
where ki and k' represent the boundary values of the

luminance range within the rth segmentation. Hence, all
subimages are captured by

I ={k G, DIt <k(i, <k, VG, j) ekl (7)

The input image can be represented as a combination of
segmented subimages.

=1 U Ui Uy (8)

sub sub sub sub*

3.2. Segment-Dependent Range Allocation. In Section 3.1, the
histogram of the original image is divided into four sub-
histograms based on the entropy. The gray level intervals are
[my, m,], [m,, m,], [m,, m;], and [ms, m,], respectively.
Note that here m, = k,, m; = ky;, m, = kg, m; = kg, and
my = k. Usually, most of the existing HE-based approaches
equalize subhistograms independently within the original
segmentation boundaries. Unfortunately, the HE over narrow
ranged subhistograms (having separating points closer to each
other) may result in saturation of intensities. On the contrary,
HE over widely spaced subhistograms may give rise to uneven
expansion of intensities. As a consequence, a resulted image
may lose its natural appearance. Therefore, it is necessary to
adjust the dynamic range of the subhistogram before the
equalization. The process of adjustment is as follows:

L ) span) (9)
Nsubs ")

where L is the number of gray levels (i.e., for 8 bits image,
L=256) and N, is the number of subhistograms. E (H,) is

span, =m,_; —m

r>

aspan, = span, + (E(H,) - 1) » ((

ub
the entropy of ‘the rth subhistogram, given as
ky
E(H,) =- ) pdf(k)log pdf (k),
k=h (10)
aspan,
range, = ———— (L —1),
B S aspan,

where aspan, denotes the grayscale range of the rth sub-
histogram in the input image histogram, L is the total gray
level, and range, represents the dynamic range of the rth
subhistogram in the output image histogram. After adjusting
the gray level dynamic range of subhistograms, the gray level
range of the image is widely stretched, and the occurrence of
grayscale combination is reduced, as shown in Figure 1. We
can get the new boundary values of the luminance range
within the rth segmentation formulated as

4 _ 1r-14
kl_new - kl_new +1, (11)
kr,4 _ kr,4

u_new — "“_new + range,.

3.3. Adaptive Probability Density Function Adjustment.
The degree of image enhancement usually cannot be con-
trolled by HE, so the phenomenon of over enhancement often
exists. In this paper, we introduce a control factor of the image
enhancement degree, which can adaptively control the degree
of image enhancement. In order to simplify the calculation
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FIGURE 1: Grayscale remapping diagrammatic sketch.

process, we divide the adjusted dynamic range histogram
(processed in Section 3.2) into two subhistograms. The

algorithm adjusting the probability density function of the
gray level in this paper is given by (12).

2
(pdfavgmm - Pdf (k))
df - ) df (k) < pdf )
P avgmm a pdfavgmm _ pdfmm P ( ) < P avgmm
pdfepapy = 1 (12)
2
(pdf (k) - pdfavgmm)
pdfav mm ’ pdf (k) > pdfav mm?>
U & pdfmax - pdfavgmm &
where pdf, ,, and pdf,;, are the maximum and the mini- L 1
mum values of pdf, respectively, and pdf,,,, is the average - Z pdf spy (k) log pdf sp; (k) = EE apy (H), (15)
value of pdf .. and pdf ;.. The control factor « can be k=0
described as where pdf,p; is calculated after adjusting the gray level
I = Lvgsubr 0<k<I dynamic range of subhistograms in Section 3.2 and E,p,
Lyygsub2 = Tavgsubt Th Tk denotes the entropy value formulated by (16). The di-
o = (13)  agrammatic sketch of probability density function adjust-
vesuby = T ment is indicated in Figure 2.
2 . I <ks<L-1, .
I avgsub2 — I avgsubl _
Ezpj(H) = - Z pdf spy (k) log pdf sp; (k). (16)
k=0

where I o1 and Iy, are the average values of gray level
in two subhistograms, respectively. They can be defined as

LTk pdf(k)
avgsubl I

s ke % pdf (k)
(14)
o1, 1k * pdf (k)

avgsub2 — ©IL-1

1 .
FL ok pdf (k)

I is the intensity level obtained by solving

After adjusting the probability density function, it is
necessary to normalize the cumulative distribution function.
The process is as follows:

k
CdeD] (k) = Z PdeD] (k),
=0 (17)
cdf ypy (k) L-1).

cdfapy (k) = cdf ypy (K) (L - 1)
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FIGUure 2: Diagrammatic sketch of probability density function
adjustment.

