
METHOD

Accelerating electron tomography reconstruction algorithm
ICON with GPU

Yu Chen1,2, Zihao Wang1,2, Jingrong Zhang1,2, Lun Li1,3, Xiaohua Wan1, Fei Sun2,4,5&, Fa Zhang1&

1 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4 National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of
Biophysics, Chinese Academy of Sciences, Beijing 100101, China

5 Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Received: 9 February 2017 / Accepted: 7 April 2017 / Published online: 4 July 2017

Abstract Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-
dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the ‘‘missing wedge’’
problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction
(ICON) demonstrates its power in the restoration of validated missing information for low SNR bio-
logical ET dataset. However, the huge computational demand has become a major problem for the
application of ICON. In this work, we analyzed the framework of ICON and classified the operations of
major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and
implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With
high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.79, greatly
relieving ICON’s dependence on computing resource.
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INTRODUCTION

Electron tomography (ET) plays an important role in
studying in situ cell ultrastructure in three-dimensional
space (Yahav et al. 2011; Fridman et al. 2012; Rigort
et al. 2012; Lučić et al. 2013). Combining with a sub-
volume averaging approach (Castaño-Dı́ez et al. 2012),
ET demonstrates its power in investigating high-
resolution in situ conformational dynamics of macro-
molecular complexes. Due to limited tilt angles, tradi-
tional ET reconstruction algorithms including weighted

back projection (WBP) (Radermacher 1992), simulta-
neous iterative reconstruction technique (SIRT) (Gilbert
1972), direct Fourier reconstruction (DFR) (Mersereau
1976), iterative non-uniform fast Fourier transform
(NUFFT) reconstruction (INFR) (Chen and Förster
2014), etc., always suffer from the ‘‘missing wedge’’
problem, which causes density elongation and ray arti-
facts in the reconstructed structure. Such ray artifacts
will blur the structural details of the reconstruction and
weaken the further biological interpretation (Lučić et al.
2005).

In recent years, many algorithms have been proposed
to deal with the ‘‘missing wedge’’ problem. Some of them
apply prior constrains to the reconstructed tomogram
to compensate the missing wedge, such as filtered
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iterative reconstruction technique (FIRT) (Chen et al.
2016), discrete algebraic reconstruction technique
(DART) (Batenburg and Sijbers 2011), and projection
onto convex sets (POCS) (Sezan and Stark 1983; Carazo
and Carrascosa 1987). These constraints include density
smoothness, density non-negativity, density localness,
etc. Others try to solve the reconstruction problem as an
underdetermined problem based on a theoretical
framework called ‘‘compressed sensing’’ (CS) (Donoho
2006). Compressed sensing electron tomography (Saghi
et al. 2011, 2015; Goris et al. 2012; Leary et al. 2013)
demonstrated certain success for the data with a high
signal to noise ratio (SNR) (e.g., material science data or
resin-embedded section data). To cope with the low SNR
case (e.g., biological cryo-ET data, in which a low total
dose of electron is used to avoid significant radiation
damage), Deng et al. proposed iterative compressed-
sensing optimized NUFFT reconstruction (ICON) by
combining CS and NUFFT together (Deng et al. 2016).
With a validation procedure, ICON not only restores the
missing information but also measures the fidelity of the
information restoration. ICON demonstrated its power
in the restoration of validated missing information for
low SNR biological ET dataset.

However, the convergence process of ICON is time-
consuming. The huge computational demand has
become a major problem for the application of ICON.
The traditional solution to cope with the high compu-
tational cost has been the use of supercomputers and
large computer clusters (Fernández et al. 2004; Fer-
nández 2008), but such hardware is expensive and can
also be difficult to use. Graphics processing units (GPU)
(Lindholm et al. 2008) can be the attractive alternative
solution in terms of price and performance. In this
work, we developed the parallel strategies of ICON and
implemented a GPU version of ICON, named ICON-GPU.
Experimental results based on a Tesla K20c GPU card
showed that ICON-GPU exhibits the same accuracy and a
significant acceleration in comparison with the CPU
version of ICON (ICON-CPU).

