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Summary

Mutations in the fmt gene (encoding formyl methion-
ine transferase) that eliminate formylation of initiator
tRNA (Met-tRNAi) confer resistance to the novel anti-
biotic class of peptide deformylase inhibitors (PDFIs)
while concomitantly reducing bacterial fitness. Here
we show in Salmonella typhimurium that novel muta-
tions in initiation factor 2 (IF2) located outside the
initiator tRNA binding domain can partly restore
fitness of fmt mutants without loss of antibiotic
resistance. Analysis of initiation of protein synthesis
in vitro showed that with non-formylated Met-tRNAi

IF2 mutants initiated much faster than wild-type IF2,
whereas with formylated fMet-tRNAi the initiation
rates were similar. Moreover, the increase in initiation
rates with Met-tRNAi conferred by IF2 mutations in
vitro correlated well with the increase in growth rate
conferred by the same mutations in vivo, suggesting
that the mutations in IF2 compensate formylation
deficiency by increasing the rate of in vivo initiation
with Met-tRNAi. IF2 mutants had also a high propen-
sity for erroneous initiation with elongator tRNAs in
vitro, which could account for their reduced fitness in
vivo in a formylation-proficient strain. More generally,
our results suggest that bacterial protein synthesis is
mRNA-limited and that compensatory mutations in
IF2 could increase the persistence of PDFI-resistant
bacteria in clinical settings.

Introduction

Initiation of protein synthesis takes place after splitting the
post-termination 70S ribosome into its small (30S) and
large (50S) subunits. The ribosome splitting, which is
catalysed by ribosome recycling factor (RRF) and elon-
gation factor G (EF-G), is followed by the binding of ini-
tiation factor 3 (IF3) to the 30S subunit (Karimi et al.,
1999; Peske et al., 2005; Pavlov et al., 2008). Subse-
quent binding of initiation factors 1 (IF1) and 2 (IF2),
messenger RNA (mRNA) and initiator tRNA (formyl(f)-
Met-tRNAi) to the 30S:IF3 complex results in the forma-
tion of the 30S pre-initiation complex (30S PIC) (Gualerzi
et al., 2001; Antoun et al., 2006a).

Correct positioning of the start codon of mRNAs in the
P site of the 30S subunit requires the presence of fMet-
tRNAi (rather than an elongator tRNA) in the 30S PIC
(Hartz et al., 1989). The accuracy of initiator tRNA selec-
tion into the 30S PIC is greatly enhanced by IF1, IF2 and
IF3 (Wintermeyer and Gualerzi, 1983; Pon and Gualerzi,
1984; Canonaco et al., 1986; Antoun et al., 2006a,b). IF3
blocks premature docking of the 50S subunit to an ini-
tiator tRNA-less 30S PIC and increases the rate con-
stants for tRNA association to, and dissociation from, the
30S subunit (Subramanian and Davis, 1970; Gualerzi
et al., 2001; Lancaster and Noller, 2005; Antoun et al.,
2006a). IF2 plays a pivotal role in the fast binding of
fMet-tRNAi into the 30S PIC (Benne et al., 1973; Fakund-
ing and Hershey, 1973; Wintermeyer and Gualerzi, 1983;
Gualerzi et al., 2001; Antoun et al., 2006a) and the sub-
sequent rapid docking of the 50S subunit to the 30S PIC
containing fMet-tRNAi (Antoun et al., 2003; 2006a; Grigo-
riadou et al., 2007), thereby ensuring high accuracy of
initiator tRNA selection into the 70S initiation complex
(Antoun et al., 2006b). IF1 together with IF2 and IF3
enhances the accuracy of initiator tRNA selection by
selectively increasing the rate of fMet-tRNAi binding to
the 30S subunit (Pon and Gualerzi, 1984; Antoun et al.,
2006b).

The formyl group of fMet-tRNAi greatly increases the
ability of IF2 to distinguish between initiator tRNA and
aminoacylated elongator tRNAs (Sundari et al., 1976;
Gualerzi et al., 2001; Antoun et al., 2006b). Formylation
of Met-tRNAi is catalysed by the formyl-methionine-
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transferase (FMT), which recognizes a C1·A72 mis-
match present in tRNAi but absent in most bacterial
elongator tRNAs (RajBhandary, 1994). Formylation of
the methionine of initiator tRNA and subsequent removal
of the formyl group from finished proteins by peptide
deformylase (PDF) occur in most eubacteria as well as
in mitochondria and chloroplasts of eukaryotes (Solbiati
et al., 1999; Vaughan et al., 2002). Deformylation of
formylated proteins by PDF is often required for their
activity (Solbiati et al., 1999; Bingel-erlenmeyer et al.,
2008), making this enzyme an attractive target for novel
antimicrobial drugs (Vaughan et al., 2002). One example
is PDF inhibitors such as actinonin that cause accumu-
lation of non-functional formylated proteins in the cell,
ultimately leading to arrested cell growth (Chen et al.,
2000).

Mutations abolishing formylation of Met-tRNAi confer
resistance to actinonin since bypass of the formylation
step makes the deformylation step and hence the PDF
activity redundant (Apfel et al., 2001). Formylation defi-
ciency in Enterobacteriaceae leads to very slow growth,
showing that formylation is required for fast growth but not
for cell viability (Guillon et al., 1992; 1996; Steiner-
Mosonyi et al., 2004). However, resistant bacteria
can reduce the fitness cost associated with formylation
deficiency by acquiring compensatory mutations at
maintained resistance (Andersson and Levin, 1999;
Andersson, 2006). Second-site mutations that increase
the growth rate of formylation-deficient bacteria have pre-
viously been found (Margolis et al., 2000; Nilsson et al.,
2006). For example, in S. typhimurium lack of a functional
FMT enzyme can be efficiently compensated by increas-
ing the Met-tRNAi concentration via high-level copy-
number amplification of the tRNAi genes metZ and metW
(Nilsson et al., 2006).

Here we identified novel mutations in IF2 that partially
compensated for the formylation deficiency in actinonin
resistant strains with a normal concentration of initiator
tRNA. IF2 consists of four structural domains (Roll-Mecak
et al., 2000), with the initiator tRNA-binding domain IV
connected to domain III by a long helical linker (Roll-
Mecak et al., 2000; Allen et al., 2005; Simonetti et al.,
2008). Previously, it was demonstrated that the activity of
IF2 in initiation with non-formylated Met-tRNAi can be
increased by specifically engineered mutations in domain
IV that increase the affinity of IF2 for Met-tRNAi (Steiner-
Mosonyi et al., 2004). Unexpectedly, none of the IF2 com-
pensatory mutations identified here were located in
domain IV, indicating that they do not compensate the
formylation deficiency by increasing the IF2 affinity for
Met-tRNAi. Instead, this new class of IF2 mutants appear
to increase the rate of initiation with Met-tRNAi by increas-
ing the propensity of IF2 to adopt the 50S docking con-
formation on the 30S ribosomal subunit not only in the

presence of fMet-tRNAi, but also with Met-tRNAi, deacy-
lated tRNAi and elongator tRNAs.