3.4. Histogram Equalization. HE involves mapping an input
gray level L using transformation function f (I), which can
be denoted as

F k) = K, + (K, - K)) = cdf (k), (18)

where K| and K|, represent the minimum and maximum
gray levels, respectively. As observed in (18), the remapping
of the input image is within the entire dynamic range
[K}, K,] after applying CHE. The proposed method equal-
izes the modified subhistograms by (19), thereafter, the
equalized subhistograms are integrated to produce the final
enhanced output image.

f (k)sub"4 = klrﬁlew + (klrfnew - klrj;ew) * C’(\ﬂ:AD] (k)’

7,4 1,4
for k = k" jowr - - > Ky pew-

(19)

4. Data Samples and Performance Evaluations

4.1. Data Samples. The proposed approach is tested on
100 images from a public image database named CVG-
UGR-Database [28]. The proposed approach is compared
with conventional as well as state-of-the-art contrast-
enhancement algorithms. The comparison algorithms are
BBHE [8], DSIHE [9], RMSHE [14], MMBEBHE [10],
RSIHE [15], DHE [11], BHEPL [16], ESIHE [19], MMSICHE
[21], and BHEMHB [27]. The reason of choosing these
methods for comparison is that they are mainly based on
histogram segmentation, histogram clipping, and/or histo-
gram modification. A comparative analysis of the different
methods is performed by subjective and objective evaluation
of the resulting images.

4.2. Subjective Evaluation. Subjective evaluation is a visual
way to evaluate the contrast enhancement. The enhancement
results can be appreciated if the enhanced image gives
pleasurable effect in appearance. The judgment of annoying
artifacts, over enhancement, and unnatural enhancement
can be achieved by visual quality inspection. The perfor-
mance of contrast enhancement algorithm can be effectively
measured through the visual assessment results.

4.3. Objective Evaluation. The need for quantitative as-
sessment arises due to the limitations of the human visual
system. Moreover, human perception may sometimes be
subjective, that is to say, enhancement or improvement of
the visual quality of an image is a subjective matter because
its judgment varies from person to person. Here, a quali-
tative analysis regarding the amount of details of the image,
level of contrast, homogeneity of regions, and naturalness is
performed, and we can establish numerical justifications by
quantitative measurements. However, it is difficult to find an
objective measure that is in accordance with the subjective
assessment due to the lack of any universally accepted
criterion. Here, we evaluate the performance of enhance-
ment techniques using three quality metrics: discrete en-
tropy (DE), peak signal to noise ratio (PSNR), and absolute
mean brightness error (AMBE).

4.3.1. Evaluation of the Richness of Information. Entropy is
applied to measure the details in the image according to the
Shannon theory [29]. Theoretically, the higher the entropy
value, the greater the details contained in the image, so
a higher entropy value is desired. The entropy value of the
entire image can be calculated by the following:

-1 I-1
DE = Z e(l) =- Z pdf (X) log, pdf (X}), (20)
1=0 1=0

where the pdf (X}) is the normalized probability of the kth
gray level. The entropy of the image can achieve maximum
value only when pdf (0) = pdf (1) = ... =pdf (L-1) = 1/L.

4.3.2. Evaluation of Contrast Enhancement. A good en-
hancement method should not only enhance the contrast of
the image but also yield an image that owns a natural-
looking in output image. The approach should not amplify
the noise level during the enhancement process [30]. PSNR
is commonly used to evaluate the quality achievement
among the input and processed images [12, 31-34] and the
degree of contrast enhancement in the image. MSE is firstly
computed by (22), and then PSNR value is calculated in (21).
Usually a large PSNR value is desired for the reason that the
higher value of the PSNR indicates less significant noise level
that is amplified. It means that the processed image is least
degraded compared with the original input image. Mathe-
matically, both of the quantitative measurements are given
as follows:

(L-1)
PSNR = 101 A 21
Oglo[ MSE (21)
where MSE is the mean square error, defined as
i=I g —1 J=Iheight=1 .. . a2
X > - Y >
msp= 3y REAYEIL g

i=0 j=0 I width x 1 height

where I;4, and Iy, represent the width and height of
the images, respectively. X (i, j) and Y (4, j) are the input
and enhanced image intensity value at the location (i, f)
correspondingly.
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FIGure 3: “F16” image and enhancement results of different algorithms.

4.3.3. Evaluation of Brightness Preservation. In order to
evaluate the ability of the proposed EASHE technique in
mean brightness preservation, the objective function named
average mean brightness error (AMBE) is utilized. AMBE is
used to compute the difference of the mean brightness value
between the input and enhanced images, as indicated in (23)
[35-37]. Ideally, the mean brightness of the enhanced image
should be equal to the mean brightness of the input image,
therefore, a small AMBE is thus desired.

