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Lacunar infarcts resulting from occlusion of the small 
penetrating arteries of the brain comprise ≈20% of all 

ischemic strokes, a proportion similar to those resulting from 
cardioembolism or large artery atherosclerosis.1 Despite this, 
comparatively little is known about their underlying patho-
genesis. Epidemiological studies have established hyperten-
sion and diabetes mellitus as important risk factors,2–4 but 
pathological studies have been hampered by methodological 
inconsistencies and inadequate classification of the disease, 
as well as limited pathological tissue because of the low early 
mortality rate.5

One approach to identifying the underlying causes of 
complex diseases, such as lacunar stroke, is through genetic 
studies. In the recent past, genome-wide association studies 
(GWAS) have transformed our understanding of complex 

diseases and have begun to identify the common genetic com-
ponent to ischemic and hemorrhagic strokes.6,7 Despite these 
advances, no genetic variants have yet been identified that 
specifically confer risk of lacunar stroke in white populations. 
Indeed, although family history data suggest that genetic pre-
disposition may be particularly important for lacunar stroke,8 
estimates of the heritability of lacunar stroke from GWAS 
have been low compared with those of the other subtypes.9,10 
Multiple factors might explain this disparity.

One factor which might be important is disease heterogene-
ity. Pathological studies have shown different vascular lesions 
in patients presenting with lacunar stroke, with 2 main pathol-
ogies reported, namely focal microatheroma and a diffuse 
small-vessel arteriopathy.11 The former has been associated 
with larger single lacunar infarcts and the latter with multiple 
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smaller lacunes and leukoaraiosis.11,12 These 2 subtypes have 
also been shown to have differing risk factor profiles.13 These 
sources point to the existence of pathophysiological subtypes 
of lacunar stroke,12 each of which might be presumed to have 
distinct genetic susceptibility factors. Another factor might be 
inadequate disease classification. Lacunar infarcts are small 
and frequently not seen on computed tomography. Despite 
this, in GWAS, to date, lacunar stroke has been often been 
diagnosed based on computed tomography, with a clinical 
lacunar syndrome and no infarcts visible on computed tomog-
raphy being used as criteria for lacunar stroke. It has been 
shown that this can lead to a marked overdiagnosis of lacunar 
stroke.14,15 Diagnostic accuracy is much improved with mag-
netic resonance imaging (MRI).

In this study, we use a large, highly phenotyped cohort 
of MRI-confirmed lacunar stroke cases and controls to inves-
tigate the genetic architecture of lacunar stroke and its sub-
types. We investigate whether MRI-confirmed lacunar stroke 
and its subtypes are heritable and whether this variation in 
enriched for sites in the genome affecting the expression and 
regulation of genes. Finally, we investigate whether the risk 
of the 2 subtypes of lacunar stroke is conferred through rare 
genetic variation.

Materials and Methods
Study Population
A total of 1029 white patients with lacunar stroke, aged ≤70 years, 
were recruited from 72 specialist’s stroke centers throughout the 
United Kingdom (online-only Data Supplement), between 2002 
and 2012, as part of the Young Lacunar Stroke DNA Resource. This 
study was approved by the Multi-Center Research Ethics Committee 
for Scotland (04/MRE00/36), and informed consent was obtained 
from all participants. Lacunar stroke was defined as a clinical la-
cunar syndrome,16 with an anatomically compatible lesion on MRI 
(subcortical infarct, ≤15 mm in diameter). Time from event to MRI 
was variable; the median time to MRI was 5 days. All patients under-
went full stroke investigation, including brain MRI, imaging of the 
carotid arteries, and ECG. Echocardiography was performed when 
appropriate. All MRIs and clinical histories were reviewed centrally 
by 1 physician (H.S.M.). Exclusion criteria were stenosis >50% in 
the extra- or intracranial cerebral vessels, or previous carotid endar-
terectomy; cardioembolic source of stroke, defined according to the 
Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria17 
as high or moderate probability; cortical infarct on MRI; subcorti-
cal infarct >15 mm in diameter, as these can be caused by embolic 
mechanisms (striatocapsular infarcts); and any other specific cause 
of stroke (eg, lupus anticoagulant, cerebral vasculitis, dissection, and 
monogenic cause of stroke). All cases were screened for NOTCH3 
cerebral autosomal-dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy and Fabry disease mutations, and positive 
cases were excluded. An additional 82 white patients of all ages with 
lacunar stroke were recruited from St George’s Hospital, London. 
The same investigations and exclusions were made as in the DNA-
lacunar study.