We propose that the IF2 mutants with the strongest
compensatory effect have reduced growth rates in a
formylation-proficient background due to a highly
increased frequency of aberrant initiation events. Impor-
tantly, from the observed linear correlation between our
biochemical data on the initiation time and the measured
bacterial generation time, we suggest that the rate of bulk
protein synthesis in the cell is mRNA limited, leading to
hypersensitive variation in growth rate in response to
variation in initiation rate.

Results

In vivo analysis

We previously subjected five different formylation-
deficient and slow-growing actinonin-resistant fmt
mutants to compensatory evolution to select for mutants
with increased growth rate (Nilsson et al., 2006). After
50–150 generations of growth, fast-growing mutants were
recovered and their compensatory mutations were identi-
fied as either point mutations in fmt, amplification of the
tRNAi genes metZ and metW or as an unknown class of
mutations (Nilsson et al., 2006). In the present study we
have identified the compensatory mutations in the latter
class as point mutations in the infB gene, coding for
initiation factor 2 (IF2). Transfer of the five unique point
mutations into a formylation-deficient (fmt mutant) strain
confirmed their growth compensatory nature (Table 1;
Fig. 1).

We then extended the search for growth compensating
IF2 mutants by performing localized hydroxylamine
mutagenesis of infB. Phage P22 grown on a strain with a
transposon inserted near infB was isolated, mutagenized
with hydroxylamine and used to transduce a slow-growing
fmt mutant strain. By screening for fast growers among
the tetracycline resistant transductants, nine individual
compensated mutants were isolated and their infB genes
were sequenced. Eight novel infB mutations were found
(Table 1) and as eight out of the nine mutations were
recovered only once, this indicates that the mutational
target is not saturated with compensatory mutations. In
total, 13 different IF2 mutations, all located well outside
tRNA binding domain IV of IF2, have been identified
(Table 1; Fig. 2). Cryo-EM studies show also that none of
the IF2 mutations could have any direct contact with fMet-
tRNAi in the 30S pre-initiation and the 70S initiation com-
plexes (Allen et al., 2005; Myasnikov et al., 2005;
Simonetti et al., 2008). It is therefore highly unlikely that
any of the mutations in IF2 isolated here conferred growth
compensation simply by increasing the affinity of IF2 to
Met-tRNAi.
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Growth rates of IF2 mutants in a
formylation-deficient background

We used linkage to a nearby transposon to transfer six
different IF2 mutations into the same fmt mutant back-
ground to compare the growth rate in rich medium for
each one of the different infB mutations with the wild-type
in an isogenic strain background. The tested mutants
could be roughly divided into two classes, one with high
(A1–A3) and one with low (B1–B3) compensatory effect.
Figure 2 and Table 1 show that the class A compensatory
mutations are located in neighbouring helices H10 (A3)

and H11 (A1 and A2) of the domain III, while the class B
mutations are located in domain III (B1), in the helical
linker between domains III and IV (B2) and in the
G-domain (B3) of IF2. The bacteria in both classes grew
faster than the original fmt mutant with wild-type IF2
(Fig. 1).

To further verify that the infB mutations and resulting
amino acid substitutions in IF2 were solely responsible for
the observed fitness-increasing phenotype, a comple-
mentation test was performed. The infB mutant genes
were cloned into the vector pBAD30, transformed into the
fmt mutant strain and growth rates were measured. As
expected, growth rates were improved but were slightly
lower than the previously measured mutant growth rates
(Fig. 1). This small reduction in the compensatory effect of
the mutations could be due to the presence of wild-type
IF2 in these complemented strains.

Growth rates of IF2 mutants in a formylation-proficient
background

We compared the growth rate of a strain with wild-type IF2
to the growth rates of the IF2 mutants in an otherwise
wild-type background in rich media and in minimal media
supplemented with either glucose or glycerol. The class A
IF2 mutants grew 10–25% slower than the wild-type
strain, whereas the class B mutants showed a smaller
(< 5%) growth rate reduction (Fig. 3). For both mutant
classes, the fitness reduction was higher in poor than in
rich media (Fig. 3). To confirm that the fitness effects seen
in vivo resulted from altered activity of the mutant IF2
rather than from alterations in the intracellular level of
mutant protein, we measured IF2 levels during exponen-
tial growth using Western blotting. No difference in the

Table 1. IF2 mutants isolated after compensatory evolution or localized hydroxylamine mutagenesis (see Experimental procedures).

Strain number Mutation Location in IF2 structure IF2 mutant

Compensatory evolution
DA10610 A740V, gcg,gtg Domain III, H10 B1
DA8781 S741F, tcc→ttc Domain III, H10
DA8836 R751L, cgt→ctt Domain III
DA10710 A783V, gcg,gtg Linker, H12 B2
DA10609 S755Y, tct,tat Domain III, H11 A1

Hydroxylamine mutagenesis
DA13317 A740V, gcg→gtg Domain III, H10 (B1)a

DA13318 A783T, gcg→acg Linker, H12
DA13363 A182T, gct→act N-Domain
DA13368 A393V, gcc,gtc G-domain B3
DA13369 E763K, gaa→aaa Domain III
DA14394 E732K, gaa,aaa Domain III, H10 A3
DA14395 A752T, gcc→acc Domain III
DA14396 S755F, tct,ttt Domain III, H11 A2
DA14397 A484V, gct→gtt G-domain, H4

a. This mutation was found twice.
Both the nucleotide change and the resulting amino acid change are shown. Mutant strains further tested in vitro are marked in bold. Location of
the mutations in IF2 structure follows the nomenclature used in Roll-Mecak et al. (2000).

Fig. 1. Comparison of growth rates for the formylation-deficient
strains with compensatory IF2 mutations, original Fmt- strain and
formylation-proficient Fmt+ wild-type strain. Black bars represent
strains harbouring the IF2 mutation on the chromosome, light grey
bars represent the IF2-mutants on plasmid pBAD30. Mutants are
grouped as class A (strongly compensating) and class B (weakly
compensating).
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steady-state level of IF2 could be seen between the wild-
type, the parental fmt mutant and the various IF2 mutants
(data not shown).