RESULTS AND DISCUSSION

Reconstruction precision

First, we evaluated the numerical accuracy of ICON-GPU
using the root-mean-square relative error (RMSRE) e as
Eq. 1. To avoid dividing 0 when calculating the RMSRE,
we first normalized the reconstructed slices into (0,1]
using Eq. 2.
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where N is the size of one slice; Cnorm is the normalized
slice reconstructed by ICON-CPU; Cnormi is the value of
the ith pixel in Cnorm; Pnorm is the normalized slice
reconstructed by ICON-GPU; Pnormi is the value of the
ith pixel in Pnorm.

Pnorm ¼ P �minP
maxP �minP

þ c; ð2Þ

where Pnorm is the normalized slice; P is the originally
reconstructed slice; minP is the minimum value of P;
maxP is the maximum value of P; c is a small constant to
avoid 0 in Pnorm, in this work, c = 10-7.

The RMSRE of ICON-GPU increases slowly with the
image size; they are in the range of ð6� 10�7; 4�
10�6Þ yielding a reasonable numerical accuracy for the
float format data (Fig. 1).

Then, we evaluated the reconstruction accuracy
by investigating the reconstructed tomograms. The
XY-slices reconstructed by ICONs (Fig. 2B, C) show
better SNR than that by WBP (Fig. 2A), yielding a better
contrast to discriminate the cellular ultrastructures.
Besides, ICON-CPU and ICON-GPU are identical with
each other and the normalized cross-correlation (NCC)
between them is 1. The XZ-slices reconstructed by
ICONs (Fig. 2E, F) are also identical with each other and
the ray artifacts in ICONs are significantly reduced in
comparison with WBP (Fig. 2D). To be noted that, to
eliminate any suspicion on the gray-scale manipulation
(which could enhance the visual advantage), all images
were normalized and displayed based on their mini-
mum and maximum value.

Fig. 1 The RMSREs of ICON-GPU
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We further investigated the reconstruction accuracy
by the pseudo-missing-validation procedure (Deng et al.
2016). Here, the -0.29� tilt (the minimum tilt) projec-
tion was excluded as the omit-projection (‘‘ground
truth’’) (Fig. 3A). We re-projected the reconstructed
omit-tomograms at -0.29�. The re-projections of ICONs

(Fig. 3C, D) are identical with each other and the NCC
between them is 1. The re-projections of ICONs are
clearer in detailed structures and close to the ‘‘ground
truth’’, compared to that of WBP (Fig. 3B). Such visual
assessments were further verified quantitatively by
comparing the Fourier ring correlation (FRC) curves
between the re-projections and the ‘‘ground truth’’. The
FRCs of ICONs coincide with each other, and they are
better than that of WBP (Fig. 3E). The coincident FRCs
of ICONs further demonstrate the accuracy of ICON-GPU
from the perspective of restoring missing information.

Speed up

We evaluated the acceleration of ICON-GPU by com-
paring the running time of reconstructing one slice
under 200 iterations. We reconstructed the datasets
with sizes of 512 9 512, 1 k 9 1 k, 2 k 9 2 k,
4 k 9 4 k, respectively. The acceleration of ICON-GPU
improves when the slice size increases (Fig. 4; Table 1).
The maximum speedup is 83.79 in the reconstruction
of a 4 k 9 4 k slice. With the efficient acceleration, the
reconstruction time of one 4 k 9 4 k slice is reduced
from hours to minutes, which greatly relieves ICON’s
dependence on computing resource.

Fig. 2 Evaluate ICON-GPU by investigating the reconstructed
tomograms. A–C The XY-slices of the tomograms reconstructed by
WBP, ICON-CPU, and ICON-GPU, respectively; D–F The XZ-slices of
the tomograms reconstructed by WBP, ICON-CPU, and ICON-GPU,
respectively

Fig. 3 Evaluate ICON-GPU by the pseudo-missing-validation procedure. A The omit-projection (‘‘Ground truth’’); B–D The re-projections
of the omit-tomograms reconstructed by WBP, ICON-CPU, and ICON-GPU, respectively; E The pseudo-missing-validation FRCs of WBP,
ICON-CPU, and ICON-GPU
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CONCLUSIONS

In the present work, we analyzed the iterative frame-
work of ICON and classified the operations of ICON
reconstruction into three types. Accordingly, we
designed parallel strategies and implemented them on
GPU to generate a parallel program ICON-GPU. We
tested ICON-GPU on a resin-embedded ET dataset of
MDCK cell section. The RMSRE between ICON-GPU and
ICON-CPU is about 10e-6, yielding a reasonable
numerical accuracy of ICON-GPU compared to ICON-
CPU. In addition, ICON-GPU has the same ability of
restoring missing information with ICON-CPU. In
addition, ICON-GPU has a great acceleration, up to
83.79 in the reconstruction of one 4 k 9 4 k slice in
comparison with ICON-CPU.

