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ABSTRACT
Background. In the river system, the geochemistry of rare earth elements (REEs, a
series of elements from La to Lu) in suspended particulate matter (SPM) is generally
controlled by rock weathering processes and hydrochemical characteristics, as well
as being affected by anthropogenic activities. However, the variations of geochemical
characteristics and behaviors of REEs in SPM with a salinity gradient from the inland
river to the estuary have been short of a systematic understanding.
Methods. The REE concentrations, Post Archean Australia Shale (PAAS)-normalized
REE, La/Yb, La/Sm, and Sm/Yb ratios of SPM were investigated in the Jiulongjiang
River, which is a coastal river mainly flowing through granite rocks in Southeast China.
The correlation relationships between physicochemical parameters (including water
pH, total dissolved solids (TDS), HCO3

– concentrations, and the concentrations of
major elements of SPM) and PAAS-normalized REE ratios of SPM were analyzed to
determine the factors that affect the REE concentration and fractionation of SPM in the
different regions of Jiulongjiang River, including the main stream and tributary of Beixi
River, Xixi River, Nanxi River, and estuary. Additionally, the Ce, Eu, and Gd anomalies
of SPM were estimated.
Results. The average

∑
REE concentration of SPM(352mg/kg) in the granite rock basin

was twice higher than the mean value (175 mg/kg) of the world’s rivers. The PAAS-
normalized REE ratios of SPM in the main rivers including Beixi River (main stream),
Xixi River, and Nanxi River were near due to the same lithologic distribution. In the
tributary of Beixi River, the input of low-weathered carbonate minerals which contain
very few REE caused the lower REE concentrations of SPM. The PAAS-normalized REE
ratios of SPM in the estuary were significantly lower than those in themain rivers, which
wasmainly attributed to the significant REE removal with the increment of salinity. The
enrichment of LREE relative to HREE in SPM increased with decreasing water pH in
the main rivers. In the estuary, the preferential removal of dissolved LREE occurred
compared to HREE with the increment of salinity. The negative Ce and Eu anomalies
of SPM occurred in both the main rivers and estuary region and rare Gd pollution
was present in the basin. Additionally, human activities caused the increment of REE
concentrations and more negative Ce anomaly at some specific sites, such as dam effect
and agricultural pollution.
Conclusions. The REE concentrations and fractionations of SPM in river water mainly
depend on lithologic distribution and riverine pH, while they are affected by salinity in
the estuary.
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INTRODUCTION
The rare earth elements (REEs, a series of lanthanides from57La to71Lu) have been widely
concerned regarding the environmental influences such as occurrences, concentration
levels, and transformation processes in river systems (Bayon et al., 2015; Elderfield, Upstill-
Goddard & Sholkovitz, 1990; Xu & Han, 2009), estuary systems (Ma et al., 2019; Suja,
Fernandes & Rao, 2017), coastal sea (Amalan et al., 2018; Elderfield, Upstill-Goddard &
Sholkovitz, 1990), and urban runoff system (Petelet-Giraud, Klaver & Negrel, 2009; Shajib
et al., 2020). Generally, the REEs occur coherently in natural environments due to similar
chemical properties. According to the geochemical behaviors of REEs, the three groups
including light REE (LREE, from La to Nd), middle REE (MREE, from Sm to Ho), and
heavy REE (HREE, from Er to Lu) are commonly classified. The weathering of rocks is the
primary source of REEs in the earth’s surface environments (Yang et al., 2021). However,
as the important annexing agents of modern materials, REEs have been extensively applied
in agriculture, military, aviation, and medical industries (Altomare, Young & Beazley, 2020;
Bau & Dulski, 1996; Dushyantha et al., 2020; Louis et al., 2020; Volokh et al., 1990). Thus,
distinguishing natural and anthropogenic REE sources is environmentally meaningful
(Naccarato et al., 2020).