In vitro analysis

Two steps in initiation of translation depend crucially on
IF2: (i) binding of fMet-tRNAi to the mRNA-containing 30S
subunit and (ii) subsequent docking of the 50S subunit to
the complete 30S PIC (Hartz et al., 1991; Gualerzi et al.,
2001; Antoun et al., 2006a,b). These two steps of initiation
were mimicked in our biochemical experiments by rapidly
mixing 50S subunits and initiator tRNAs with tRNA-
lacking 30S PICs in a stopped flow instrument and moni-
toring the formation of 70S initiation complexes by
Rayleigh light scattering (Antoun et al., 2003). The experi-
ments were performed with wild-type IF2 and different IF2
mutants in combination with formylated, non-formylated or

deacylated initiator tRNA as well as an aminoacylated
elongator tRNA.

Initiation with IF2 mutants and formylated initiator tRNA

Formation of 70S initiation complex after rapid mixing of
50S subunits and formylated initiator Met-tRNAi (fMet-
tRNAi) with 30S PICs lacking tRNA proceeded with similar
rates for wild-type and IF2 mutants (Fig. 4A). In the
absence of initiator tRNA the rate and extent of 70S
complex formation were very small, although significantly
larger for class B mutants than for wild-type and signifi-
cantly larger for class A than for class B mutants of IF2
(Fig. 4A). For simple quantification of the initiation rate
(kI), which involves initiator tRNA binding to active 30S
PICs, subsequent docking of 50S subunits to tRNA-
containing active 30S PICs and a slow conversion of a
small fraction of the 30S PICs inactive in 50S docking into

Fig. 2. The different point mutations isolated in this study highlighted in the structure of IF2. Class A mutations are marked in blue, other
mutations are marked in red and in vitro tested IF2 mutations are underlined. The A182T mutation is not shown beacouse the structure does
not contain the N-terminal of the protein. The domain nomenclature is the same as in (Roll-Mecak et al., 2000). The structure is based on
PDB file 1ZO1 and rendered with the program PyMOL (DeLano, 2002; http://www.pymol.org)
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active complexes (Milon et al., 2008), we defined kI as the
inverse of the time, t0.5, at which 50% of the 70S initiation
complexes have been formed after mixing (see Experi-
mental procedures). The initiation rate, kI, was lowest for
wild-type IF2 (1.3 s-1) and highest for the A1 mutant
(1.8 s-1) (Fig. 4B). It varied but little with increasing initia-
tor tRNA concentration above 1 mM (Fig. 4C–E, Fig. S1).
Lineweaver–Burk (L-B) plots of the dependence of the
initiation time, 1/kI, on the inverse of fMet-tRNAi concen-
tration (Fig. 4F) show that the minimal initiation time
obtained by extrapolation to saturating fMet-tRNAi con-
centration varied from 0.18 s for A1 IF2 mutant up to
0.24 s for wild-type IF2. These minimal times correspond
to maximal initiation rates of 5.5 and 4.1 s-1 for the A1
mutant and wild-type IF2 respectively. Note that higher
IF3 concentration in experiments in Fig. 4A (1 mM IF3)
than in Fig. 4C–E (0.5 mM IF3) accounts for a slower
initiation in the former case (Antoun et al., 2006a).

Initiation with IF2 mutants and un-formylated Met-tRNAi

The rates of initiation in experiments where 50S subunits
and un-formylated Met-tRNAi were mixed with tRNA-
lacking 30S PICs (Fig. 5A) were significantly lower than
the initiation rates with formylated fMet-tRNAi (compare
Fig. 4B with Fig. 5B). In addition, the rates obtained with
Met-tRNAi displayed much larger relative differences
between the different IF2 variants, with an almost three-
fold larger initiation rate for the A1 IF2 mutant than for
wild-type IF2 (Fig. 5B).

Initiation with Met-tRNAi also depended strongly on the
initiator tRNA concentration for all IF2 variants (Fig. 5C–E,

Fig. S2), in contrast to initiation with fMet-tRNAi (compare
Fig. 4F with Fig. 5F). The slow Met-tRNAi binding to the
30S PIC at low Met-tRNAi concentration is seen in Fig. 5
as a pronounced time-delay in the formation of 70S initia-
tion complexes after the start of the initiation reaction.

The L-B plots (Fig. 5F) of the dependence of the initia-
tion time, 1/kI, on the inverse of the Met-tRNAi concentra-
tion determine the sensitivity (kmax/KM) of the initiation rate,
kI, to the Met-tRNAi concentration and the maximal initia-
tion rate in the limit of saturating Met-tRNAi concentration
(kmax). In the presence of either one of the A-IF2 or B-IF2
mutants the kmax-values were around 4 or 2 s-1, respec-
tively, whereas with wild-type IF2, kmax was about 1 s-1

(Table 2). Although both kmax/KM and kmax were increased
by the IF2 mutations, the increase was larger in kmax than
in kmax/KM (Table 2), showing that the increased rate of
50S docking to the 30S subunit was the predominant
effect of these mutations (see also Supporting
information).

The L-B plots also show how the initiation time, 1/kI,
varied for different IF2s at a fixed concentration of
Met-tRNAi (Fig. 5F). Remarkably, when the initiation time
was plotted against the generation time of fmt-deficient
strains harbouring these IF2 mutations, a strong linear
correlation was observed (Fig. 6). The correlation was
robust to changes in Met-tRNAi concentration in the
1–2 mM range (Fig. S3), corresponding to the estimated
in vivo range for the free concentration of initiator tRNA
(Gualerzi and Pon, 1990). Notably, the time of about
0.25 s for in vitro initiation with fMet-tRNAi (Fig. 4F) and
the generation time for the wild-type strain (25.2 min in
Fig. 6) were on the same straight line as the mutant
points (see Discussion).

IF2 mutants cause aberrant 70S initiation
complex formation

In vivo, a formylation-proficient strain harbouring any one
of the class A IF2 mutants grew slower than wild-type
under all tested growth conditions (Fig. 3). In contrast,
in vitro initiation with authentic formylated initiator tRNA

Fig. 3. Fitness costs of the IF2 mutations in an otherwise
wild-type formylation-proficient background (Fmt+). Growth rates
were measured in LB media (black bars) and M9 minimal media
with either 0.2% glucose (grey bars) or glycerol (light grey bars) as
the carbon source.

Table 2. Kinetic parameters for 70S initiation complex formation
upon addition of 50S subunits and Met-tRNAi to tRNA-lacking 30S
PICs.