To be noted that, ICON-GPU can also run on multiple
GPU system such as TIANHE-2, a supercomputer
developed by China’s National University of Defense
Technology, which is based on multi-core and many-
core architectures (Liao et al. 2014).

The software package of ICON-GPU can be obtained
from our website (http://feilab.ibp.ac.cn/LBEMSB/
ICON.html or http://ear.ict.ac.cn).

MATERIALS AND METHODS

Iterative compressed-sensing optimized NUFFT
reconstruction (ICON)

ICON is an iterative reconstruction algorithm based on
the theoretical framework of ‘‘compressed sensing’’ and
is designed to restore missing information caused by
limited angular sampling (Deng et al. 2016). ICON is
formulated as Eq. 3.

argmin k Px kL0 ; subject to : kAhWAx � AhWf kL2\e;

ð3Þ

where x is the two-dimensional (2D) reconstructed slice;
W follows INFR’s description (Chen and Förster 2014)
and contains the weights that account for the non-uni-
form sampling in the Fourier space (similar to the ramp
filtering in WBP); A is the projection operation, defined
as a non-uniform Fourier sampling matrix, which per-
forms Fourier transform on the non-integer grid points
(NUFFT); Ah stands for the conjugate transpose of A; f is
the Fourier transform of acquired projections; �k kL2 is an
operator that calculates the Euclidean norm (L2-norm); e
is a control parameter that is determined empirically
according to the noise level; �k kL0 stands for the operator
that calculates the number of the non-zero terms. P is a
diagonal sparse transformation matrix, whose diagonal
element ; is defined as in Eq. 4.

;x ¼ ; xð Þ ¼def 0; ðif x\0Þ
1; if x� 0ð Þ

�

: ð4Þ

The complete workflow of ICON can be divided into
four steps (Deng et al. 2016):

Step 1 Pre-processing. Align tilt series and correct con-
trast transfer function (CTF).

Step 2 Gray value adjustment. Subtract the most fre-
quently appeared pixel value in the micrographs,
which is given from the embedding material (e.g.,
resin or vitrified ice).

Step 3 Reconstruction and pseudo-missing-validation.
Reconstruct tilt series into a 3D volume with an
iterative procedure of fidelity preservation and
prior sparsity restriction, and evaluate the restored
information with pseudo-missing-validation.

Step 4 Verification filtering. Exclude the incorrectly
restored information.

A series of tests showed that Step 3 accounts for at
least 95% of the execution time of ICON. Thus, the major
task for accelerating ICON is parallelizing Step 3

Fig. 4 The comparison of time-consuming of ICON-CPU and
ICON-GPU

Table 1 The speedups of
ICON-GPU compared to ICON-
CPU

Image size Speedup

5122 8.79

10242 41.59

20482 61.29

40962 83.79
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effectively on GPU. Since the procedures of ‘‘recon-
struction’’ and ‘‘pseudo-missing-validation’’ are similar,
only the parallelization of ‘‘reconstruction’’ will be dis-
cussed in this paper.

The major steps of ‘‘reconstruction’’ can be briefly
described as followed.

Step 3.1: Fidelity preservation step. In this step,
steepest descent method (Goldstein 1965) is used to
calculate the subject function of Eq. 3 as follows:

r ¼ AhWAxk � AhWf ; ð5Þ

a ¼ rTr
rTAhWAr

; ð6Þ

ykþ1 ¼ xk � ar; ð7Þ

where xk is the 2D reconstructed slice of the kth itera-
tion, r is the residual, a is the coefficient used to control
the step of updating, yk?1 is the intermediate updating
result of the (k ? 1)th iteration.