Unrelated white controls, free of clinical cerebrovascular disease, 
were obtained by random sampling, stratified for age and sex, from 
general practice lists from the same geographical location as the pa-
tients. All patients and controls underwent a standardized clinical 
assessment and completed a standardized study questionnaire. MRI 
was not performed in controls.

The data set was genotyped on the Illumina HumanExomeCore 
array, which contains both exome content (≈250 000 single-nucleo-
tide polymorphisms [SNPs]) and common tag SNPs (≈250 000 SNPs) 
found on conventional GWAS arrays, and imputed to 1000-genome 
phase 1. Full details are provided in the online-only Data Supplement.

Risk Factors
Hypertension was defined as elevation of systolic blood pressure of 
>140 mm Hg or diastolic blood pressure of >90 mm Hg persisting >7 
days after stroke onset or before stroke treatment with antihyperten-
sive drugs.18 Diabetes mellitus was defined as a previous diagnosis 
of type I or type II diabetes mellitus or at least 2 random glucose 
readings of >11.1 mmol/L or fasting blood glucose readings of >7.0 
mmol/L after the acute phase of stroke.19 Hypercholesterolemia was 
defined as serum cholesterol of >5.2 mmol/L or prestroke treatment 
with a cholesterol-lowering agent.20 A positive smoking history was 
recorded in those who had smoked at any time in their lives.

Subtyping of Lacunar Stroke
Leukoaraiosis was graded on MRI using the semiquantitative Fazekas 
scale, which has been shown to reflect pathological severity of small-
vessel disease in a postmortem validation study.21 On the basis of the 
leukoaraiosis grade, patients were subtyped into 2 groups: (1) iso-
lated lacunar infarct (ILI): single lacunar infarct with absent or mild 
leukoaraiosis (equivalent to Fazekas periventricular score of <2); (2) 
multiple lacunar infarcts (MLI) or lacunar infarct with moderate or 
severe confluent leukoaraiosis (equivalent to Fazekas grade of >2) ac-
cording to a previously validated method.8,22 Twenty MRI scans were 
randomly selected on a second occasion by the same rater, and there 
was perfect agreement in assignment of subtype (κ=1).

Heritability Estimates
To assess the heritability of lacunar stroke, we first set to missing all 
imputed genotypes with a probability of <0.9 and discarded all SNPs 
that met that criteria in <90% of individuals. We then calculated the 
genetic relationships between all individuals across all 8 122 203 re-
maining SNPs using the GCTA package.23 After removing distantly 
related individuals (>0.125), we used genetic restricted maximum 
likelihood (GREML) methods to estimate the proportion of pheno-
typic variance on the liability scale explained by the genetic rela-
tionships between individuals based on common SNPs (here termed 
heritability), as implemented in the GCTA package.23 We performed 
the analysis for 3 phenotypes: first for all MRI-defined lacunar stroke 
cases versus controls, then for cases with ILI versus controls, and 
for cases with MLI or extensive leukoaraiosis versus controls. We 
included the first principal component as a covariate in the model in 
all analyses. We calculated the heritability for prevalence of stroke 
(K) of 1% and 3%, assuming that lacunar strokes comprise 20% of 
all cases.24

Heritability Estimates, Partitioned on Functional 
Status
Recently, the Encyclopedia of DNA Elements (ENCODE) project has 
generated a huge wealth of data describing functional sites in the hu-
man genome.25 The project aimed to identify all functional sites in 
the genome through a series of experiments in many tissue types, 
including chromatin immunoprecipitation sequencing, DNase I hy-
persensitive sites sequencing, and formaldehyde-assisted isolation of 
regulatory elements sequencing. Each technique uses a distinct ap-
proach to identify the location of regulatory regions in the genome. 
This is of particular interest to genetic studies because previous 
analyses have shown that GWAS associations are enriched for such 
functional sites.26–28 In addition, genotype-tissue expression studies 
provide a complementary approach to identifying SNP variants that 
affect expression of genes. In such studies, mRNA expression lev-
els of genes are compared with SNP genotypes, thereby determining 
SNPs that affect expression. Such SNPs are often termed expression 
quantitative trait loci (eQTLs).

In this experiment, we investigated whether the heritability of 
lacunar stroke was enriched for regulatory sites in the autosome. 
To do this, we used information from the RegulomeDB database,29 
which catalogues data from the ENCODE project and others, deter-
mining the evidence that each SNP in the genome affects the regu-
lation of genes. The database separates SNPs into categories based 
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on the available evidence. The group with the strongest evidence, 
which we term eQTLs, includes SNPs that have been shown to af-
fect the levels of an mRNA molecule in any tissue and overlap any 
transcriptional factor–binding site, transcription factor motif, DNase 
footprint, or DNase peak from ENCODE or other experiments. We 
first partitioned our data on this group, including all such SNPs, as 
well as tagging SNPs with r2>0.98, based on linkage disequilibrium 
from European samples from the 1000-genome data set.30 A total of 
24 722 SNPs were included.

