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Abstract. A central question in the endocytic process 
concerns the mechanism for sorting of recycling com- 
ponents (such as transferrin or low density lipoprotein 
receptors) from lysosomally directed components; 
membrane-associated molecules including receptors 
are generally directed towards the recycling pathway 
while the luminal content of sorting endosomes, con- 
sisting of the acid-released ligands, are lysosomally 
targeted. However, it is not known whether recycling 
membrane receptors follow bulk membrane flow or if 
these proteins are actively sorted from lysosomally 
directed material because of specific protein sequences 
and/or structural features. Using quantitative fluores- 
cence microscopy we have determined the endocytic 
route and kinetics of traffic of the bulk carder, mem- 
brane lipids, to address this issue directly. We show 

that N-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-e- 
aminohexanoyl] -sphingosylphosphorylcholine (Ca- 
NBD-SM) in endocytosed as bulk membrane, and it 
transits the endocytic system kinetically and morpho- 
logically identically to fluorescently labeled transferdn 
in a CHO cell line. With indistinguishable kinetics, 
the two labeled markers sort from lysosomally des- 
tined molecules in peripherally located sorting endo- 
somes, accumulate in a peri-centriolar recycling com- 
partment, and finally exit the cell. Other fluorescently 
labeled lipids, C6-NBD-phosphatidylcholine and galac- 
tosylceramide also traverse the same pathway. The 
constitutive nature of sorting of bulk membrane to- 
wards the recycling pathway and the lysosomal direc- 
tion of fluid phase implies a geometric basis of 
sorting. 

I 
NTRACELLULAR trafficking of proteins during endocyto- 
sis has been extensively characterized (see Fig. 1). This 
process is mediated by organelles such as coated vesi- 

cles, sorting endosomes or early endosomes, and late endo- 
somes (Goldstein et al., 1985; Maxfield and Yamashiro, 
1991; van Deurs et al., 1989). A central question in the endo- 
cytic process concerns the mechanism for sorting of recy- 
cling components (e.g., the transferrin receptor [Tf-R] 1 or 
the low density lipoprotein receptor [LDL-R]) from lyso- 
somally directed components (e.g., acid-released ligands 
such as low density lipoprotein [LDL] or ot2-macroglobulin 
[a2-M]). This sorting is a rapid step (tu2 < 3 min), and as 
depicted in Fig. 1, takes place in acidic organelles called 
sorting endosomes (Yamashiro and Maxfield, 1987), having 

1. Abbreviations used in this paper: ce2M, ce2-macroglobulin; C6-NBD-PC, 
C6-NBD-phosphatidylcholine; C6-NBD-SM, N-[N-(7-nitro-2,1,3-benzoxa- 
diazol-4-yl)-~-aminohexanoyl]-sphingosylphosphorylcholine; CCD, charged- 
couped device; Cy3-ct2M, Cy3-1abeled ce2M; DiO-LDL, 3,3tdioctadecyl - 
oxacarbocyanine-labeled LDL; DiI-LDL, 3,3'-dioctadecylindocarbocy- 
anine-labeled LDL; HF-12, Hepes-buffered Hams F-12 medium; LDL, low 
density lipoprotein; LDL-R, LDL-receptor; Rh-Tf, rhodamine-labeled 
Tf; "If, transferrin; Tf-R, "IT receptor; Tx, Texas-red; Tx-Tf, Texas-red- 
labeled Tf. 
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a tubular-vesicular morphology (Geuze et al., 1983; Gruen- 
berg et al., 1989; Mellman et al., 1986). This is also where 
acid-released ligands accumulate and are eventually deliv- 
ered to lysosomes via a maturation process (Durra and 
Maxfield, 1992; Stoorvogel et al., 1991). The rate of sorting 
is thus related to the rate of removal of the recycling compo- 
nents from the sorting endosome. 

Once removed from the sorting endosome, recycling com- 
ponents are delivered to a separate recycling compartment, 
morphologically and functionally distinct from sorting endo- 
somes (Maxfield and Yamashiro, 1991). This compartment, 
in CHO cells, is a collection of tubular endosomes concen- 
trated in the peri-centriolar region of the cell, containing re- 
cycling receptors, such as Tf-R and LDL-R but not lyso- 
somally directed ligands such as LDL or a2-M (McGraw et 
al., 1993; Yamashiro et al., 1984). The recycling compart- 
ment has also been recently characterized as a tubular net- 
work located around the peri-centriolar region in AtT20, 
HeLa, and other cells (Tooze and Hollinshead, 1991). 

A striking feature of the endocytic system is the high 
efficiency of recycling of membrane receptors and the 
lysosomal direction of their acid-released ligands, albeit at 
lower efficiency (for review see van Deurs et al., 1989). 
There are two ways by which this process may take place: 
(1) by a selective process in which recycling molecules are 
specifically removed from the sorting endosome while lyso- 

© The Rockefeller University Press, 0021-9525/93/06/1257/13 $2.00 
The Journal of Cell Biology, Volume 121, Number 6, June 1993 1257-1269 1257 



somaUy directed molecules are retained; or (2) by a default 
process in which membrane receptors are recycled along 
with most of the membrane components while acid-released 
ligands are lysosomally directed along with the luminal con- 
tent of the sorting endosome. The two possibilities are not 
mutually exclusive. However, singly, they lead to very differ- 
ent testable predictions. 

In the first case, it has been proposed that recycling recep- 
tors are specifically concentrated in tubular extensions of the 
sorting endosome (or the compartment for the uncoupling of 
ligand and receptor, [CURL]; Geuze et al., 1983) and that 
the targeting of these structures towards the recycling path- 
way results in sorting. This could be achieved by molecular 
recognition signals such as peptide sequences involved in the 
retrieval of recycling components. No recognition signals for 
recycling have been identified, but some evidence in support 
of specific retrieval of membrane receptors has been ob- 
tained in rat liver cells, where recycling asialoglycoprotein 
receptors appear to be at higher concentrations in the tubular 
extensions of the sorting endosome (or CURL; Geuze et al., 
1987). 

In the second case, the geometry of the tubular-vesicular 
sorting endosome has been considered as a possible mecha- 
nism for such a 'default' sorting process (Dunn et al., 1989; 
Linderman and Lauffenburger, 1988; Rome, 1985). A 
prediction of the geometric (default) basis for sorting is that 
bulk membrane, carrying no specific signals other than 
membrane association, would be efficiently recycled along 
with membrane-associated receptors, while bulk volume 
content consisting of the acid-released ligands would be 
lysosomally destined. On the other hand, if specific signals 
are required for recycling of receptors, bulk membrane 
would not traverse the recycling pathway with similar rates 
and efficiency as receptors. Comparison of the endocytic 
route and the kinetics of trafficking of bulk membrane with 
a recycling receptor in morphological and kinetic analyses 
performed in the same cell would directly address this issue. 

Koval and Pagano have studied the endocytic traffick- 
ing and metabolism of a membrane-lipid analog, N-[N-(7- 
nitro-2,1,3-benzoxadiazol-4-yl)-e-aminohexanoyl]-sphingo- 
sylphosphorylcholine (C6-NBD-SM) (for review see Koval 
and Pagano, 1991). They found that C~-NBD-SM was en- 
docytosed in compartments that contain fluorescently la- 
beled Tf. Using whole-cell kinetic measurements they 
showed that a majority (>95%) of the internalized lipid is 
efficiently recycled (Koval and Pagano, 1989) while only a 
small fraction of the endocytosed lipid is delivered to lyso- 
somes (Koval and Pagano, 1990). However, it is not known 
whether C6-NBD-SM and recycling receptors follow the 
same endocytic route with similar kinetics. 