IF2 mutant kmax kmax/KM KM

WT 1.01 � 0.03 0.55 � 0.02 1.82 � 0.06
B1 1.95 � 0.12 0.90 � 0.05 2.17 � 0.18
B2 1.96 � 0.18 0.61 � 0.03 3.21 � 0.36
B3 1.74 � 0.09 0.83 � 0.05 2.09 � 0.15
A1 3.89 � 0.31 1.59 � 0.11 2.44 � 0.22
A2 3.87 � 0.21 1.83 � 0.09 2.12 � 0.16
A3 4.06 � 0.12 1.31 � 0.03 3.11 � 0.09
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proceeded faster with class A IF2 mutants than with wild-
type IF2 (Fig. 4B and 4F), which suggested that the
growth rate reduction with class A IF2 mutants in vivo had
other reasons than impaired mainstream initiation.

To identify these reasons, we first studied the formation
of an ‘abortive’ 70S initiation complex (i.e. a complex
unable to provide the donor in peptidyl-transfer) after
rapid mixing of 50S subunits plus deacylated tRNAi with
tRNA-lacking 30S PICs (Fig. 7A). At a final tRNAi concen-
tration of 2 mM, the rate of abortive 70S initiation complex
formation was 0.15 s-1 for wild-type, approximately
0.35 s-1 for B-and 0.75 s-1 for the class A IF2 mutants
(Fig. 7B).

Next, we studied the rate of formation of aberrant 70S
initiation complexes, containing the aminoacylated form
of the elongator tRNAPhe in the presence of wild-type IF2
or the A1 mutant. With mRNA where the initiation codon
was optimally positioned in relation to the Shine–
Dalgarno sequence, the rate of aberrant 70S complex
formation with Phe-tRNAPhe was fivefold higher in the
presence of the A1 mutant than the wild-type IF2
(Fig. 7C and D). Taking into account that the formation
of 70S initiation complex with fMet-tRNAi proceeded
similarly for all IF2s (Fig. 4F), the experiments in Fig. 7
suggest that, at a given free concentration of deacylated
tRNAi or acylated elongator tRNA in the cell, the class A

Fig. 4. Kinetics of 70S initiation complex
formation after rapid mixing of tRNA-free 30S
PICs containing different IF2s with 50S
subunits and fMet-tRNAi and their
dependence on fMet-tRNAi concentration.
A. 30S PICs assembled with 1 mM IF3 were
mixed with 50S subunits and 0.5 mM
fMet-tRNAi.
B. Rates (kI) of 70S initiation complex
formation in the experiments shown in (A).
C. 30S PICs assembled with 0.5 mM IF3 were
mixed with 50S subunits and fMet-tRNAi in 1,
2, 4 or 6 mM concentration.
D. The same as (C) but 30S complexes
contained B2 IF2 mutant.
E. The same as (C) but 30S complexes
contained A1 IF2 mutant.
F. L-B plot of the dependence of initiation time
t0.5 (= 1/kI) on the inverse of fMet-tRNAi

concentration for different IF2 variants.
All concentrations in the figures are given as
final concentrations after the mixing.

1304 A. Zorzet et al. �

© 2010 Blackwell Publishing Ltd, Molecular Microbiology, 75, 1299–1313



mutants of IF2 would cause a fivefold higher frequency
of formation of abortive or aberrant 70S initiation
complex.

Figure 7C and D also shows that swapping of the Phe
and initiation codons in mRNA, placing the former in the
optimal position in relation to the Shine–Dalgarno
sequence, increased the rate of aberrant 70S complex
formation about 50% with the A1 mutant IF2 and
about threefold with the wild-type IF2, reducing the
effect of the A1 mutation in IF2 on initiation with Phe-
tRNAPhe (or deacylated tRNAPhe) to about threefold
(Fig. 7C and D).

The A1 IF2 mutation decreases the effect of tRNAi

acylation and formylation on the rate of 50S docking to
the 30S pre-initiation complex

We studied the effects of tRNA acylation and formylation
on the rate of 50S docking to the complete 30S PIC by
rapidly mixing 50S subunits with 30S PICs already con-
taining either fMet-tRNAi, Met-tRNAi or deacylated tRNAi

(Fig. 8). In this experiment, with the tRNA binding step
omitted, removal of the formyl group of fMet-tRNAi led to
a sevenfold reduction in subunit joining rate (from 9 to
1.3 s-1) with wild-type IF2, whereas for the A1 mutant the

Fig. 5. Kinetics of 70S initiation complex
formation after rapid mixing of tRNA-free 30S
PICs containing different IF2s with 50S
subunits and non-formylated Met-tRNAi and
their dependence on Met-tRNAi concentration.
A. 30S PICs were mixed with 50S subunits
and 0.8 mM Met-tRNAi.
B. Rates (kI) of 70S initiation complex
formation for the experiments in (A).
C. The same as in (A) but Met-tRNAi was
added in 1, 2, 4, 8 or 12 mM concentration
with 50S subunits and 30S PICs contained
WT IF2.
D. The same as (C) but 30S PICs contained
B2 IF2 mutant.
E. The same as (C) but 30S PICs contained
A1 IF2 mutant.
F. L-B plot of the dependence of initiation time
t0.5 (= 1/kI) on the inverse of Met-tRNAi

concentration for all IF2 variants.
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rate reduction was less than twofold (from 10 to 6.6 s-1).
Removal of methionine led to a further sevenfold reduc-
tion in the subunit joining rate (from 1.3 to 0.18 s-1) for
wild-type IF2 and a threefold reduction for the A1 mutant
IF2 (from 6.6 to 2.2 s-1). These observations show that the
loss of formylation and methionylation of fMet-tRNAi had a

much smaller effect on subunit joining with the A1 IF2
mutant than with wild-type IF2 (5- versus 50-fold reduction
in the subunit joining rate).

With regard to wild-type IF2, the sevenfold reduction in
subunit joining rate due to removal of the formyl group of
fMet-tRNAi observed here (Fig. 8) is much smaller than
the previously reported 50-fold rate reduction (Antoun
et al., 2006b). Here we have observed such a reduction
only with deacylated tRNAi. This suggests that the reason
for the discrepancy between the present and the previous
results could be a fast de-acylation of pre-charged purified
Met-tRNAi used in previous experiments (Antoun et al.,
2006b). In all experiments in this study the methionylation
level of Met-tRNAi was kept high by the presence of Met,
MetRS and ATP in the reaction mixtures.