Step 3.2: Prior sparsity restriction step. The diagonal
sparse transformation matrix P can be re-formulated as
a ‘‘hard threshold’’-like operation as in Eq. 8:

xkþ1 ¼ H ykþ1
� �

¼ 0; if ykþ1\0
ykþ1; if ykþ1 � 0

�

; ð8Þ

where yk?1 is the intermediate updating result of the
(k ? 1)th iteration. Hð�Þ is a thresholding function, xk?1

is the 2D reconstructed slice of the (k ? 1)th iteration.
We classified the operations of these two steps into

three types: (1) the summation of a matrix; (2) element-
wise operations of matrices; (3) the NUFFT and the
adjoint NUFFT. For a fast summation of matrix, we took
advantage of the API function cublasSasum from the
standard CUDA library cuBLAS (NVIDIA Corp, 2007).
For type 1 and 2, parallel strategies are proposed in the
following sections.

Parallelizing element-wise operations
of matrices

GPU is a massively multi-threaded data-parallel archi-
tecture, which contains hundreds of scalar processors
(SPs) (Lindholm et al. 2008). NVIDIA provides the
programming model on GPU called CUDA. The CUDA
program running on GPU is called Kernel, which con-
sists of thousands of threads. Thread is the basic run-
ning unit in CUDA programming model and it has a
three-level hierarchy: grid, block, thread. Besides, CUDA
devices use several memory spaces including global,
shared, texture, and registers. Of these different memory
spaces, global memory is the largest but slowest in data
accessing. CUDA provides API function cudaMemcpy to
transfer data between host memory and device

memory; the time-consuming of such transfer some-
times is non-negligible especially for an iterative pro-
cedure like ICON reconstruction.

Since micrographs in ET are usually large (e.g.,
2 k 9 2 k or 4 k 9 4 k in float or short format) and
exceed the limitation of most types of CUDA device
memory (e.g., 16 or 48 KB for shared memory), data in
ICON-GPU are restored in global memory using float
format. In order to cut down the time-consuming of
memory transfer, we parallelized all operations of ICON
on GPU even though some operations may have negli-
gible speedups.

To deal with element-wise operation, ICON-GPU uses
a 2D distribution of threads with a fixed block size of
32 9 32 and a fixed grid size of 4b, b is a parameter to
be determined according to the matrix size N. ICON-GPU
assigns the operation of one element to one thread
according to the index of element. Pseudo codes for
calling a kernel function and the operations inside a
kernel function are shown in Fig. 5.

Parallelizing NUFFT and adjoint NUFFT

First, we give a brief description of NUFFT. Given the

Fourier coefficients f̂k 2 C; k 2 IN and IN ¼

k ¼ ktð Þt¼0;...;d�12 Z
d : �

n

Nt
2 � kt\ Nt

2 ; t ¼ 0; . . .; d �
1g as input, NUFFT tries to evaluate the following
trigonometric polynomial efficiently at the reciprocal

points xj 2 � 1
2 ;

1
2

� �d
; j ¼ 0; . . .;M � 1 :

fj ¼ f xj
� �

¼
X

k2IN
f̂ke

�2pikxj ; j ¼ 0; . . .;M � 1: ð9Þ

Correspondingly, the adjoint NUFFT tries to evaluate
Eq. 10 at the frequency k.

ĥk ¼
X

M�1

j¼0

fje
2pikxj : ð10Þ

Fig. 5 Pseudo codes for calling a kernel function and the
operations inside a kernel function for element-wise operations
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NFFT3.0 (Keiner et al. 2010), a successful and widely
used open source C library, is used in ICON-CPU for
NUFFT and adjoint NUFFT. Yang et al. proposed a dif-
ferent theoretical derivation of NFFT and demonstrated
the high efficiency of GPU acceleration of NFFT (Yang
et al. 2015, 2016). To make ICON-GPU consistent with
ICON-CPU, in this work, we parallelized the NUFFT and
the adjoint NUFFT based on the algorithms described in
NFFT3.0 and the algorithm of 2D NUFFT is displayed in
Algorithm 1.

u(x) and û kð Þ are the window functions. In this work,
the (dilated) Gaussian window functions (Eqs. 11, 12)
are used.

u xð Þ ¼ pbð Þ�
1
2e�

nxð Þ2
b b ¼ 2r

2r� 1
m
p

	 


; ð11Þ

û kð Þ ¼ 1
n
e�b pk

nð Þ2 ; ð12Þ

where x is a component of the reciprocal points x, k is a
component of the frequencies k, r is a component of the
oversampling factors r with r[ 1. In this work, r = 2,
n is one component of n = rN, m 2 N and m � n. In
this work, m = 6.