In the river system, REEs in rocks mobilize into riverine suspended particulate matter
(SPM) and dissolved loads during the rock weathering processes. The two forms of REEs
can be interconverted through the physical and chemical processes, such as adsorption,
colloid flocculation, dissolution, and complexation (Brookins, 1989; Sholkovitz, Landing &
Lewis, 1994; Xu & Han, 2009). Generally, the REEs of SPM (59–289 mg/kg in the world’s
rivers) are far more than those in dissolved loads (13–2,484 µg/kg) (Goldstein & Jacobsen,
1988), for example, da Silva et al. (2018) reported that more than 95% of total riverine REEs
were carried by SPM in the Ipojuca River. Rock weathering products and re-suspended
sediments are the primary sources of SPM (Roussiez, Aubert & Heussner, 2013; Vercruysse,
Grabowski & Rickson, 2017). In some sites with intensive human activities, a large part of
REEs in SPM is likely attributed to anthropogenic sources (Bau & Dulski, 1996; Louis et al.,
2020). Thus, the REEs of SPM in the river, even other water bodies, record the integrated
information about the geochemical characteristics of REE in SPM controlled by weathering
processes and human disturbances since the Anthropocene (Linders et al., 2018; Rogers et
al., 2019).

The alterations of hydrochemical characteristics caused by the input of weathering
products and anthropogenic activities can substantially affect the concentration and
fractionation of REE in SPM (Jones et al., 2016; Smith & Liu, 2018). For example, water pH,
redox potential, and organic matter concentration significantly influence the dissolution
and enrichment of SPM-associated REE in an inland river (Goldstein & Jacobsen, 1988;
Johannesson et al., 2004; Migaszewski, Galuszka & Dolegowska, 2019). However, the REE
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removal in the estuary region with the increment of salinity significantly reduces the REE
concentration of SPM (Elderfield, Upstill-Goddard & Sholkovitz, 1990; Nozaki et al., 2000).
On the other hand, the REE fractionation can cause the variational concentrations of
different REEs (Louvat & Allegre, 1998), due to the alterations of water physicochemical
properties (Elias et al., 2019;Michaelides et al., 2010). Generally, the fractionations of REEs
in SPM are also closely related to the water physicochemical properties, such as water
pH, salinity, and the colloids of Fe/Mn oxides/hydroxides (Dagg et al., 2004; Krickov et
al., 2020; Quinn, Byrne & Schijf, 2006). For example, LREE is preferentially adsorbed by
clay mineral particles compared to HREE, resulting in HREE depletion relative to LREE
in SPM (Chelnokov, Bragin & Kharitonova, 2020). Xu & Han (2009) reported that MREE
and Ce are preferentially adsorbed by Fe/Mn oxides/hydroxides, while other LREEs are
easily absorbed by clay colloids. Compared to LREE, HREE is more easily separated with
SPM into the dissolved load with increasing river water acidity (Migaszewski, Galuszka
& Dolegowska, 2019). Elderfield, Upstill-Goddard & Sholkovitz (1990) reported that the
preferential removal of LREE occurred with the increment of salinity in the estuary
region. Additionally, the redox potential-dependent Ce anomaly (Alderton, Pearce & Potts,
1980), lithology-dependent Eu anomaly (Han et al., 2009), and anthropogenic pollution-
dependent Gd anomaly (Bau & Dulski, 1996; Louis et al., 2020) are the useful indexes of
REE fractionation. Overall, the geochemical characteristics (including concentration and
fractionation) of REEs in SPM can provide much useful information about weathering
processes, hydrochemical characteristics, and anthropogenic activities (Cholet et al., 2019;
Smith & Liu, 2018).

REEs of SPM are useful environmental tracers to indicate weathering processes and
anthropogenic activities. The Jiulongjiang River, which is a coastal river mainly flowing
through granite rocks in Southeast China (Liu & Han, 2020), is a perfect area to study the
variations of geochemical characteristics and behaviors of REEs in SPM with a salinity
gradient from the inland river to the estuary. Thus, the concentration and fractionation
of REEs in SPM in river and estuary were investigated and the effects of weathering
processes and anthropogenic activities on them were analyzed in the present study. This
study aims to: (1) investigate the concentrations and fractionations of REEs in SPM in
river and estuary, (2) determine their controlling factors from weathering processes and
anthropogenic activities, and (3) understand the differences in the concentrations and
fractionations of REEs in SPM between in river and estuary.