Discussion

Disruption of the fmt gene in eubacteria results in a
four- to 10-fold reduction in growth rate due to inefficient
initiation of protein synthesis with non-formylated initiator
tRNA (Guillon et al., 1992; 1996; Steiner-Mosonyi et al.,
2004; Nilsson et al., 2006). This formylation deficiency
can, however, be compensated by several types of
mechanisms, including an increase in Met-tRNAi concen-
tration by amplification of the metZ and metW genes,
encoding tRNAi (Nilsson et al., 2006), an increase in IF2

Fig. 6. Correlation between generation times of fmt mutant strains
harbouring different IF2s and wild-type and the in vitro initiation
times measured with 1 mM Met-tRNAi added together with 50S
subunits to tRNA-free 30S PIC containing corresponding IF2s.

Fig. 7. Kinetics of the formation of initiation
70S complexes with Met-tRNAi, abortive 70S
complexes with deacylated tRNAi or tRNAPhe

and aberrant 70S complexes with
Phe-tRNAPhe.
A. 30S PICs were mixed with 50S subunits
and 2 mM deacylated tRNAi or methionylated
Met-tRNAi.
B. Rates (kI) of 70S formation for the
experiments in (A).
C. Deacylated tRNAPhe or Phe-tRNAPhe in
2 mM concentration were added together with
50S subunits to 30S PICs assembled with
0.8 mM of mMFTI (mMF) or mFMTI (mFM)
mRNA.
D. Rates (kI) of 70S formation for the
experiments in (C).
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concentration (Guillon et al., 1996) or an increase in IF2
affinity to Met-tRNAi by mutations in the initiator tRNA
binding domain IV of IF2 (Steiner-Mosonyi et al., 2004).
Here, we isolated several fast-growing mutants with
amino acid substitutions in IF2 that compensated for the
lack of the FMT enzyme. These different mutations
increased the growth rate by two- to threefold relative
to that observed with wild-type IF2. Differently to what
was observed for previously isolated compensatory
mutations in IF2 (Steiner-Mosonyi et al., 2004), none of
the mutations found here were located in the fMet-tRNAi

binding domain IV of IF2, which excluded any direct
effect of these mutations on IF2 affinity to Met-tRNAi.
Instead, most mutations (8 of 13) were found in domain
III of IF2, two in the linker region of IF2 connecting
domains III and IV, two in the G domain and one in the
N-terminal domain of IF2 (Table 1, Fig. 2). The mutations
could be roughly separated into two classes (A and B)
according to the extent of their compensatory effect on
the growth rate in the fmt background (Fig. 1). Impor-
tantly, we found that the fitness cost in formylation-
proficient strains was most severe for the class A
mutations in IF2 that showed the strongest compensa-
tory effect (Fig. 3).

Effects of IF2 mutations on in vitro initiation account for
their in vivo phenotypes

During initiation of bacterial protein synthesis, IF2 plays
pivotal roles in the binding of fMet-tRNAi to the 30S pre-
initiation complex and in the subsequent fast docking of
the 50S subunit to the 30S PIC containing fMet-tRNAi

(Benne et al., 1973; Wintermeyer and Gualerzi, 1983;
Antoun et al., 2003; Antoun et al., 2006a; Grigoriadou
et al., 2007). Biochemically, these two steps were jointly
studied here in experiments where 50S subunits and
fMet-tRNAi or Met-tRNAi were rapidly mixed with tRNAi

lacking 30S PICs in a stopped-flow instrument to monitor
70S initiation complex formation by light scattering
(Antoun et al., 2004).

Initiation with fMet-tRNAi occurred with similar rate, kI,
for all mutant and wild-type IF2s (Fig. 4). The rate varied
little with the fMet-tRNAi concentration (Fig. 4D), suggest-
ing that subunit docking and not tRNAi binding was the
rate limiting step, in line with previous results with wild-
type IF2 (Antoun et al., 2006a). However, initiation with
Met-tRNAi occurred with much lower, and Met-tRNAi

concentration-sensitive, kI-values for the A- and B-mutant
IF2 classes and wild-type IF2 (Fig. 5, Table 2). Such a
strong dependence of the in vitro initiation rate on Met-
tRNAi concentration also for wild-type IF2 (Fig. 5) explains
why the amplification of initiator tRNA genes has a strong
compensatory effect on the growth rate of fmt-deficient
strains harbouring wild-type IF2 (Nilsson et al., 2006).

The initiation rate, kI, approached kmax-values of 1, 2 and
4 s-1 for wild-type, class B and class A IF2 mutants,
respectively, at saturating concentration of Met-tRNAi

(Table 2), showing that the subunit joining rate in the
presence of non-formylated Met-tRNAi was twofold faster
for class B and fourfold faster for class A IF2 mutants than
for wild-type IF2. In addition, there was a strong linear
correlation between the in vitro initiation time, 1/kI, with
Met-tRNAi and the generation time of the formylation-
deficient strains harbouring the corresponding mutant and
wild-type IF2s (Fig. 6). The linear correlation also included
the initiation and generation times for wild-type IF2 with
fMet-tRNAi. Thus, the initiation time measured in vitro and
the cell generation time displayed a linear dependence in
a broad range of generation times (Fig. 6), and we con-
cluded that the enhanced initiation efficiency with Met-
tRNAi for the IF2 mutants as compared with wild-type IF2
accounts for the growth compensatory effects of these
mutations under formylation-deficient conditions.

Fitness cost and formation of aberrant 70S complexes
with class A IF2 mutants

In vitro initiation with fMet-tRNAi was faster with the class
A IF2 mutants than with wild-type IF2 (Fig. 4F). In con-
trast, formylation-proficient strains with class A mutations

Fig. 8. Effect of tRNA methionylation and
subsequent formylation on the rate of 50S
docking to tRNA-containing 30S PICs
assembled with WT IF2 or A1 IF2 mutant.
A. 50S subunits were rapidly mixed with 30S
PICs assembled with WT IF2 or A1 IF2
mutant and 2 mM deacylated tRNAi, Met-tRNAi

or fMet-tRNAi.
B. Rates (kI) of 70S formation for the
experiments in (A).

Error-prone IF2 mutants reduce resistance cost 1307

© 2010 Blackwell Publishing Ltd, Molecular Microbiology, 75, 1299–1313



in IF2 grew more slowly than wild-type strain (Fig. 3). Our
in vitro experiments suggest that the explanation for the
reduction in growth rate of the class A IF2 mutants is an
increased frequency of aberrant initiation events.