In this report we show that C6-NBD-SM enters the endo- 
cytic system as a bulk membrane marker, and its endocytic 
route is kinetically and morphologically identical to fluo- 
rescently labeled Tf. The lipid analog rapidly sorts from ly- 
sosomally directed molecules in the sorting endosome and 
accumulates in the recycling compartment before recycling 
back to the cell surface. 

Materials and Methods 

Cell Cultures 
All experiments were carried out using TRVb-1 ceils, a line of CHO cells 

lacking hamster Tf-R and transfected with a human "if-R, or another CHO 
cell line (WTB111 cells; Robbins et al., 1984) containing the hamster recep- 
tor, and cultured as described previously (McGraw et ai., 1987). 3 days be- 
fore each experiment, cells were plated on 35-mm diameter coverslip bot- 
tom dishes (Salzman and Maxfield, 1989) and used at 50--80% eonfluency 
for microscope experiments and 80-90% confluency for biochemical ex- 
periments. 

Fluorescent Labels 
Human transferrin (Sigma Chem. Co., St. Louis, MO) was iron-loaded and 
purified by Sephacryl S-300 (Pharmncia LKB, Uppsala, Sweden) gel-filtra- 
tion chromatography and conjugated to rhodamine isothiocyanate or FITC 
as previously described (Yamashiro et al., 1984). Cy3 TM (Biological De- 
tection Systems, Pittsburgh, PA) or Texas-red TM (Molecular Probes Inc., 
Eugene, OR) conjugated proteins were made according to the manufac- 
turers' instructions. The conjugation was carried out at 3 mg/ml protein con- 
centration and at 0.5 mg/ml dye concentration. The final dye to protein ratio 
was routinely determined to be between 1.0 and 1.3. 3,3'-dioctadecyloxacar- 
bocyanine- and 3,3'-dioctadecylindocarbocyanine-labeled LDL (DiO-LDL 
and DiI-LDL, respectively) were prepared according to (Pitas et ai., 1981) 
and provided by Drs. J. N. Myers and I. Tabas (Columbia University, NY). 
C6-NBD-SM and C6-NBD-PC were obtained from Molecular probes and 
purified by thin layer chromatography before use. Ce-NBD-galactosylcer- 
amide was prepared according to published procedures (Kishimoto, 1975) 
from C6-NBD-fatty acid (Molecular Probes) and psychosine (Sigma 
Chem. Co.) and purified by thin layer chromatography as described previ- 
ously (van Meer et al., 1987). 

C6-NBD-lipid vesicles (100/~M total lipid) were prepared according to 
Kremer et al. (1977) by injecting an ethanolic solution (2.5 mM total lipid 
concentration) consisting of a mixture (1:1 or 2:3) of C6-NBD-lipid and di- 
oleylphosphatidylcholine (Avanti Polar Lipids Inc., Albaster, AL), into 150 
mM NaCi, 20 mM Hepes, pH 7.4. Ethanol (<8%) was removed by dialysis 
into 150 mM NaCi, 20 mM Hepes, pH 7.4, 5 mM KC1 and the resulting 
vesicle solution was stored in the dark, under argon at 4°C. 

Fluorescent Labeling of Cells 

TRVb-1 cells were incubated for 30 rain at 0°C with the fluorescently la- 
beled protein, in Hepes-buffered (20 mM, pH 7.3) Hams F-12 media includ- 
ing 10 mM NaHCO3 (HF-12) in the presence of 2 rng/ml ovalbumin (HF- 
12-Ova) or without ovalbumin as indicated. The cells were wanned to 37°C 
for the indicated periods. At the end of the incubation period the cells were 
rinsed (5 x 2 ml) with ice cold Med 1 (150 mM NaC1, 20 mM Hepes, pH 
7.4, 5 m_M KC1, 1 mM CaC12, 1 mM MgC12) containing >1 mg/ml of ex- 
cess unlabeled ligands, fixed in 2 % paraformaldehyde in Med 1 at 0°C for 
I0 rain, and taken for fluorescence microscopy. In some cases the cells were 
fixed at room temperature in 2% paraformaldehyde in PBS for 30 rain. In 
pulse-chase experiments the cells were chased in Med 1 containing 5 g/1 
glucose, Ix MEM amino acids (GIBCO BRL, Gaithersburg, MD), 1% 
BSA and 10 ~M deferoxamine mesylate (Sigma Chem. Co.), and 1 mg/ml 
unlabeled protein ligand, before fixation as above. 

Lipid labeling of TRVb-1 cells was accomplished by incubating the cells 
at 0°C with C6-NBD-lipid vesicles at the indicated concentrations for 30 
rain in HF-12. After labeling, the cells were washed extensively in ice cold 
HF-12 (5 × 2 ml). The cells were then warmed up to 37°C for the indicated 
periods, hack-exchanged in 5 % BSA in Med 1 (6 x 5 rain changes) to re- 
move surface C6-NBD-lipid, and fixed as described above. The back- 
exchange procedure removed at least 98 % of cell surface-associated lipid. 
To rule out that quantitative fluorescence microscopic analyses of intracel- 
lular labeling of organelles may be complicated by hydrolysis of C6-NBD- 
SM (Koval and Pagano, 1989), biochemical analyses of C6-NBD-SM me- 
tabolism were carried out (see below). Under the conditions of the pulse 
and chase conditions used in the experiments described in this report, <5 % 
of the total cell-associated C6-NBD-SM was converted to C6-N-BD- 
ceramide, and no C6-NBD-glucosylceramide was detected even at the lon- 
gest chase times. 

Quantitative Fluorescence Microscopy 
Images of fluorescently labeled cells were obtained by two independent 
means, video recording of an intensified signal collected via a video cam- 
era, described in Maxfield and Dunn (1990) or via a charged-coupled device 
(CCD) equipped camera. 

DiO-LDL and Rh-Tf fluorescence images were recorded from the same 
field using different filter sets. Rhodamine-labeled 'If (Rh-Tf) fluorescence 
was visualized using a Leitz fluorescence microscope equipped with a 63 ×, 
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NA 1.4 objective or 40x,  NA 1.3 objective (Leitz Wetzlar, Germany) and 
a 530-560-am band pass excitation filter, a 580-nm dichroic mirror, and 
a 580-rim long pass emission filter. FITC-Tf and DiO-LDL were visualized 
with the same equipment but a 450-490-nm band pass excitation filter, a 
510-am dichroic mirror, and a 515-545-nm band pass emission filter were 
used. NBD-fluorescence images were obtained using the same optics de- 
scribed for DiO-LDL. DiI or Cy3 fluorescence images were recorded using 
the Rhodamine filter set. Texas red-fluorescence images were recorded 
using the same equipment but a Texas red filter set (540-580 am band pass 
excitation filter, a 595-nm dichroic mirror, and a 600-rim long pass emission 
filter) was used to visualize the fluorescence. In some cases NBD and Texas 
red-labeled samples were imaged using a FITC/Texas red dual dichroic 
filter set while NBD and DiI, or Cy3-1abeled samples were imaged using 
a FITC/TRITC dual dichroic filter set. All optical filters were image quality 
and purchased from Omega Optical (Brattleboro, VT). 

Video images were recorded on a JVC CR6650U video cassette recorder 
with a Videoscope KS1380 image intensifier coupled to a VS2000N video 
camera. Neutral density filters (5, 13, 33% transmission) were used to keep 
the fluorescence intensities from exceeding the camera's linear range. 