Secondly, we partitioned our data on regulatory regions from 
RegulomeDB.29 This group includes all SNPs that overlap a transcrip-
tion factor–binding site and DNase peak, as well as either having a 
matched transcription factor motif or a matched DNase footprint. 
Therefore, these SNPs represent regions where regulatory factors are 
thought to bind to the genome. As before, we included all such SNPs, 
as well as tagging SNPs with r2>0.98. A total of 938 693 SNPs were 
included.

We then used the GCTA package to calculate the heritability, par-
titioned on (1) eQTLs and (2) regulatory regions for lacunar stroke 
and its 2 subtypes (ILI and MLI/leukoaraiosis). We compared our 
estimates with the proportion of overall heritability that would be ex-
pected for the number of SNPs analyzed.

Polygenic Contribution From Rare Variation
If we define protective variants as those where the major allele is as-
sociated with disease and risk variants as those where the minor allele 
is associated with disease, then under the null, an equal proportion of 
genetic associations should be from either protective or risk variants. 
An increase in the ratio of risk to protective variants at low allele fre-
quencies can indicate a polygenic contribution from low-frequency 
variants to disease risk for 2 reasons31; (1) risk SNPs are under nega-
tive selection or (2) cases are sampled from the extreme end of the 
disease liability distribution, meaning that the increase in minor allele 
counts of a risk variant in the case group has a comparatively stronger 
effect on power. Therefore, we tested whether genome-wide associa-
tions from the lacunar stroke cohort were enriched for rare risk vari-
ants compared with protective variants, calculating the ratio of risk 
to protective variants for allele frequency windows for SNPs below a 
given P-value threshold (P<0.05).

We first performed association analysis on lacunar stroke case/
control status using SNPTEST version 2.4, including the first 

2 ancestry informative principal components, as derived using 
EIGENSTRAT, as covariates.32,33 We excluded all poorly imputed 
SNPs (SNPTEST info measure <0.5) and low-frequency variants 
(minor allele frequency<0.01). We calculated the ratio of risk to pro-
tective variants for all SNPs with P<0.05 at allele frequency bands. 
We next generated 1000 simulations for a GWAS data set of the same 
number of cases and controls as our datasets and calculated the ratio 
of risk to protective variants at P<0.05 for each simulation. We tabu-
lated the number of simulations in which the risk to protective risk 
ratio was greater than that observed in our data and divided by the 
number of simulations to generate an empirical P value.

We first analyzed all lacunar stroke cases versus controls and then 
performed analyses for the MLI/leukoaraiosis and ILI subtypes ver-
sus controls. We evaluated the enrichment for risk allele frequencies 
between 1% to 5% and 5% to 10% separately. In addition, we evalu-
ated the enrichment for risk allele frequencies between 30% and 50% 
as a negative control. All analyses were performed using the pisa java 
package.31

Results
Study Characteristics
After quality control steps, a total of 1012 cases and 964 con-
trols remained for analysis. Characteristics of this cohort are 
given in Table 1.

Heritability Estimates
We estimated the proportion of variance of lacunar stroke 
status explained by the relatedness between individuals using 
GREML methods,34,35 as implemented in the GCTA package.23 
All analyses showed that lacunar stroke and its subtypes were 
significantly heritable (Table 2). We determined the heritabil-
ity of lacunar stroke to be 0.20 (0.064) assuming prevalence of 
0.2% and 0.25 (0.080) assuming prevalence of 0.6%. For the 
subtypes of lacunar stroke, heritability estimates were higher 
for the MLI/leukoaraiosis subtype and slightly lower for 
the ILI subtype, although this difference was not significant 
(P>0.05). We performed sensitivity analyses to determine the 

Table 1.  Cohort Characteristics

All Lacunar MLI/LA Subtype ILI Subtype Controls

N 1012 502 501 964

Age, mean (SD) 57.2 (9.6) 59.5 (9.1) 54.7 (9.2) 59.7 (4.3)

Men, % 69.8 71.6 68.3 52.5

Hypertension, % 70.8 79.2 62.9 53.3

Diabetes mellitus, % 16.7 19.0 14.2 7.7

Hyperlipidemia, % 68.1 70.6 65.4 58.1

Ever smoker, % 69.6 75.0 64.1 56.0

Fazekas LA grade, mean (SD) 0.96 (1.07) 1.72 (1.00) 0.21 (0.42) NA

ILI indicates isolated lacunar infarct; LA, leukoaraiosis; and MLI, multiple lacunar infarcts.