In vitro initiation with deacylated tRNAi and class A or
class B IF2 mutants was about fivefold or twofold faster,
respectively, than initiation with wild-type IF2 (Fig. 7B).
Furthermore, in vitro initiation with the acylated elongator
Phe-tRNAPhe was about fivefold faster with the A1 mutant
than with the wild-type IF2 (Fig. 7D). Since the initiation
rates with wild-type and mutant IF2s were similar in the
presence of fMet-tRNAfMet (Fig. 4F), these results suggest
a higher frequency of aberrant initiation events in the
strains harbouring class A IF2 mutants than in IF2 wild-
type strain. Aberrant 70S complexes containing deacy-
lated tRNA can be efficiently recycled back to the 30S and
50S subunits by the joint action of ribosomal recycling
factor RRF and elongation factor EF-G (Pavlov et al.,
2008). In contrast, aberrant 70S complexes with acylated
elongator tRNAs are resistant to recycling and will partici-
pate in protein elongation, leading to out-of-frame initia-
tion and the appearance of erroneous and potentially
harmful intracellular proteins (Hirokawa et al., 2004;
Pavlov et al., 2008). Elevated levels of aberrant initiation
events with acylated elongator tRNAs in the formylation-
proficient background in bacteria harbouring class A IF2
mutations may therefore be the primary reason for the
significant fitness reduction associated with these
mutants (Fig. 3).

The conformation of mutant IF2s on the 30S subunit

The rate of subunit docking with fMet-tRNAi in the 30S
PIC was similar for wild-type and A1 mutant IF2 (Fig. 8).
When, however, deacylated tRNAi replaced fMet-tRNAi,
this rate dropped down 50-fold for wild-type IF2 but only
fivefold for the A1 mutant IF2 (Fig. 8). Also, in the absence
of any tRNA in the P site of the 30S PIC, the slow subunit
docking was noticeably more efficient with the A1 mutant
than with wild-type IF2 (Fig. 4A). Accordingly, the A1
mutation in IF2 made the rate of docking of the 50S
subunit to the pre-initiation 30S complex much less
dependent on formylation/methionylation of tRNAi or even
the presence of the initiator tRNA. Thus, we speculate that
the class A mutations in the domain III of IF2 led to a
higher propensity of 30S bound IF2 to acquire its 50S
docking conformation (Antoun et al., 2006a; Simonetti
et al., 2008) even in the absence of tRNA. Addition of
deacylated tRNAi or Met-tRNAi led to successively higher
stabilization of the 50S docking conformation for mutant
and wild-type IF2, with the former at an advantage due to
its intrinsic propensity for the docking conformation. In the
presence of the authentic initiator tRNA, fMet-tRNAi, both
A1 mutant and wild-type IF2 had almost completely

switched conformation to the docking prone form, and
hence the rate of subunit docking with fMet-tRNAi was
much more similar for these two IF2 variants (Fig. 8).

Evidence for mRNA-limited protein synthesis

The initiation times (equal to the inverse of the effective
initiation rates, 1/kI), estimated from our biochemical
experiments for the different IF2 variants (Fig. 5F), corre-
late linearly with the generation times (equal to the inverse
of the growth rates) of the corresponding bacterial strains
(Fig. 6). The shortest initiation time (0.25 s), obtained for
fMet-tRNAi and wild-type IF2 (Fig. 4F), corresponds to the
shortest generation time (25.2 min) of a formylation-
proficient strain with wild-type IF2. The longest initiation
time (2.8 s), obtained for Met-tRNAi and wild-type IF2,
corresponds to the longest generation time (101 min) of a
formylation-deficient strain with wild-type IF2. How can a
2.5 s increase in initiation time result in a fourfold increase
in generation time (Fig. 6)? The explanation, we propose,
is mRNA-limited protein synthesis. This is a physiological
state in which the total rate of protein synthesis per cell
volume, Vp, is insensitive to the total ribosome concentra-
tion and proportional to the total mRNA concentration,
[mRNA0], in the cell. This rate is given by Vp =
[mRNA0] ¥ nc/treg (see Experimental procedures for
details), where nc is the average number of codons per
mRNA and treg is the time after 30S subunit binding to the
mRNA for 70S initiation complex formation (t70S) plus the
time (tclear) for ribosomal translation in the open reading
frame far enough to allow for the binding the next 30S
subunit to the same mRNA. Since Vp is proportional to the
bacterial growth rate (Ehrenberg and Kurland, 1984), the
generation time is directly proportional to treg = t70S + tclear

under mRNA-limited conditions.
The shortest possible distance between ribosomes

observed in tightly packed bacterial polysomes is about
72 nucleotides (nts) (Brandt et al., 2009) which, at an
elongation rate of 20 aminoacids per second (60 nt s-1),
corresponds to tclear = 1.2 s (= 72 nts/60 nt s-1). Our bio-
chemical experiments show that the time, t70S, for forma-
tion of a 70S initiation complex with fMet-tRNAi and wild-
type IF2 was 0.25 s. Adding these times, one obtains a
minimal time, treg, of 1.45 s between initiation events on
mRNA in a wild-type cell with a generation time of 25 min,
corresponding to an average ribosome-to-ribosome
distance, D, on mRNA of 87 nts (obtained as
D = 1.45 s ¥ 60 nt s-1). In the case of non-formylated Met-
tRNAi and wild-type IF2, 70S initiation complex formation
proceeded slowly with t70S = 2.8 s (Fig. 6). In this case
treg = t70S + tclear = 2.8 s + 1.2 s = 4 s, which corresponds
to an expected ribosome-to-ribosome distance on mRNA
in vivo of 240 nts. The approximately threefold increase in
treg (4 s/1.45 s) due to the lack of Met-tRNA formylation is
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close to the fourfold increase in generation time observed
in vivo (Fig. 6). Furthermore, a greatly reduced ribosome
density in polysomes (by a factor of 240/87) may have
increased the accessibility of mRNA to ribonucleases and,
hence, increased the bulk mRNA degradation rate (Arnold
et al., 1998; Regnier and Arraiano, 2000; Sunohara et al.,
2004), amplifying the primary effect of prolonged initiation
times on in vivo generation time. Thus, under the assump-
tion that bulk protein synthesis is mRNA-limited, our bio-
chemical data account for the generation times measured
in vivo.