A cooled CCD camera (Photometrics, Inc., Tuscon, AZ), equipped with 
a KAF 1400 mega-pixel Kodak chip was used to record time-integrated im- 
ages of NBD-fluorescence (Hirschfeld, 1976; Jovin and Arndt-Jovin, 1989). 
In this method, all the NBD-fluorescence was collected until the sample was 
completely photobleached. Texas red images from the same field were col- 
lected over a shorter length of time of obtain adequate Texas-red fluores- 
cence images, after refocusing in phase-contrast optics to the same focal 
plane from which the NBD-imaga was obtained. The expanded dynamic 
range of the CCD camera ('~12 bits) compared to the intensified video cam- 
era (~8 bits) allowed the visualization of time-integrated fluorescence 
NBD-images; neutral density filters (10, 25, or 50%) were used in the emis- 
sion light path to compensate for different labeling conditions. Crossover 
of Texas-red fluorescence into the NBD-chamael was found to be undctect- 
able. NBD-fluorescence crossover into the Texas-red channel was not ob- 
served because the time-integrated fluorescence emission method com- 
pletely photobleaches the NBD-fluorophore. 

Image Processing 
Video images were processed as described previously (Duma et al., 1989; 
Maxfield and Dman, 1990; Mayor and Maxfield, 1993). In a preliminary 
report (Mayor and Maxfield, 1993), we have used video camera fluores- 
cence microscopy to measure the accumulation kinetics of C6-NBD-SM 
and Texas-red-labeled Tf (Tx-Tf) in sorting endosomes. Although similar 
results as described in Fig. 5 were obtained, instantaneous fluorescence 
measurements (video camera images) of the NBD-fluorophore may lead to 
erroneous estimates of total fluorescence due to the rapid photobleaching 
and/or concentration-dependent self-quenching properties of C6-NBD-SM 
inserted in lipid-bilayers (Nichols and Pagano, 1981; and unpublished ob- 
servations). Time-integrated fluorescence is independent of the quantum 
efficiency of the fluorophore (Hirschfeld, 1976) thus, the time-integrated 
fluorescence photobleaching method overcomes these technical pitfalls and 
allows accurate and sensitive quantitation of total fluorescence (Jovin and 
Arndt-Jovin, 1989). In the experiments described in this report, time- 
integrated emission of NBD-fluorescence was used to make quantitative 
measurements of NBD-fluorescence using a CCD camera. 

CCD images were processed using a SPARC station 4/330 computer sys- 
tem (Sun Microsystems Inc., Mountainview, CA) and image processing 
software provided by Inovision Corp. (Durham, NC). Image processing 
routines, outlined in Duma et al. (1989) and Maxfield and Duma (1990), 
were adapted for use on the SPARC workstation. Briefly, the digitized im- 
ages were background corrected (Maxfield and Duma, 1990) and sorting en- 
dosomes were defined by size (4-40 pixels in area; I pixel = 0.14/tm, at 
63x magnification) and shape of intensity profile (Duma et al., 1989). 

In some experiments (see Fig. 7), the recycling compartments in each 
image (obtained at 63x, NA 1.4) were defined by obtaining a mask image 
from the corresponding median-filtered Tx-Tf images, consisting of large 
fluorescent spots (>125 pixels in area), with brightness greater than one half 
the brightest value in each spot of contiguous pixels. By visual inspection 
this procedure was found to be satisfactory because it identified all (>90%) 
the recycling compartments and did not include any sorting endosomes. A 
constant cellular background was subtracted from the raw images, and the 
recycling compartments in each field were selected using the corresponding 
Tx-Tf mask image. The ratios of N-BD to Texas-red fluorescence were then 
determined independently for each recycling compartment. In other experi- 
ments (see Fig. 8), the images were obtained using a 40 x,  NA 1.3, objective 
lens, and processed using a modified procedure. The images were initially 

background subtracted (median-filtered background images were obtained 
using a neighborhood size of 128 pixels) and all contiguous pixels, with in- 
tensity greater than one third the brightest value in each spot, were retained. 
The recycling compartments in each field were directly defined by selecting 
an appropriate minimum pixel-size (100 pixels in area; 1 pixel = 0.205 ttm, 
at 40x magnification) as a cut-off. In all cases the recycling compartment 
colocalized for each of the two labels, and did not contain sorting endo- 
somes. 

Biochemical Procedures for NBD-Lipid Quantitation 
Total amount of C6-NBD-SM transferred to cells during the 30 rain 
surface-labeling procedure was quantified as described previously (Koval 
and Pagano, 1989). Briefly, cells were labeled at 0°C with different concen- 
trations of C~-NBD-SM-Iabeled vesicles and rinsed five times with ice 
cold Med 1. The cells were then incubated in 2.5 mM EDTA in PBS for 
an additional 15 rain at 0°C and scraped into Eppendorf tubes in a final vol- 
ume of 0.8 ml. An aliquot (80 #1) was taken for DNA analysis (Labarca and 
Paigen, 1980) and the remaining sample extracted twice with an equal vol- 
ume of butanol. The butanol extracts were subjected to fluorimetric analysis 
for the presence of NBD fluorescence (~x = 470 run; hem = 520-540 nm) 
using a fluorimeter (SLM 8000, SLM Instruments, Inc., Urbana, IL). 

Assessment of cellular metabolism of Ct-NBD-SM was carded out by 
thin layer chromatographic analyses of NBD-lipids present in the cell and/or 
medium during the pulse and chase conditions used in the experiments de- 
scribed above. These methods are described in detail elsewhere (Presley, 
J. E ,  S. Mayor, K. W. Duma, L. S. Johnson, T. E. McGraw, and E R. 
Maxfield, manuscript submitted for publication), and are based on methods 
described earlier (Koval and Pagano, 1989). 

Results 

Morphological Analyses of lntracellular 
Trafficking of Fluorescently Labeled Tf, LDL, 
and Lipid in CHO Cells 
When FITC-Tf and DiI-LDL are endocytosed via receptor 
mediated endocytosis in CHO cells that express a transfected 
human Tf-R TRVb-1 cells, they are initially colocalized in 
peripherally located organeUes, the sorting endosomes 
(punctate structures in Fig. 2, A and C; Dunn et al., 1989). 
We have frequently observed that in some cases the centers 
of "If fluorescence do not exactly coincide with the corre- 
sponding LDL fluorescence in the same structure, even at 
these early times. FITC-Tf and DiI-LDL then rapidly sort 
from each other (Fig. 2, B and D). FITC-Te exits the 
peripherally located punctate endosomes and accumulates in 
the peri-centriolar region of the cell in the recycling en- 
dosomal compartment (Fig. 2, B and D) while DiI-LDL re- 
mains in punctate endosomes. Similar results have been pre- 
viously obtained with Tf and ct2M: Tf rapidly sorts from 
c~2M and accumulates in the recycling compartment while 
t~2M is delivered to late endosomes (Salzman and Max- 
field, 1989; Yamashiro et al., 1984). 