AMBE =|E(X) - E(Y)], (23)
i= i =1 J=Theight =1
EX)= ) Y X)) (24)
i=0 j=0
i=I g1 J=Theight—1
E(Y) = Y Y6, (25)
i=0 j=0

where E(X) and E (Y) are the mean brightness of the input
and processed images, respectively.

5. Experiment Results and Discussion

5.1. Experiment Results. In this section, the simulation re-
sults of the proposed method EASHE are compared with
state-of-the-art HE-based methods. As mentioned in Section
4.1, ten other HE-based techniques have been implemented
to compare the performance of EASHE on contrast en-
hancement, brightness preservation, naturalness of the
image, and ability to preserve details in the image.

In this article, the test images named as F16, Butterfly,
Aerial, Fish, Lena, and Portofino are given. They are pre-
sented in this study for initial performance evaluation on our
proposed EASHE method. The results obtained for each
image are indicated in Figures 3-8, respectively. “Original”
indicates the input image, while the other images represent
the respective enhanced images after applying other com-
pared methods and our proposed EASHE approach.
Tables 1-3 show the quantitative results of these test images.
The best value for each analysis is in bold face.

Figure 3 shows the “F16” image and its contrast-enhanced
results obtained by different algorithms. BBHE, DHE, and
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FIGURE 4: “Aerial” image and enhancement results of different algorithms.

MMBEBHE enhance the contrast of the input image, but
some regions exhibit over enhancement. Limited improve-
ment of contrast enhancement is obtained by DSIHE and
RMSHE. RSIHE, ESIHE, and BHEPL stand out some details,
but the output image looks like dark due to the limited
improvement in brightness. MMSICHE and BHEMHB can
well preserve the brightness. The mean brightness of the
enhanced image processed by proposed EASHE method is
closest to the input image. So, the overall appearance of the
processed image is very similar to the input image. The
brightness can be well preserved in the processed image,
since the proposed EASHE method can obtain the lowest
AMBE value, as indicated in Table 3. The proposed method
can grape the highest value of entropy, displayed in Ta-
ble 1, which shows that most of the details of the image can
be well preserved compared with the other methods. This
can be seen from the highlighted area with red boxes.
EASHE also produces images with homogeneous texture.
Most of the image area, particularly the background of
the image, appears to have a smooth texture with a few
small regions. Our proposed technique least amplifies the
noise level in the image during the enhancement process,

since the largest PSNR value is obtained by the EASHE-ed
image.

The “Aerial” image and its contrast-enhanced versions
obtained by different algorithms are shown in Figure 4.
BBHE and DHE methods make limited improvement on
contrast-enhancement, and the BBHE obtains the lowest
PNSR value, which is indicated in Table 2. There are
some regions exhibiting over enhancement by BHEPL and
RMSHE. MMBEBHE and MMSICHE can get a relative
dynamic contrast than that of mentioned approaches, but
some regions still look unnatural. The shifting effect of mean
brightness is significant in the DSIHE-ed and ESIHE-ed
images, which causes the loss of naturalness in these output
images. Compared with the most of the other techniques,
majority of the details of the image can be well preserved by
EASHE, even though our proposed method is ranked second
(i.e., 7.6931) after BHEMHB (i.e., 7.7350). The EASHE
method least amplifies the noise level in the image during the
enhancement process in that it can obtain the largest PSNR
value (i.e., 26.1423), as shown in Table 2.

It can be observed on the window area highlighted with
boxes that the proposed EASHE can simultaneously enhance
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FIGURE 5: “Butterfly” image and enhancement results of different algorithms.

the overall contrast of the test image “Butterfly” to an op-
timum level and preserve the details of the image, as shown
in Figure 5. It is clear that the saturation effect is less ap-
parent and thus the window areas can be clearly seen. This
saturation effect (i.e., the window area regions become too
bright) can be observed in the BBHE-ed and MMBEBHE-ed
images. Observation on the ability of the proposed EASHE
to preserve details is supported by the entropy measurement,
in which the enhanced image has a entropy value larger than
most of the methods, which indicates that the information
entropy is well preserved. The EASHE-ed image has the
largest value of PSNR (ie., 29.3826), showing that the
proposed method least degrades the image during the en-
hancement process. In addition, the EASHE-ed image has
the lowest AMBE value (i.e., 1.7246), which indicates that the
proposed method can well preserve the brightness of the
output image.