The weight fraction of mRNA per total RNA at moderate
growth rates was estimated to be about 2.5%, while the
fraction of ribosomal RNA (rRNA) plus transfer RNA
(tRNA) was about 98% (Baracchini and Bremer, 1987).
From these numbers a ribosome-to-ribosome distance, D,
in polysomes was estimated as 115 nts at a generation
time (tg) of 45 min (Baracchini and Bremer, 1987). More
refined estimates for this distance at fast growth rates
obtained recently by a similar method (Bremer and
Dennis, 2008) show that D = 88 nts at tg = 24 min and
D = 69 nts at tg = 20 min. The D-value of 88 nts corre-
sponds well with our model estimate D = 87 nts for
tg = 25 min (see above). Importantly, the distance of
69 nts is below the D-limit of 72 nts for the tightest ribo-
some packing in polysomes (Brandt et al., 2009), indicat-
ing that at the highest growth rate there is not enough
mRNA in the cell to accommodate all ribosomes and
protein synthesis is therefore mRNA-limited. This implies
that in our experiments the wild-type strain was growing at
or near mRNA-limited conditions, while the various
mutants were growing under strict mRNA-limited
conditions. From this interpretation follows the prediction
that the formylation-deficient strains with impaired initia-
tion had larger fractions of free 70S ribosomes and ribo-
somal subunits than the wild-type formylation-proficient
strain, as previously found for strains with reduced IF2
concentration (Cole et al., 1987).

Development of antibiotic resistance

Finally, the presented data are highly relevant for the
question of antibiotic resistance development. Antibiotic
resistance is usually associated with reduced fitness
(Andersson and Levin, 1999; Andersson, 2006) and at a
given antibiotic pressure this fitness cost is a main deter-
minant of the rate of development as well as the steady-
state level of resistance (Levin et al., 1997; Levin, 2002).
The association of resistance with decreased fitness sug-
gests that a reduction in the use of antibiotics would lead
to a reduction in the frequency of resistant bacteria by
natural selection. However, the fitness cost of resistance
can be reduced at unaltered resistance by additional
second-site compensatory mutations (Andersson and

Levin, 1999; Andersson, 2006). The fitness costs associ-
ated with fmt mutations that cause resistance to PDFIs
can be reduced by increased tRNAi expression via gene
amplification of the metZW genes (Nilsson et al., 2006) or
by point mutations in IF2 (this work). This multitude of
different compensatory pathways suggests that the
fitness costs of fmt mutations conferring resistance to
PDFIs can be rapidly reduced by mutations, increasing
both the rate of development and the steady-state level of
PDFI resistance in clinical settings. A deeper understand-
ing of the mechanisms by which bacteria reduce the
fitness cost associated with drug resistance helps in the
choice and development of drugs and drug targets for
which adaptation is slow.

Experimental procedures

Strains

For all experiments, except where specifically indicated, the
organism used was S. enterica serovar typhimurium LT2 (S.
typhimurium). The minimal inhibitory concentrations (MICs)
for the wild-type strain, the actinonin resistant fmt mutants
and the fmt, infB double mutants were, 64 mg l-1,
> 1024 mg l-1 and > 1024 mg l-1 respectively.

Compensatory evolution and identification of
compensatory mutations

Two slow-growing actinonin-resistant mutants with mutations
in fmt were subjected to compensatory evolution. For each
strain, 10–15 independent lineages were serially passaged in
Luria–Bertani (LB) broth. When growth-compensated cells
constituted the majority of the population (50–150 genera-
tions of growth), one compensated mutant clone from each
lineage was isolated and saved at -80°C. To identify the
unknown compensatory mutations the mini-Tn10 transposon
insertion technique was used (see Supporting information).

Hydroxylamine mutagenesis

To isolate additional IF2 mutants, hydroxylamine mutagen-
esis of DNA inside bacteriophage P22 was performed. To this
end we used the starting strain (DA2964), which has an
argG1828::Tn10 (TetR) marker linked to the infB gene. A
high-titre (7.5 ¥ 1012 pfu ml-1) phage lysate (P22 HT) was pre-
pared on this strain and the DNA inside the phage was
mutagenized as described previously (Hong and Ames,
1971).

The resulting mutagenized phage lysate was used to trans-
duce a Dfmt mutant strain (DA10066) by mixing 5 ml
mutagenized phage lysate with 200 ml of an overnight bacte-
rial culture and incubating for 1 h at 37°C. The mixture was
then plated on LA supplemented with 30 mg l-1 tetracycline
and the plates were incubated for 48 h at 37°C. Fast growers
were picked, re-streaked on tetracycline and purified on EBU
plates. The picked clones were then confirmed to be P22
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sensitive and phage free. Nine individual fast growers were
isolated and their infB gene sequenced.

Fitness of mutants

Fitness of the infB mutants was measured in both Dfmt and
wild-type genetic backgrounds. Using a phage lysate grown
on strain DA2964, an argG1828::Tn10 insertion genetically
linked to infB was transduced into the different infB mutant
strains. Subsequently, the different infB mutants were intro-
duced by P22 transduction into strains DA6192 (wild-type)
and DA10066 (Dfmt). Presence of the correct infB mutations
was confirmed by sequencing.

Complementation study

For complementation studies we prepared
pBAD30::mut_infBHIS plasmids for each mutant IF2 as
described in Supporting Information. The same plasmids
were also used for over-production of IF2 mutants used in the
in vitro studies. Different pBAD30::mut_infBHIS constructs
were transformed by electroporation into the Dfmt mutant
(DA10066). Fitness of all complemented mutants was esti-
mated by measuring growth rates in rich medium. The bac-
teria were pre-grown to saturation in LB overnight.
Approximately 106 cells were inoculated into 0.4 ml of fresh
LB in a Bioscreen plate and the absorbance at 600 nm was
read with a BioscreenC (Oy Growth Curves Ab Ltd). For each
strain, growth rates were measured in quadruplicates in at
least two separate experiments and relative growth rates
were calculated as the growth rate of the parental strain
divided by the growth rate of the tested strain.

Chemicals and buffers for in vitro experiments

Phosphoenolpyruvate (PEP), myokinase (MK), pyruvate
kinase (PK), inorganic pyrophosphotase (PPi), putrescine
and spermidine were from Sigma (USA). Experiments were
conducted in a polymix-like buffer, LS4, containing 95 mM
KCl, 3 mM NH4Cl, 0.5 mM CaCl2, 8 mM putrescine, 1 mM
spermidine, 30 mM HEPES pH 7.5, 1 mM DTE, 2 mM PEP,
1 mM GTP, 1 mM ATP and 5 mM Mg(OAc)2, supplemented
with 1 mg ml-1 PK and 0.1 mg ml-1 MK (Jelenc and Kurland,
1979; Pavlov et al., 2008). Since each ATP or GTP molecule
chelates one Mg2+ cation, the free Mg2+ concentration in the
LS4 buffer was adjusted to 4 mM by adding 1 mM
Mg(OAc)2.