As shown in Fig. 3, when Tx-Tf and C~-NBD-SM are 
cointernalized they showed a complete colocalization of 
fluorescence patterns during the entire period of accumula- 
tion and chase; appearing first in peripheral (punctate) sort- 
ing endosomes (Fig. 3, A and C) and rapidly exiting these 
organelles to accumulate in the recycling compartment (Fig. 
3, B and D). To observe sorting of labeled lipid from a probe 
that accumulates in sorting endosomes, we carried out pulse- 
chase studies with C~-NBD-SM and Cy3-1abeled ot2M (Cy3- 
c~2M) as described in Fig. 2 for Tf and LDL. Ct-NBD-SM 
was observed to leave the sorting endosomes containing 
Cy3-ot2M in a process indistinguishable from the sorting of 
Tf from LDL (data not shown). Similar to the results ob- 
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Figure 1. Schematic of endocytic process. This 
schematic illustrates various fates of internalized 
molecules, diferric transferrin (FeTffe) and LDL 
and their receptors,/JR and LR, respectively. LDL 
is released from LR in the acidic milieu of endo- 
somes. LR is then recycled back to the surface. In- 
ternalized LDL is eventually delivered to lyso- 
somes, reTfr" also releases its bound iron in an 
early endosomal compartment. Apo-transferrin 
(Tf), at the acidic pH of endosomes, remains as- 
sociated with TfR and is recycled back to the 
plasma membrane via a peri-centriolar recycling 
compartment. This sorting of recycled molecules 
from lysosomally destined molecules takes place 
in tubulo-vesicular endosomes, referred to as sort- 
ing endosomes. Recycling molecules then ac- 
cumulate in the recycling compartment en route to 
the cell surface. The late endosome represents a 
compartment that contains endocytosed molecules 
destined for the lysosome but not recycling recep- 
tors, LRs, or TyRs. 

tained by Koval and Pagano (1989), we have been unable to 
detect delivery of C6-NBD-SM to late endosomes or lyso- 
somes. 

To make sure that this sorting was not specific for 
sphingomyelin, we carried out studies with a fluorescent 
phosphatidylcholine analog, C~-NBD-phosphatidylcholine 
(C6-NBD-PC) and a neutral sphingolipid analog, C6-NBD- 
galactosylceramide. When Tx-Tf and either one of the Ca- 
NBD-lipids were internalized in TRVb-1 cells, the labeled 
markers were initially in colocalized, peripherally located 
sorting endosomes, and then appeared to accumulate with 
similar kinetics in the recycling compartment (data not 
shown). Qualitative inspection of several fields strongly sug- 
gests that Tx-Tf, C6-NBD-PC, and C~-NBD-galactosylcer- 
amide also traverse morphologically and kinetically identi- 
cal pathways in these cells. However, the rapid rate of 
hydrolysis of C6-NBD-PC under the incubation conditions 
used in these experiments and during microscopic imaging 
(data not shown) prevented quantitative analyses of Ca- 
NBD-PC trafficking. In pulse chase studies similar to those 
shown in Fig. 3, when Tx-Tf and C~-NBD-galactosylcera- 
mide (which was stable under the experimental conditions 
used) were internalized they showed a complete colocaliza- 
tion of fluorescence patterns during the entire period of 
accumulation and chase (data not shown). With similar 

kinetics, the two labeled markers appeared first in sorting 
endosomes and rapidly exited these organdies to accumulate 
in the recycling compartment, and finally exited the cell. 
This confirmed that this sorting towards the recycling path- 
way was not specific to C6-NBD-SM. Further detailed 
quantitative analyses presented in this report were per- 
formed oniy with C6-NBD-SM. 

In the following sections we have used quantitative fluores- 
cence microscopy to compare kinetics of Tx-Tf and Ca- 
NBD-SM trafficking during endocytosis. 

Concentration Dependence of  C,-NBD-SM-labeled 
Endosome Fluorescence 

To confirm that C6-NBD-SM is internalized as a bulk mem- 
brane marker, we measured the increase in sorting endosome 
fluorescence with increasing C~-NBD-SM incorporated in 
the plasma membrane. As described in Materials and Meth- 
ods, sorting endosomes were identified as punctate spots 
consisting of 4-40 pixels (mean area was typically 8-10 
pixels) that were peripherally located and did not overlap 
with the large peri-centriolar fluorescent area. Fig. 4 shows 
that sorting endosome fluorescence increased proportional 
to C~-NBD-SM vesicle concentration in the labeling 
medium, identical to the linear increase in plasma-mem- 
brane lipid concentration observed over a similar range of 
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Figure 2. Sorting of LDL and 
Tf in CHO cells. TRVb-1 cells 
were labeled at 4°C for 20 
rain with DiI-LDL (2/zg/ml) 
and 25 #g/ml FITC-Tf in HF- 
12 containing 1 mg/ml oval- 
bumin, pulsed for 2 min at 
37°C, and cooled to 4°C with 
ice-cold Med 1 and the sur- 
face-fluorescence removed as 
described in Materials and 
Methods. The pulsed cells 
were chased for 0 rain (,4 and 
C) or 5 rain (B and D) at 37°C 
in Med 1 containing 1 mg/ml 
owalbumin, 1 mg/ml unlabeled 
Tf, and 10 #M deferoxamine 
and fixed in 2% paraformal- 
dehyde at room temperature 
for 30 min. DiI-LDL fluores- 
cence images (A and B) and 
FITC-Tf fluorescence images 
(Cand D) were recorded from 
the same field of cells using a 
63x, NA 1.4, objective, ap- 
propriate filters including a 
dual-dichroic, a CCD camera, 
and photographed off the 
video monitor. Arrows are in- 
tended as landmarks to guide 
the reader. Phase-contrast im- 
ages are shown in E and F. 

C6-NBD-SM vesicle concentration. This linear increase in 
sorting endosomal fluorescence is consistent with C6-NBD- 
SM being internalized via a bulk process wherein the amount 
of internalized lipid is directly proportional to the concentra- 
tion of the lipid introduced into the plasma membrane. These 
data also show that the time-integrated fluorescence method 
used in these analyses is capable of accurately quantifying 
an increase in endosome fluorescence due to increased C6- 
NBD-SM being delivered to the sorting endosome. 

IntraceUular Accumulation of Fluorescently Labeled 
T~, DiI-LDL, and C6-NBD-SM in Sorting Endosomes 

To determine the kinetics of accumulation of Tf and LDL in 
sorting endosomes, TRVb-1 cells were incubated for differ- 
ent lengths of time in the continuous presence of DiO-LDL 

and Rh-Tf, and the geometric mean of endosome brightness 
was determined for DiO-LDL-labeled and Rh-Tf-labeled 
sorting endosomes in the same cells. The mean endosome 
brightness of DiO-LDL-contalning endosomes continued to 
increase for the duration of the pulse. However, in the corre- 
sponding Rh-Tf-labeled endosomes mean endosome bright- 
ness came to a steady state rapidly, within 2-3 min (Fig. 5 
A). Similar results were reported by Duma et al. (1989). 
When Tx-Tf and C6-NBD-SM were pulsed into the cell for 
the indicated periods and the mean endosome brightness was 
measured at different times during the pulse, the two fluores- 
cently labeled molecules rapidly and simultaneously came 
to steady state in sorting endosomes (Fig. 5 B). A separate 
analysis of the data showed that the total Tx-Tf or C6-NBD- 
SM fluorescence in sorting endosomes per cell also came to 
a steady state with identical kinetics (data not shown). 
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Figure 3. Exit of C6-NBD- 
SM and Tx-Tf from sorting en- 
dosomes and accumulation of 
the two molecules in the recy- 
cling compartment. TRVb-1 
cells were labeled at 4°C with 
C6-NBD-SM vesicles (3 #M 
total lipid) and 25 #g/ml Tx- 
"If, incubated for 2.5 min at 
37°C, back exchanged and 
chased for 0 min (A and C) or 
6 min (B and D) at 37°C in 
HF-12 containing 1% BSA, 10 
#M deferoxamine, and 1 
mg/ml unlabeled Tf. Time- 
integrated NBD-fluorescence 
images (A and B) and Tx-Tf 
fluorescence images (C and 
D) were recorded using a 63 × 
objective and a CCD camera, 
and photographed off the 
video monitor at similar gray- 
scale levels for A and B, and C 
and D. Phase-contrast images 
are shown in E and E 

During a continuous pulse experiment, in the presence of 
saturating amounts of fluorescent-Tf in the labeling medium 
and a large pool of cell-surface incorporated C6-NBD-SM, 
kinetic modeling of accumulation kinetics show that the rate 
of approach to steady state in the sorting endosomes will be 
governed mainly by the rate of exit from the sorting endo- 
some. Thus, the data suggest that Tf and C6-NBD-SM are 
rapidly and simultaneously removed from sorting endo- 
somes while LDL continues to accumulate in these endo- 
somes. 