The operations in 2D NUFFT and 2D adjoint NUFFT
can be classified into three types: (1) element-wise
operations of matrices; (2) 2D FFT; (3) calculation of
window functions u(x) and û kð Þ. The parallel strategy
of type 1 is the same as the strategy described in Sec-
tion ‘‘Parallelizing element-wise operations of matrices.’’
For type 2, to achieve a high performance FFT, we took
advantage of the NVIDIA’s FFT library, CUFFT (NVIDIA
Corp 2007). Since ICON is an iterative algorithm, 2D
NUFFT and 2D adjoint NUFFT will be repeated many

times. To cut down the time of calculation and memory
transfer, we pre-computed the window functions for
once and stored them in the device memory.

Parallel NUFFTs were tested using a resin-embedded
ET dataset (see ‘‘Resin embedded ET Dataset’’ for
details). Here, all CPU programs ran on one core
(thread) of an Intel� XeonTM CPU E5-2620 v2 @
2.1 GHz (six cores per CPU) and all GPU programs ran
on a NVIDIA Tesla K20c (2496 CUDA cores and 5 GB
device memory). The accelerations of parallel NUFFTs
improve when the image size increases and are up to
75.4x for NUFFT and 55.7x for adjoint NUFFT in the
transform of one 4 k 9 4 k image (Fig. 6).

Resin-embedded ET dataset

We tested ICON-GPU using a resin-embedded ET dataset
of MDCK cell section. The tilt angles of the dataset
originally ranged from -68� to ?68� with 1� increment.
In order to verify ICON-GPU’s ability of restoring miss-
ing information, we extracted every other projection
from the original dataset to generate a new tilt series
with 2� increment for the following experiments. The
tilt series were aligned using atom align (Han et al.
2014). The original image size is 4 k 9 4 k with a pixel
size of 0.72 nm. We also compressed the tilt series with
factors of two, four, eight to generate datasets with
smaller sizes of 2 k 9 2 k, 1 k 9 1 k, and 512 9 512,
respectively.
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Fig. 6 The speedups of parallel NUFFTs compared to NFFT3.0
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Rigort A, Villa E, Bäuerlein FJB, Engel BD, Plitzko JM (2012)
Chapter 14—integrative approaches for cellular cryo-electron
tomography: correlative imaging and focused ion beam
micromachining. Methods Cell Biol 111:259–281

Saghi Z, Holland DJ, Leary R, Falqui A, Bertoni G, Sederman AJ,
Gladden LF, Midgley PA (2011) Three-dimensional morphol-
ogy of iron oxide nanoparticles with reactive concave
surfaces. A compressed sensing-electron tomography (CS-
ET) approach. Nano Lett 11(11):4666–4673

Saghi Z, Divitini G, Winter B, Leary R, Spiecker E, Ducati C, Midgley PA
(2015) Compressed sensing electron tomography of needle-
shapedbiological specimens—potential for improved reconstruc-
tion fidelity with reduced dose. Ultramicroscopy 160:230–238

Sezan MI, Stark H (1983) Image restoration by convex projections
in the presence of noise. Appl Opt 22(18):2781

Yahav T, Maimon T, Grossman E, Dahan I, Medalia O (2011) Cryo-
electron tomography: gaining insight into cellular processes
by structural approaches. Curr Opin Struct Biol
21(5):670–677

Yang SC, Wang YL, Jiao GS, Qian HJ, Lu ZY (2015) Accelerating
electrostatic interaction calculationswith graphical processing
units based on new developments of ewald method using non-
uniform fast Fourier transform. J Comput Chem 37(3):378

Yang SC, Qian HJ, Lu ZY (2016) A new theoretical derivation of
NFFT and its implementation on GPU. Appl Comput Harmon
Anal. doi:10.1016/j.acha.2016.04.009

METHOD Y. Chen et al.

42 | June 2017 | Volume 3 | Issues 1–3 � The Author(s) 2017. This article is published with open access at Springerlink.com

http://cbi.ibp.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.acha.2016.04.009

	Accelerating electron tomography reconstruction algorithm ICON with GPU
	Abstract
	Introduction
	Results and discussion
	Reconstruction precision
	Speed up

	Conclusions
	Materials and methods
	Iterative compressed-sensing optimized NUFFT reconstruction (ICON)
	Parallelizing element-wise operations of matrices
	Parallelizing NUFFT and adjoint NUFFT
	Resin-embedded ET dataset

	Acknowledgements
	References