Components of the in vitro translation system

70S ribosomes, 50S and 30S subunits, [3H]fMet-tRNAi, initia-
tion factors as well as Met and Phe animacyl-tRNA syn-
thetases (MetRS and PheRS) were prepared from
Escherichia coli as described in Freistroffer et al. (1997),
Antoun et al. (2004) and Antoun et al. (2006a). Overpro-
duced N-terminus-His-tagged wild-type and mutant
S. typhimurium IF2s were isolated from S. typhimurium
essentially as described in Antoun et al. (2004). Initiation
tRNAi and tRNAPhe were from Sigma (USA). mMFTI mRNA

and mFMTI mRNA with strong SD sequences were prepared
as described in Pavlov et al. (2008).

Comparison of the amino acid sequences of wild-type IF2
from S. typhimurium and E. coli showed that they were > 96%
identical. The identity level was even higher, > 98%, when the
functionally dispensable N-terminal domain of IF2 (Caserta
et al., 2006) was excluded. Accordingly, wild-type IF2s from
S. typhimurium and E. coli behaved practically identically in
all in vitro initiation experiments (data not shown), which
justifies the use of the well-characterized E. coli components
in the biochemical experiments conducted in this study.

In vitro kinetic experiments

Two mixtures, 1 and 2, were prepared in the LS buffer.
Mixture 1 contained 30S pre-initiation complexes assembled
by mixing 0.32 mM 30S subunits, 0.8 mM mMFTI mRNA with
a strong SD sequence (Pavlov et al., 2008), 1 mM initiation
factor IF1, 0.6 mM IF2 and 0.5 mM IF3 unless specified
otherwise. Mixture 2 contained 0.36 mM 50S subunits. The
type and final concentration of tRNA added either to mixture
1 or mixture 2 is indicated for each experiment in the corre-
sponding figure legend. Both mixtures (1 and 2) were pre-
incubated for 20 min at 37°C. Met-tRNAi was methionylated
in situ as follows. First, a mixture containing 200 mM initiator
tRNA, 1 mM [3H]Met aminoacid and 800 unit ml-1 MetRS in
LS4 buffer supplemented with 1 mg ml-1 PK, 0.1 mg ml-1 PPi
and 0.1 mg ml-1 MK (Jelenc and Kurland, 1979) was
assembled and pre-incubated for 20 min at 37°C after which
it was put on ice. Just before loading into a stopped flow
instrument (see below), a portion of this mixture was added to
mixture 2 containing 50S subunits (or to mixture 1 containing
30S subunits) to obtain the final Met-tRNAi concentration
specified for each experiment. Phe-tRNAPhe was prepared in
the same way except that the acylation mixture was
assembled with tRNAPhe, Phe aminoacid and PheRS instead
of tRNAi, Met amino acid and MetRS. Pre-incubated mixtures
1 and 2 (0.6–0.8 ml volume of each) were loaded into the
syringes of a stopped flow instrument (SX-20, Applied Pho-
tophysics, Leatherhead, UK). The kinetics of 70S complex
formation was monitored at 37°C with light scattering after
rapid mixing equal volumes (usually 0.06 ml) of mixtures 1
and 2 as described (Antoun et al., 2006a). All concentrations
in mixes 1 and 2 specified above are the final concentrations
after the mixing.

Treatment of light scattering data

Each light scattering experiment provided 6–8 scattering
traces. Those were used to obtain an average scattering
trace and to estimate the average and standard deviation of
the time, t0.5, at which a light scattering trace reached 50% of
its plateau value. The time t0.5 obtained for the average trace
was always very close to the average t0.5 time. The rate, kI, of
the initiation reaction was defined as the inverse of t0.5 for the
average trace as motivated by the following relation between
scattering intensity and time:
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This relation describes the irreversible formation of a binary
complex, A:B, from particles A and B mixed at equal concen-
trations (Antoun et al., 2006a). The rate kI in this relation is
equal to the product of the second-order rate constant k2 of
the binding reaction by the initial concentration of B particles
(50S subunits in our case). In the presence of IF3 expression
(1) holds, but k2 is now a compounded rate constant that
depends on the concentrations of both IF3 and 50S subunits
(Antoun et al., 2006a).

When the initiation reaction includes tRNA binding to the
30S PIC with association rate constant k1 followed by the 50S
subunit docking with rate constant k2, then t0.5 is approxi-
mated by (Supporting information):
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The L-B representation of this expression is:
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Comparison of (2) and (3) clarifies the relation between rate
constants k1 and k2 and L-B parameters kmax/KM and kmax.

The scattering traces were fitted to a four-parameter kinetic
model (Fig. S4B) describing tRNA binding to active 30S PICs
(rate constant k1), subsequent docking of 50S subunits to
tRNA-containing, active 30S PICs (rate constant k2) and a
slow conversion (described by rate constant k3 and q3) of a
small fraction of subunit-docking-inactive 30S PICs (see Sup-
porting information for details). For clarity of presentation we
used a digital filter to reduce the noise and the numbers of
data points in the scattering traces shown in the figures.

Definition of mRNA-limited protein synthesis in
growing cells

The total rate of protein synthesis per cell volume can be
written as (see section D in Supporting information for
details):
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Here, [mRNA0] is the total mRNA concentration in the cell, nc

is the average number of codons per mRNA, [30S] is the
concentration of free 30S subunits and ka is the rate constant
for 30S subunit association to mRNA. The time
treg = t70S + tclear is the time after 30S subunit binding to the
mRNA for 70S initiation complex formation (t70S) plus the time
(tclear) for ribosomal translation of the mRNA ORF far enough
to allow for the binding of a next 30S subunit to the mRNA.
The quadratic equation:
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relates [30S] to the total concentration, [30S0], of the 30S
subunit (equal to the total ribosome concentration) and
[mRNA0]. Here, ve is the elongation rate of translating ribo-
some in codons per second. Together, relations (4) and (5)
determine how Vp depends on [mRNA0] and [30S0] for any
choice of the parameters t70S, tclear, ka, nc, ve, as exemplified in
Fig. S5.

In the limiting case, where tregka [30S] >> 1, relation (4) is
approximated by:

V mRNA np c reg= [ ] ⋅0 τ (6)

This defines the condition of mRNA limitation, where Vp is
proportional to [mRNA0] and inversely proportional to treg. In
this limit, relation (5) is approximated by:
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The ratio
n vc e 30S

reg
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in relation (7) defines the maximal

number of ribosomes on an mRNA with nc codons (see
section D of the Supporting information). From relation (7)
follows that the condition tregka [30S] >> 1 for mRNA-limited
protein synthesis requires that
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When tregka [30S0] >> 1, as in the realistic cases illustrated in
Fig. S5, inequality (8) approximates the region in which
protein synthesis is mRNA-limited.
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