Exit of C~-NBD-SM and Tx-Tf from 
Sorting Endosomes and Arrival in the 
Recycling Compartment 
When C6-NBD-SM and Tx-Tf were pulsed into cells for a 

short period (2 min) and chased for different lengths of time 
in the absence of labeled molecules in the chase medium or 
plasma membrane, the two molecules were first detected in 
peripherally located sorting endosomes, and then in the re- 
cycling compartment located in the peri-centriolar region of 
the cell (see Fig. 3). Quantitative analysis of the rate of exit 
of C6-NBD-SM and Tx-Tf from the sorting endosomes is 
shown in Fig. 6. The two molecules leave these endosomes 
with identical rates (t~ ,,02.5 rain). During the entire time 
course of the pulse and chase period there was extensive 
colocalization of the two fluorescent patterns; >80% of the 
total fluorescence in sorting endosomes in each image 
colocalized with the other fluorescent probe. 

Using the same double-labeled cells, a more sensitive as- 
say of any difference in kinetics was obtained by determining 
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Figure 4. Concentration dependence of endosome fluorescence. 
TRVb-1 ceils were surface labeled as described in Fig. 3 at the indi- 
cated concentrations of C6-NBD-SM vesicles and the total amount 
of lipid transferred to the cells (open circles) was determined spec- 
trophotometrically and normalized to the DNA content as de- 
scribed in Materials and Methods. The data shown are the average 
values (+SD) obtained from three separate 6-cm dishes. Plasma 
membrane-associated C6-NBD-lipid increased directly propor- 
tional to the increase in concentration of C6-NBD-SM vesicles in 
the labeling medium, similar to results described by Koval and 
Pagano (1989). Independently labeled cells in coverslip dishes were 
pulsed for 3 min after labeling with C6-NBD-SM vesicles at the 
indicated concentrations, back-exchanged, and analyzed by quan- 
titative fluorescence microscopy as described in Materials and 
Methods. Total endosome fluorescence (closed circles) was deter- 
mined as the sum of fluorescence in punctuate endosomes (struc- 
tures between 4 and 40 pixels) and normalized to the number of 
nuclei in each field. Fluorescence at each concentration (deter- 
mined either spectrophotometricaUy or by quantitative fluores- 
cence microscopy) was normalized to the value obtained at the 
lowest concentration of lipid used in each case. 

the ratio of C6-NBD-SM-fluorescence to Tx-Tf in sorting 
endosomes at different times during the chase period (Fig. 
7). The ratio of total C6-NBD-SM to total  Tx-Tf fluores- 
cence in sorting endosomes remained constant over the en- 
tire chase period confirming that the two probes leave the 
collection of  sorting endosomes with identical kinetics. The 
distribution of ratios of  C6-NBD-SM and Tx-Tf fluores- 
cence in individual sorting endosomes also remained con- 
stant during the entire chase period (data not shown), sug- 
gesting that the lipid and protein markers exited individual 
sorting endosomes at similar rates. 

We then measured the ratio of C6-NBD-SM to Tx-Tf 
fluorescence in the pericentriolar  recycling compartment  in 
the cells analyzed above and found that this ratio was also 
constant during this chase period (Fig. 7). Since the pulse 
and chase conditions used here are relatively short compared 
to the rate of exit of  C6-NBD-SM and Tx-Tf from the recy- 
cling compartment  (see below), the constancy of the ratios 
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Figure 5. Time course of accumulation of DiO-LDL, C6-NBD- 
SM, and fluorescent-Tf in sorting endosomes. Mean brightness of 
endosomes labeled with DiO-LDL and Rh-Tf (A), or Tx-Tf and 
C6-NBD-SM (B) at the indicated times were measured during a 
continuous pulse of label. In A, Rh-Tf (filled circles) and DiO-LDL 
(open triangles) images were recorded using a video-camera. In B, 
C6-N-BD-SM (open circles) and Tx-Tf (filled circles) images were 
obtained using a CCD camera, and mean endosome brightness was 
determined as described in Materials and Methods. The data show 
that DiO-LDL continues to accumulate in sorting endosomes while 
both C6-NBD-SM and fluorescent-Tf rapidly (within 2-3 rain) 
reach a steady state level of mean endosome brightness in the same 
organelles. The data points shown are the geometric mean of mea- 
sured endosome brightness of 8-12 fields of 3-8 cells each, corre- 
sponding to 2,000-5,000 endosomes/data set. The mean values 
were normalized to the first time point in each case (2-min endo- 
somes, A; l-rain endosomes, B). Standard errors from the mean are 
in each case smaller than the size of the symbol. 

in the recycling compartment  shows that C6-NBD-SM and 
Tx-Tf accumulate in the recycling compartment  with identi- 
cal kinetics. 

The ratio of C6-NBD-SM to Tx-Tf fluorescence in the re- 
cycling compartment was found to be equal to that in the 
sorting endosomes at each time point. The equivalence of the 
fluorescence ratios in the sorting endosomes and the recy- 
cling compartment in three separate experiments is shown in 
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Figure 6. Kinetics of exit of C6-NBD-SM and Tx-Tf from sorting 
endosomes. TRVb-1 cells were labeled at 4°C with Ca-NBD-SM 
(3 pM total lipid) and Tx-Tf (25 #g/mi), incubated for 2.5 rain at 
37°C, back exchanged, and incubated for an additional 2 rain at 
370C in HF-12 to internalize any remaining cell-surface lipid and 
transferrin. The ceils were then chased for the indicated lengths of 
time, fixed, and fluorescence images (5-6 fields; 3-10 cells/field) 
were recorded as described in Fig. 3. Total fluorescence in Ca- 
NBD-SM (open circles) and Tx-Tf (closed circles) sorting endo- 
somes (containing both labels) at each chase point was determined 
as described in Materials and Methods, and normalized to the num- 
ber of nuclei at each time point. The data presented are an average 
of two separate experiments. The data were fitted to single ex- 
ponentials, y = 1.00et-0.29~) (R = 0.99) for C6-NBD-SM, and y = 
1.04e <-°.28x) (R = 0.99) for Tx-Tf, to determine the rate of exit of 
the two molecules from sorting endosomes. These rates correspond 
to tm s of 2.45 min and 2.47 min for Ca-NBD-SM and Tx-Tf, 
respectively. 
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Figure 7. Ratio of Ca-NBD-SM and Tx-Tf fluorescence in the vari- 
ous compartments of TRVb-1 cells. Double-labeled cells as de- 
scribed in Fig. 6 were analyzed for the ratios of Ca-NBD-SM and 
Tx-Tf fluorescence in sorting endosomes (filled circles) and recy- 
cling compartment (open circles) as described in Table I. The ratios 
in the sorting endosomes at the indicated chase times were deter- 
mined by dividing the total sorting endosome fluorescence for each 
label. The corresponding ratios in the recycling compartment are 
the geometric means of the ratios in individual recycling compart- 
ments. Each data point shown above is the average (+SD) of nor- 
malized ratios from three separate experiments. The ratios at each 
time point in a single experiment were normalized to the ratio at 
the end of the chase (t = 5 min). The average ratios in each experi- 
ment are shown in Table I. 