Table 2.  Heritability Estimates, Based on Assumption of Prevalence of Lacunar 
Stroke (K)

Phenotype n (Case/Control)

K=0.2% K=0.6%

P Valueh2 (SE) h2 (SE)

Lacunar stroke 1012/964 0.20 (0.064) 0.25 (0.080) 0.00054

MLI/LA subtype 502/964 0.23 (0.087) 0.28 (0.11) 0.0035

ILI subtype 501/964 0.15 (0.084) 0.18 (0.10) 0.029

ILI indicates isolated lacunar infarct; LA, leukoaraiosis; and MLI, multiple lacunar infarcts.
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influence of the genetic relatedness threshold and number of 
principal components included in the model. Both parameters 
had minimal influence on the results (Tables I and II in the 
online-only Data Supplement).

Heritability Estimates, Partitioned on Functional 
Status
We next estimated the heritability of lacunar stroke and its 
subtypes explained by eQTLs and regulatory regions. An 
excess of heritability was explained by either eQTLs or regu-
latory regions when compared with what would be expected 
by chance. Partitioning on eQTLs, we found that 2.3% of the 
heritability of lacunar stroke was explained by these SNPs 
(Figure). This value is equivalent to 11.5% of the total herita-
bility, meaning that although eQTLs only make up 3.0% of all 
SNPs, they explain a considerable proportion of the heritabil-
ity. Similar results were obtained for the subtypes.

Similarly, when partitioning on regulatory regions, 6.0% 
of the heritability lacunar stroke status was explained by the 
SNPs, equating to 30.0% of the heritability from only 11.6% of 
the SNPs. Similar results were again obtained for the subtypes.

Polygenic Contribution From Rare Variation
We used the pisa package to calculate the excess of risk to 
protective variants with P<0.05 at low allele frequencies 
(1%–5% and 5%–10%, separately).31 Our simulations indi-
cate an excess of risk to protective variants at P<0.05 for 
frequencies between 5% and 10% in the 2 subtypes of lacu-
nar stroke but not in all lacunar stroke itself (ILI subtype, 
P<0.001; MLI/leukoaraiosis subtype, P=0.004; lacunar, 

P=0.22; Table  3). We also found a significant association 
with the MLI/leukoaraiosis subtype at frequencies between 
1% and 5% but not with the ILI subtype or all lacunar strokes 
(ILI, P=0.19; MLI/leukoaraiosis, P=0.007; lacunar, P=0.15). 
The results indicate that there is a polygenic contribution 
from rare variants to the 2 subtypes of lacunar stroke, but 
this cannot be detected when all lacunar strokes are consid-
ered together. This suggests that distinct pathophysiological 
mechanisms lead to the 2 diseases.

Discussion
Using a genome-wide approach from a large younger onset 
lacunar stroke population, our results show that lacunar 
stroke, when verified by MRI, is highly heritable. Our esti-
mates are greater than those previously reported from GWAS 
data for lacunar stroke,9,10 suggesting that detailed phenotyp-
ing of cases, including MRI, is important for identification of 
genetic associations with the disease. In addition, we show 
that 2 subtypes of lacunar stroke, ILI and MLI/leukoaraiosis, 
are also highly heritable. Estimates of heritability for the 
MLI/leukoaraiosis subtype were higher, which may indi-
cate a stronger genetic component, although more evidence 
is needed to determine this. The estimates of heritability for 
each of the analyses are comparable with those for Alzheimer 
disease (24%),36 schizophrenia (23%),37 and multiple scle-
rosis (30%),36 in which large-scale GWAS have been highly 
successful.

We also show that a significant proportion of the heri-
tability of lacunar stroke, and each of its subtypes, is from 
SNPs affecting the regulation of genes. This was true for both 

Figure. Proportion of overall heritabil-
ity explained by expression quantitative 
trait loci (eQTLs) and regulatory regions 
for lacunar stroke and its subtypes, with 
horizontal line indicating the expected 
proportion of heritability for the number 
of single-nucleotide polymorphisms 
included in analysis. ILI indicates isolated 
lacunar infarct; LA, leukoaraiosis; and 
MLI, multiple lacunar infarcts.