The “Fish” image and its contrast-enhanced versions
obtained by different algorithms are indicated in Figure 6.
BBHE, MMBEBHE, and BHEPL introduce saturation effects
in some regions in the output images, as shown in the

highlighted areas with red boxes. DSTHE and RMSHE make
limited improvement for contrast enhancement. RSTHE
obtains a good contrast image. However, the image is slightly
over enhanced. ESIHE and MMSICHE result in good
contrast with natural visual quality. However, the proposed
algorithm (EDSHE) provides better contrast enhance-
ment. The EASHE-ed image has the largest value of PSNR
(i.e., 28.6235), indicating that EASHE least degrades the
image during the enhancement process. The EASHE method
can simultaneously enhance the overall contrast of the
“Fish” image to an optimum level and well preserve
the detailed information. This outcome can be observed
on the fish scale highlighted with boxes. As shown in Table 1,
the proposed EASHE grapes the biggest value of entropy
(i.e,, 7.1325), indicating that the detailed information is
well preserved. Furthermore, the proposed EASHE method
can get the lowest AMBE value, which demonstrates the
brightness can be well preserved in the processed image. The
output image enhanced by EASHE, as shown in Figure 6
(proposed), also exhibits a natural look, which means it does
not look too artistic after the enhancement process.
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Figure 7 displays the contrast-enhancement results for
the “Lena” image. The input image Lena has the charac-
teristics that fully black or fully white regions are rela-
tively few, as shown in Figure 7 (original). We can observe
that some region of face is over enhanced by BBHE,
MMBEBHE, and BHEPL methods. DSIHE, RMSHE, and
RSIHE fail to significantly improve contrast. The resultant
image enhanced with the proposed EASHE has a clearer
contour compared with images using the other methods, as
can be seen on regions within boxes. The proposed EASHE
ranked first place for test image “Lena” in the entropy
measurement, which indicates that more detailed infor-
mation can be preserved in processed image by our method.
The difference reveals that the performance of EASHE is
comparable with others in retaining detailed information of
enhanced image. Furthermore, the proposed method can
well preserve brightness because it can get the lowest AMBE
value. The proposed algorithm can obtain a natural-looking
contrast-enhanced image.

The “Portofino” image and its contrast-enhanced
images obtained by different algorithms are displayed

in Figure 8. For the test image, the proposed EASHE
produces an output image with most of the details well
preserved because it possesses the highest entropy value.
This result can be seen on regions highlighted with boxes,
such as edges of the building and some regions of the
boat. The shifting effect of mean brightness is pregnant in
the MMBEBHE-ed and MMSICHE-ed images, resulting
in the loss of naturalness in these images. RMSHE, RSIHE,
and DHE fail to achieve much improvement of contrast
enhancement. Some regions of the processed image ex-
hibit over enhancement with BHEPL approach. By con-
trast, the resultant image enhanced with EASHE has
a smooth texture, wherein less nonhomogenous regions
are observed compared with other techniques. In addi-
tion, the EASHE-ed image has the smallest AMBE
measurement.

From the performance of the proposed technique for
the six test images, namely, F16, Butterfly, Aerial, Fish,
Lena, and Portofino, it is clear that our proposed algorithm
can obtain satisfactory results when compared with those of
the other ten HE-based methods. In order to further justify
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FIGURE 7: “Lena” image and enhancement results of different algorithms.

the capability and performance of our EASHE method, we
further validate the performance of the proposed approach
with the three objective evaluation functions (i.e., entropy,
PSNR, and AMBE) by utilizing the 100 test images from
CVG-UGR-Database. The average values and standard
deviations of these quantitative analyses for 100 test images
are presented in Figure 9.

As indicated in Figure 9, our proposed ESAHE tech-
nique illustrates outperformance when compared with the
state-of-the-art HE-based methods. On average, the image
processed by EASHE contains the highest amount of details.
The richness and detail information can be well preserved
in output image due to its highest entropy value (i.e., 7.37).
The proposed EASHE method outperforms all the other
algorithms compared in this paper. The largest PSNR
(i.e., 28.42) value gained by our method indicates that the
output images processed by EASHE have a more natural
appearance with minimum artifacts compared with others.
The lowest value (i.e., 2.16) obtained by our method shows
that the enhanced image using EASHE has mean brightness
nearest to the original image.

5.2. Discussions. 'The highest PSNR value by the EASHE-ed
image indicates that the proposed EASHE method can en-
hance the image with minimum noise and artifacts.
It illustrates that the contrast enhancement performance of
EASHE is better than most of state-of-the-art HE-based
methods. With regard to mean brightness, the EASHE-ed
image demonstrates high capability, especially when com-
pared with the BHEPL-ed images. The enhanced image by
BHEPL algorithm is too bright when referred to the original
image. The naturalness of the image is maintained in the
EASHE-ed image, because the degree of image enhancement
is adaptively controlled. The image is enhanced at a sufficient
level without introducing an unpleasant look while improving
the contrast of the input image.