Table I. Fig. 7 and Table I demonstrate that the average ratios 
determined from many fields at each chase time for Ca- 
NBD-SM and Tx-Tf fluorescence in sorting endosomes and 
the recycling compartment are constant and equal to each 
other. To make sure that even at the single cell level, Ct- 
NBD-SM and Tx-Tf fluorescence ratios in the two endosomal 
compartments were similar to each other, we examined the 
ratios of Ca-NBD-SM to Tx-Tf fluorescence in sorting en- 

Table L Average Ratios* of C6-NBD-SM to 
Tx- Tf Fluorescence 

Expt No. Sorting endosomes¢ Recycling compartment§ 

1 0.77 + 0.12 0.86 5:0.188 
2 0.56 5:0.049 0.55 5:0.089 
3 0.60 5:0.083 0.63 5:0.083 

* The average ratios (+SD) for each experiment were obtained from the 
fluorescence ratios determined at chase times shown in Fig. 7. 

Ratios of C~-NBD-SM to Tx-Tf fluorescence in sorting endosomes were ob- 
tained by determining the total fluorescence of each label in the sorting endo- 
somes at the indicated chase times. 
§ Recycling compartment ratios were obtained from the same fields as de- 
scribed above, as the mean of fluorescence ratios in individual recycling com- 
partments at each chase time. Individual recycling compartment ratios were 
obtained by dividing the total fluorescence in a mask area encompassing a 
region within the peri-centriolar recycling compartment, of equal size for the 
Ct-NBD-SM and Tx-Tf-labeled compartments, as described in Materials and 
Methods. 

dosomes and recycling compartment in the same cell. We 
found that total Ca-NBD-SM to Tx-Tf fluorescence ratios in 
sorting endosomes and the recycling compartment were 
within 10-15 % of each other for all cells examined at all 
chase times (5-8 cells were examined per time point). 

These analyses show that Ca-NBD-SM and Tx-Tf not 
only leave the sorting endosomes and accumulate in the recy- 
cling compartment with identical kinetics but also arrive in 
the same proportion to each other in the recycling com- 
partment. 

Exit of  C6-NBD-SM and Tx-Tf from the 
Recycling Compartment 

To make comparative measurements of  the exit of C6-NBD- 
SM and Tx-Tf from the recycling compartment, the two 
markers were pulsed into TRVb-1 cells for 10 min and 
chased as described in Materials and Methods. Total fluores- 
cence in the recycling compartment at each chase point was 
determined, and the data were fitted to single exponentials 
as shown in Fig. 8 A. The rates of  exit of  Ct-NBD-SM and 
Tx-Tf from this compartment were found to be within ex- 
perimental error, with t~s of  ,,09.5 rain and ,,08.5 rain, 
respectively. The mean ratios of  C6-NBD-SM and Tx-Tf 
fluorescence in individual recycling compartments were de- 
termined at each time point and found to be constant 
throughout the chase period (Fig. 8 B). 
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Figure 8. Kinetics of exit of C~-NBD-SM and Tx-Tf from the recy- 
cling compartment. (A) TRVb-1 cells were labeled at 4°C with 
C6-NBD-SM (3 #M total lipid cone.) and Tx-Tf (25 pg/ml), in- 
cubated for 10 min at 37°C, back exchanged, and incubated for an 
additional 6 min at 37°C in HF-12 to chase any remaining lipid and 
transferrin into the recycling compartment. The cells were then 
chased as described in Fig. 6 for the indicated times. The fluores- 
cence images (5-6 fields; 5-15 cells/field) were recorded as de- 
scribed in Fig. 6 except that a 40x, NA 1.3 objective was used to 
collect the images. The images were processed as described in 
Materials and Methods. Total fluorescence in the recycling com- 
partment for each time point was determined after eliminating the 
small punctate spots (< 100 pixels) from each field. The data was 
normalized to the number of nuclei at each time point and to the 
0-rain chase point value, and presented as an average of two sepa- 
rate experiments. The data were fitted to single exponentials y = 
1.09e ~-°~73~) (R = 0.98) for C6-NBD-SM (open circles), and y = 
1.1 le <-°-°s3x) (R = 0.97) for Tx-Tf (closed circles) for the rate of exit 
of the two molecules from the recycling compartment. These rates 
correspond to tv2 s of 9.5 min and 8.3 min for Ct-NBD-SM and 
Tx-Tf, respectively. (B) The fluorescence ratios in the recycling 
compartment at the indicated chase times were determined by ob- 
taining the geometric means of the ratios of Tx-Tf and Ct-NBD- 
SM fluorescence in individual recycling compartments from the 
double-labeled images described above. The ratios in the recycling 
compartment at the indicated chase times were averages (+SD) cal- 
culated from two separate experiments. Each data point in an ex- 
periment was normalized to the average ratio for the whole experi- 
ment. The average ratios were 0.911 + 0.069 for experiment 1 and 
1.6386 + 0.198 for experiment 2. 

To rule out the possibility that the similarity in the rates 
of sphingomyelin and "If recycling is a fortuitous coincidence 
in TRVb-I cells, we also measured the rates of exit of Ct- 
NBD-SM and Tx-Tf from the recycling compartment in a 
different CHO cell line, WTBl l l  cells (Robbins et al., 
1984). These are ouabain resistant CHO cells, expressing 
the endogenous hamster "IT-R, and were derived from the 
same parental cell line from which TRVb-1 cells were ob- 
tained. They externalize "If at a significantly faster rate (tv2 
~2.3  min; Johnson, L. S., J. F. Presley, K. W. Dunn, J. C. 
Park, and T. E. McGraw, manuscript submitted for publica- 
tion) than TRVb-1 cells. The cells were labeled with Ct- 
NBD-SM and Tx-Tf for 30 min at 0°C, pulsed for 2 min at 
37°C, stripped of surface bound lipid and Tf as described in 
Materials and Methods, and subsequently chased at 37°C for 
increasing lengths of time up to 7 min. Under these condi- 
tions, there was minimal hydrolysis of the internalized Ct- 
NBD-SM (<5 % of the internalized sphingomyelin was con- 
verted to ceramide and no glucosylceramide was detected). 
The rates of exit of C~-NBD-SM and Tx-Tf from the recy- 
cling compartment were 2.4 min -1 and 2.1 rain -|, respec- 
tively. Although the kinetics of traffic for both lipid and Tf 
in WTBl l l  cells are faster than that in TRVb-1 cells, the 
fluorescent patterns at the end of the pulse and chase are 
similar to those depicted in Fig. 3. The mean ratios of C6- 
NBD-SM and Tx-Tf fluorescence in individual recycling 
compartments were also determined at each time point and 
found to be constant throughout the chase period (0.674 + 
0.07), confirming that Ct-NBD-SM and Tx-Tf exit the recy- 
cling compartment at the same rate. 

Along with the results shown in Fig. 7, these data show 
that after leaving the sorting endosome Ct-NBD-SM and 
Tx-Tf, with indistinguishable kinetics, accumulate in the re- 
cycling compartment and exit this compartment before exit- 
ing the cell. 