Table 3.  Evidence for Contribution of Rare Variants to Disease Risk

Allele 
Frequency, % P Value Cutoff

Lacunar Stroke MLI/LA Subtype ILI Subtype

O (R/P) E (R/P) P Value O (R/P) E (R/P) P Value O (R/P) E (R/P) P Value

1–5 0.05 1.02 0.99 0.15 1.30 1.20 0.007 1.23 1.20 0.19

5–10 0.05 0.99 0.99 0.56 1.10 1.00 0.004 1.14 1.00 <0.001

30–50 0.05 1.00 1.00 0.51 1.01 1.02 0.62 1.02 1.02 0.49

E (R/P) indicates expected risk to protective ratio; ILI, isolated lacunar infarct; LA, leukoaraiosis; MLI, multiple lacunar infarcts; and O (R/P), observed risk to protective 
ratio.
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eQTLs, where a SNP has been shown to directly affect the 
expression of a given gene, and for regulatory regions, where 
experiments from ENCODE indicate a region where regula-
tory factors bind to the genome. This is an important finding 
because it indicates a mechanism by which genetic variation 
leads to increased risk of lacunar stroke. Our findings mir-
ror those from other complex diseases26,28 and support the 
notion that much of the genetic variation in liability to lacunar 
stroke is through subtle differences in gene expression and 
regulation.

Finally, our results indicate that rare genetic variants 
contribute to risk of lacunar stroke subtypes, ILI and MLI/
leukoaraiosis, but do not have a significant effect on lacu-
nar stroke as a whole. The strongest evidence was for the 
MLI/leukoaraiosis subtype, where significant enrichment of 
risk variants was observed for SNPs with a minor allele fre-
quency of <10%. A significant result was only observed in 
the ILI subtype for SNPs with minor allele frequency between 
5% and 10%. This might be because of power, as there is a 
greater number of SNPs in this frequency band. This result 
is important for several reasons. Firstly, it suggests that there 
exist genetic associations that are specific to these subtypes of 
lacunar stroke and, therefore, that some of the genetic contri-
bution is not shared between the 2 diseases. This has impor-
tant consequences for future studies. First of all, it shows that 
for genetic studies of lacunar stroke, detailed phenotyping is 
important. By splitting analyses into the 2 subtypes of lacunar 
stroke, novel associations might be identified. Secondly, as the 
focus of genetic studies turns from common to rare variants, 
our results show that the greatest benefits will be reaped from 
detailed phenotyping of lacunar stroke populations.

Our study has several strengths. All data in this multi-
center study were prospectively collected using uniform data 
collection proformas. MRI was used in all cases to confirm 
lacunar stroke and was centrally reviewed by a single rater. 
Twenty randomly selected scans showed perfect agreement 
for determination of lacunar stroke subtype, indicating high 
reliability. Similarly, our study has limitations. The sample 
size used was relatively small for genetic studies, meaning 
that confidence intervals around estimates of heritability were 
moderately large. Similarly, we were underpowered to directly 
estimate the genetic correlation between the 2 subtypes based 
on all SNPs using GREML approaches (18% power to detect 
genetic correlation=0.5, using GCTA-GREML power calcula-
tor).38 An important extension of this work would be to per-
form such an analysis in a larger population with sufficient 
power to determine the degree to which the 2 subphenotypes 
share pathogenesis. In addition, our assessment of the pro-
portion of heritability explained by eQTLs is limited by the 
information currently available. As eQTL studies grow in size, 
more SNPs will be identified that affect mRNA expression, 
and this will likely affect our results. Another important point 
to consider is that we were unable to obtain MRIs for the con-
trols. It is possible that a proportion of these might have had 
silent subcortical infarcts, which may have a small effect of 
the results. Finally, the GREML approach used to estimate 
heritability has limitations. The estimates of heritability are 
derived from common SNPs meaning that the contributions 

from rare and structural variations are underestimated because 
of incomplete tagging of causal variation. Similarly, a propor-
tion of the heritability might be because of susceptibility to 
risk factors for lacunar stroke, such as hypertension. An exten-
sion to this work would be to estimate the proportion of the 
observed heritability that acts through susceptibility to such 
risk factors.

In summary, we show that lacunar stroke, when diagnosed 
using MRI and detailed phenotyping, is highly heritable and 
that much of this heritability can be partitioned on regions of 
the genome affecting the regulation of genes. Our results sug-
gest that rare variation affects 2 subtypes of lacunar in isola-
tion, but not with lacunar stroke as a whole, suggesting that 
these 2 subtypes might have distinct genetic susceptibility 
factors.
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