Furthermore, AMBE values for all the techniques are
computed. EASHE acquires the lowest AMBE value com-
pared with the other methods. The EASHE possesses the
highest capability in retaining the mean brightness of the
image due to its lowest AMBE value, that is to say, the images
processed by EASHE typically have a mean brightness
closest to the original image.
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FIGURE 8: “Portofino” image and enhancement results of different algorithms.

TaBLE 1: DE calculated for the test images.
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Image BBHE DSIHE RMSHE MMBEBHE RSIHE DHE BHEPL ESIHE MMSICHE BHEMHB Proposed
F16 6.3327  6.3590 6.0909 6.5023 6.4910 6.5124  6.5438  6.6120 6.6026 6.6660 7.4261
Aerial 7.0015  6.9640 7.9891 6.9567 7.0971 71369  6.9752  7.5100 7.6289 7.7350 7.6931
Butterfly = 7.1428  7.2368 7.1569 7.0623 6.9257 7.2463  6.9674  7.0680 7.0816 6.8156 7.1520
Fish 6.0326  6.1604 6.1689 6.2672 59100 6.2672 6.1324  5.9850 6.1247 6.0170 7.1325
Lena 7.2324  7.1996 7.0085 7.2195 7.4610 7.5984  7.5124  7.4970 7.5128 7.5620 7.8361
Portofino  6.5736  6.4447 6.2251 6.3516 6.5054 6.4368 6.3018  6.4836 6.3927 6.6470 6.7100
TaBLE 2: PSNR calculated for the test images.
Image BBHE DSIHE RMSHE MMBEBHE RSIHE DHE BHEPL ESIHE MMSICHE BHEMHB Proposed
F16 18.3412  20.9870  21.8760 24.4849 22.1130 20.7826 21.6876 22.8690 23.6437 23.9420 27.5627
Aerial 18.3726 19.7078 19.3277 24.0514 24.4368 24.1023 23.8672 23.6780 25.2106 24.4635 26.1423
Butterfly  23.7126  23.2012 24.9133 23.5086 27.2658 26.7627 26.3412  27.9320 28.0131 28.2672 29.3826
Fish 21.3122  20.1459 19.7673 22.0862 24.9780 27.1671 23.2674 25.4060 26.0126 26.4010 28.6235
Lena 23.1417  23.5663 22.1785 22.7730 24.8000 27.9726 23.2672 25.7990 27.1211 26.5950 30.2516
Portofino  19.1426  21.7635  22.6540 25.3268 21.3264 25.1324 20.2673  22.2420 24.3746 24.5865 26.3410
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TaBLE 3: AMBE calculated for the test images.
Image BBHE DSIHE RMSHE MMBEBHE RSIHE DHE BHEPL ESIHE MMSICHE BHEMHB Proposed
Fl16 1.3826  20.2554 5.7030 0.4496 6.4810 2.3726  0.5126 2.8740 2.7427 1.3340 0.1257
Aerial 21127 3.0264 1.9858 0.7146 1.0718 1.0172 1.3826 2.4570 1.3826 2.1652 2.0326
Butterﬂy 2.0134 1.8726 2.6479 2.1850 3.6592 3.1436 3.4131 3.6864 2.0131 3.1150 1.7246
Fish 7.2436  9.5402 11.7333 8.2674 3.7260 4.3672  3.1236 3.8960 2.3826 4.5760 2.1026
Lena 3.1427 6.0463 10.3377 0.8662 5.1090 2.1146 3.3324 2.5310 1.1324 2.4650 0.7726
Portofino 6.9624 14.6670 11.2179 2.3521 9.1660 7.3826  7.6423 10.2240 5.7624 8.1610 1.3624
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FIGURE 9: Average values and standard deviations of quantitative analyses for 100 test images.

6. Conclusion

A new approach named the entropy-based adaptive sub-
histogram equalization (EASHE) with brightness and detailed
information preservation is presented in this paper. The
presented approach recursively separates the input histogram
based on the entropy value of histogram. The proposed
method provides a better distribution of intensity levels over
the entire dynamic range, which results in an effectively
incensement of contrast. The detailed information can be well
preserved by utilizing a novel algorithm to adjust the prob-
ability density function of the gray level. The proposed al-
gorithm is compared with some state-of-the-art HE-based
algorithms, and a large number of images from standard
image database are used to test the performance of the
proposed approach. The experimental results have shown that
the EASHE method can obtain superior performance com-
pared with some HE-based state-of-the-art methods.
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