Discussion 

C 6 - N B D - S M  as a B u l k  M e m b r a n e  M a r k e r  

A significant fraction of total cellular phospholipids ( ~ 7 0 -  
90% of the total sphingomyelin and ~30-50  of phos- 
phatidylcholine) is located at the plasma membrane in eu- 
karyotic cells, and 50-80% of total membrane surface area 
is occupied by phospholipids (Koval and Pagano, 1991; 
Lange et al., 1989; van Meer, 1989). Sphingomyelin and 
phosphatidylcholine are asymmetrically located in the exo- 
plasmic leaflet of the plasma membrane and have a very low 
rate of transbilayer flip-flop, at least at the plasma membrane 
(for review see Devaux, 1990, and exogenously introduced 
fluorescent analogs of phosphatidylcholine (Ct-NBD-PC) 
and sphingomyelin (Ct-NBD-SM) do not translocate to the 
cytoplasmic surface during the endocytic process (Koval and 
Pagano, 1989; Sleight and Pagano, 1984). Furthermore, the 
rate of internalization of Ct-NBD-SM measured in CHO 
cells (~1.5 % internalized per minute; [Koval and Pagano, 
1989] and unpublished observations) is comparable to bulk 
membrane endocytic rates (*1.6% of plasma membrane 
area internalized per minute) determined by stereological 
analyses and rates of bulk fluid phase endocytosis in BHK 
cells (Griffiths et al., 1989). We have found that the amount 
of endosome fluorescence increases linearly with the amount 
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of lipid incorporated at the plasma membrane. At present we 
do not know what proportion of C6-NBD-SM is internal- 
ized via coated pits since some cell surface molecules such 
as glycolipids and glycolipid-binding proteins, ricin, chol- 
era, and tetanus toxin, are internalized via noncoated pit 
mediated endocytosis in addition to clathrin-mediated en- 
docytosis (for review see van Deurs et al., 1989). These two 
pathways appear to merge at the level of the peripherally dis- 
tributed sorting endosomes (Raub et al., 1990a; Tran et al., 
1987), and our data show that in TRVb-1 cells, as early as 
2 min, greater than 80% of the total internalized C6-NBD- 
SM fluorescence is colocalized with Tf. Cumulatively, these 
data show that C6-NBD-SM is internalized via a constitu- 
tive 'bulk' process into the endocytic system and can be used 
as a marker for bulk membrane flow through the endocytic 
compartments. 

Endocytic Fate of a Bulk Membrane Marker 

The data presented in this report show that internalized Ct- 
NBD-SM and Tx-Tf are first visualized in sorting endo- 
somes, coloealized with lysosomally directed ligands (e.g., 
ct2M and LDL). These compartments have been previously 
characterized in CHO cells as tubular vesicular organelles 
where "IT and ot~M (Yamashiro et al., 1984) and WGA 
(Raub et al., 1990a,b) are delivered soon after internaliza- 
tion. Unlike lysosomally directed ligands which accumulate 
in sorting endosomes for several minutes, Tx-Tf and C6- 
NBD-SM simultaneously and rapidly come to a steady state 
in this compartment. C6-NBD-SM and Tx-Tf then rapidly 
exit the sorting endosome (tv2s ,02.5 min) and accumulate 
in the recycling compartment with similar kinetics. The con- 
stancy in the ratios of Tx-Tf and C6-NBD-SM fluorescence 
in sorting endosomes at different chase times confirmed that 
the two molecules leave the sorting endosome at the same 
rate. This rate is consistent with the previously observed rate 
of exit of Tf from sorting endosomes (tl/2 <3 min), mea- 
sured by determining the kinetics of loss of fusion accessibil- 
ity of F-Tf to subsequently endocytosed anti-fluorescein anti- 
body (Salzman and Maxfield, 1989). This rate also 
corresponds to the rate of sorting of "If from LDL qualita- 
tively determined in CHO cells (t~/2 <3 min; Dunn et al., 
1989) and to the rate of sorting of ' I f  and asialoglycoprotein 
measured in an hepatoeyte cell line by Stoorvogel et al. (tl/2 
,02 min; Stoorvogel et al., 1987). 

The similarity of the ratio of lipid to Tf fluorescence in 
sorting endosomes with that measured in the recycling com- 
partment shows that the same proportion of lipid and Tf that 
leaves the sorting endosomes arrives in the recycling en- 
dosomal compartment, arguing against any selectivity for 
transport of recycling receptors over bulk membrane. These 
data do not rule out the possibility that a fraction of both lipid 
and Tf may be directly recycled back to the cell surface from 
sorting endosomes. However, if this is so, the same fraction 
of both molecules must be diverted along this route. 

Recycling Back to the Cell Surface Takes Place Via a 
Separate Recycling Endosomal Compartment 

After exiting the sorting endosomes, en route to the cell 
surface, C6-NBD-SM and Tx-Tf accumulate in the peri-cen- 
triolar recycling compartment, with identical kinetics. Intra- 
cellular accumulation of several membrane-associated mole- 

cules including C6-NBD-PC, Tf-R, and the LDL receptor 
(McGraw et al., 1993) in the recycling compartment en route 
to the cell surface in different CHO cell lines indicates that 
this compartment is involved in the recycling of a majority 
of molecules back to the cell surface after they are sorted 
from lysosomally directed ligands. The difference in pH ob- 
served between the sorting endosomes (pH ,06.0) and recy- 
cling compartment (pH ,06.4) (Yamashiro et al., 1987, 1984; 
Presley, J. F., S. Mayor, K. W. Dunn, L. S. Johnson, T. E. 
McGraw, and F. R. Maxfield, manuscript submitted for pub- 
lication), and the pulse-chase data presented here provide 
compelling evidence for a separate recycling compartment as 
a functional subdivision of early endosomes. 

The rate of exit of C6-NBD-SM and Tx-Tf from the recy- 
cling compartment (tl/2 ,010 min) is indistinguishable from 
the rate of efflux of "IT and C6-NBD-SM from whole cells. 
In experiments carried out in TRVb-1 cells, the half-time for 
the exit of Tf from TRVb-1 cells was ,010 min, identical to 
the rate obtained for C6-NBD-SM exit in the same cells, 
determined by spectrophotometrically measuring the rate of 
appearance of lipid in the chase medium (Presley, J. F., S. 
Mayor, K. W. Dunn, L. S. Johnson, T. E. McGraw, and 
E R. Maxfield, manuscript submitted for publication). In 
WTB cells where the rate of exit of Tf is different from the 
corresponding rate in TRVb-1 cells, C6-NBD-SM and Tx-Tf 
also exit the recycling compartment in these cells at the same 
rate as the exit of Tf from the WTB cells. Thus, the rate limit- 
ing step in exit of C6-NBD-SM and Tx-Tf from cells is exit 
from the recycling compartment. 

The ratios of C6-NBD-SM and Tx-Tf fluorescence in the 
recycling compartment during the chase period were essen- 
tially constant, confirming that the Tf and bulk membrane 
leave this compartment with identical kinetics, possibly in 
the same vesicles. An unambiguous confirmation of the 
route taken by these two molecules back to the cell surface 
was not possible because intermediate steps (presumably 
small vesicles) were not visualized. However, the identical 
kinetics of recycling of "If and C6-NBD-SM in the different 
cell lines strongly suggests that recycling does not require 
specific peptide signals. 

E~cient Recycling Is a Default Pathway 

The identical pathways of the bulk membrane marker, C6- 
NBD-SM and "IT can be most easily understood if recycling 
of membrane components is a default pathway in the endo- 
cytic system. Data on several membrane molecules are con- 
sistent with this interpretation (for review see Courtoy, 1991; 
Steinman et al., 1983; van Deurs et al., 1989). The rates of 
externalization of a variety of receptors in alveolar macro- 
phages were found to be independent of the nature of the 
receptors internalized (Ward et al., 1989). Mutant Tf recep- 
tors, differing in internalization rates due to cytoplasmic tail 
mutations or deletions also recycled efficiently, and exited 
the cell at the same rate as wild type receptors (Jing et al., 
1990; McGraw and Maxfield, 1990; McGraw et al., 1991). 
Furthermore, other Ct-NBD-derivatized lipids, glucosyl- 
ceramide (Kok et al., 1989), galactosylceramide, and PC 
(Sleight and Abanto, 1989; Sleight and Pagano, 1984; and 
this report) also enter the endocytic route, colocalized with 
transferrin, and are recycled. 
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Cumulatively, these observations show that bulk mem- 
brane along with membrane proteins are efficiently directed 
towards the recycling pathway, demonstrating that recycling 
of membrane components is a default pathway. 

Geometric Basis for Sorting in the Endocytic System 
While membrane components are efficiently recycled back 
to the cell surface, acid-released ligands (t~2M and LDL) 
and bulk fluid (e.g., HRP) are lysosomally directed, albeit 
with lower efficiencies (Adams et al., 1982; Besterman et 
al., 1982; Greenspan and St. Clair, 1984; Yamashiro et al., 
1989). Retained acid-released ligands and fluid phase mole- 
cules are then delivered to the late endosomes and lysosomes 
at the same rate (Ward et al., 1989), via a maturation process 
(Dunn and Maxfield, 1992; Stoorvogel et al., 1991). The 
small amount of fluid phase (e.g., HRP) recycling has been 
shown to take place via a tubular-network of endosomes in 
the peri-centriolar region of HeLa and AtT20 cells (Tooze 
and HoUinshead, 1991), presumably similar to the recycling 
compartment described in CHO cells. 

Sorting between recycling and lysosomally directed mole- 
cules in the endocytic system thus represents a 'bulk phase 
separation' and primarily reduces to sorting between mem- 
brane-associated molecules and fluid-phase molecules. Sort- 
ing endosomes have been characterized in BHK cells (early 
endosomes; Griffiths et al., 1989; Marsh et al., 1986) and 
CHO cells (Raub et al., 1990a; Yamashiro et al., 1984). 
They consist of a few narrow diameter (•50-60 nm) tubules 
attached to spherical vesicles ~250-500 nm in diameter. Es- 
timates of the relative surface areas in the tubules of the sort- 
ing endosome vary from 50 to 80% while the majority 
(60-70%) of the volume is located in the spherical portion 
of the endosome (Griffiths et al., 1989; Marsh et al., 1986). 
Although the budding off of tubules and their direction to- 
wards the recycling pathway in a single step would not 
account for efficient recycling of membrane components 
(Linderman and Lauffenburger, 1988), this feature can be 
explained by an iterative fractionation process taking advan- 
tage of the geometry of sorting endosomes (Dunn et al. 
1989). In this process, sorting would take place by the itera- 
tive formation and budding off of narrow-diameter tubules of 
greater surface area to volume ratio than the spherical vesic- 
ular body of the sorting endosome. The tubules would then 
be directed towards the recycling pathway. Dunn et al. (1989) 
have shown that sorting endosomes undergo multiple cycles 
of fusion and fission, consequently removing recycling com- 
ponents (Tf and "If-R) and concomitantly accumulating 
lysosomally directed ligands (acid-released LDL). Given the 
observed geometric parameters of sorting endosomes, this 
iterative process would quickly result (within 20-30 cycles) 
in efficient removal of nearly all membrane components, 
while retaining most of the luminal content (Dunn et al., 
1989). It is still possible that for certain receptors, the 
efficiency of sorting may be enhanced by selective recruit- 
ment into tubules (Geuze et al., 1987). However, our data 
indicate that this is not the case for Tf-R. 

The model of'default sorting' by an iterative fractionation 
process implies that only a minor fraction of the internalized 
membrane would be delivered to lysosomes. This is consis- 
tent with data from biochemical experiments where such 
measurements have been made: a minor fraction (<5%) of 

internalized C6-NBD-SM was delivered to late endo- 
somes/lysosomes (Koval and Pagano, 1990). The presence 
of lysosomal acid-sphingomyelinase in wild-type fibroblasts 
and CHO cells has prevented the detection of the small 
amount of lipid that is directed towards the lysosomal path- 
way (Koval and Pagano, 1990; and this report). However, in 
a mutant fibroblast cell line lacking the lysosomal acid- 
sphingomyelinase, Koval and Pagano (1990) have observed 
lysosomal delivery of small amounts of C6-NBD-SM after 
relatively long pulse and chase times. 

Exceptions to Default Recycling 
An important implication of default recycling of membrane 
components is that specific retention signals would be re- 
quired to redirect a significant fraction of any particular 
membrane component towards the lysosomal pathway. Ag- 
gregation, induced by multivalent binding of polyvalent anti- 
bodies, or multimeric ligands have been shown to reroute re- 
cycling molecules towards the lysosomally directed pathway 
(Mellman and Plutner, 1984; Weismann et al., 1986). Ag- 
gregated lipid domains such as those formed by N-labeled 
phosphatidylethanolamine are also routed to the lysosome 
(Kok et al., 1990). Thus, aggregation may be a general signal 
for lysosomal-targeting. Specific peptide sequences such as 
the cytoplasmic sequence found on lysosomal acid phospha- 
tase may also redirect membrane molecules towards the 
lysosomal pathway (Braun et al., 1989; Peters et al., 1990). 
Studies with kinase-defective and kinase-active EGF recep- 
tors provide some evidence for ligand-induced signals in- 
volved in mediating the removal of membrane receptors 
from the recycling pathway (Felder et al., 1990; Honegger 
et al., 1990). When mutant and wild type EGF receptors 
were internalized, only the kinase-active receptors were de- 
livered to lysosomes and were found in the membrane in- 
vaginations and internal vesicles of multivesicular endo- 
somes while the kinase-defective receptors were efficiently 
recycled (Felder et al., 1990). This may be a general mecha- 
nism for retaining specific membrane-associated molecules 
in the sorting endosome, involving the formation of mem- 
brane invaginations and inward pinching off of vesicles into 
the lumen of the sorting endosome (Hopkins, 1992). 

Conclusion 
The data presented in this paper show that bulk membrane, 
although internalized at 10-fold slower rates than Tf-R, traf- 
fics through the same compartments and at identical rates as 
Tf-R. This demonstrates a default recycling pathway for 
membrane components via sorting endosomes and the recy- 
cling compartment en route to the cell surface. The rate of 
entry of different receptors or proteins into this pathway is 
dictated by the efficiency of entrapment in clathrin-coated 
pits at the plasma membrane. Unless specifically sorted (or 
filtered; Hopkins, 1992) towards the lysosome in sorting en- 
dosomes, membrane-associated molecules will recycle as 
bulk membrane. Luminal fluid including acid-released li- 
gands will be mainly lysosomally directed by default (due to 
geometric considerations). 

The model of sorting based on geometry and iterative frac- 
tionation places a primary role on the actual structure of the 
sorting endosome and predicts that control of structural de- 
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terminants of the sorting endosome (e.g., diameter and ex- 
tent of tubulation) as well as its fusion and budding prop- 
erties would have a profound influence on the rates and 
efficiencies of sorting of membrane components from lumi- 
nal fluid phase. The molecular basis for controlling these 
properties are not well understood but proteins such as small 
GTPases, rab4 and rab5, may play a role in these functions 
(Bucci et al., 1992; van der Sluijs et al., 1992). 
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