MATERIALS AND METHODS
Study area
The Jiulongjiang River (24◦05′N–25◦55′N, 106◦50′E–118◦20′E), which is situated at the
southeast coastal margin of the Chinese mainland, has the basin area of about 14,740 km2

(Liu & Han, 2020). The main stream flows across the Longyan and Zhangzhou cities with a
channel length of 260 km and an annual water discharge of 14 km3. The Jiulongjiang River is
comprised of the three main rivers, including Beixi River, Nanxi River, and Xixi River. The
basin is mainly controlled by the sub-tropic monsoon climate. The period with themajority
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of rainfalls (∼80%) and the highest air temperature are simultaneously concentrated in the
wet season from April to September. In the basin, mean annual precipitation (MAP) ranges
from 1400 mm to 1800 mm and the mean annual temperature (MAT) varies from 19.9 ◦C
to 21.1 ◦C (Liu & Han, 2020). Magmatic rocks and clastic sedimentary rocks are widely
distributed in the basin, while metamorphic rocks and limestones are exposed rarely (Li,
Qiu & Yang, 2014). The red soils, which are classified into Alisols (WRB, 2014), account
for >90% area of the basin. The region of upper reaches mainly flows through mountain
areas with high forest coverage and slight agricultural and industrial perturbations, while
other regions are affected by different degrees of human activities (Huang et al., 2013).
Furthermore, the Wananxi Reservoir regulates the discharge of river water in the upper
reaches of the Beixi River.

Sample collection and in-field measurements
A total of 42 river water samples were collected in the high-flow season (July) of 2014 (Fig. 1
and Table 1). The river water samples of 1–21, 24–33, and 34–37 were collected along with
the Beixi River, Xixi River, and Nanxi River, respectively. The sites of 22, 23, and 38–42
were located in the estuary region. The physicochemical parameters of pH values and total
dissolved solids (TDS) concentrations in river and estuary water were measured using a
water quality monitor (YSI multi-parameter probe) on site. The HCO3

− concentrations
were determined using titration with diluent HCl solution (Liu & Han, 2021). All river
water samples were hoisted by a clean plastic bucket from the center of the river on bridges
and ferries. The samples were collected at a depth about 0.5 m below the water surface.
Water samples were stored in a 50L LDPE bag, which had been pre-cleaned with 10% nitric
acid. The collected river waters were filtered through a 0.22 µm cellulose acetate membrane
(Millipore) to separate SPM samples within 24 h. Compared to the 0.45 µm size, the 0.22
µm size was more widely employed to distinguish SPM and dissolved solutes in natural
river water (Zeng & Han, 2020; Zeng, Han & Yang, 2020). An important reason is that
the 0.22 µm filter can separate most particles or colloids associated with anthropogenic
sources, such as living substances and biopolymer aggregates (Jackson & Burd, 2015). The
SPM samples absorbed on the surface of the filter membrane were collected through
washing by deionized water and then dried on a hotplate at 55 ◦C.

Analytical methods
The SPM samples were digested to dissolved loads according to the modified method by
Li & Han (2021). The procedure was showed in detail, dried SPM sample was weighed
100 mg, put into a cleaned PFA digestion tank digested, added one mL pure HF and
three mL pure HNO3, heated keeping at 140 ◦C for 3 days (Li et al., 2020). Finally, the
solid sample was transformed into a solution, and then stored in a 2% HNO3 solution for
analyzing the concentrations of REEs and major elements. For the entire procedure, the
blank samples and standard samples (GBW07404 and GBW07120) were treated the same
as the samples, to monitor procedural reliability. The recovery rate of Ce was more than
90% and over 95% for other REEs during the digestion procedure. The concentrations of
REEs (including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in SPM
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Wananxi
Reservoir

Figure 1 Lithologic distribution and the location of sampling sites in the Jiulongjiang River basin.
Full-size DOI: 10.7717/peerj.12414/fig-1
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Table 1 Location and the pH, TDS, and HCO3
− concentration of river water at different sampling

sites in the Jiulongjiang River. (T) indicates the site located in tributary of the Beixi River.

Sampling site Longitude Latitude Altitude pH TDS
(mg/L)

HCO3
−

(mg/L)

Beixi River
1 116.96◦E 25.39◦N 384 m 7.58 27.1 7.50
2 117.06◦E 25.41◦N 282 m 6.94 32.8 7.87
3 117.28◦E 25.36◦N 206 m 6.72 43.4 11.5
4(T) 117.27◦E 25.32◦N 197 m 7.03 229 32.9
5 117.33◦E 25.33◦N 173 m 6.96 118 21.1
6(T) 117.36◦E 25.38◦N 182 m 7.30 54.7 22.5
7(T) 117.40◦E 25.38◦N 174 m 7.91 93.4 39.4
8(T) 117.37◦E 25.35◦N 162 m 7.65 86.9 36.6
9 117.37◦E 25.32◦N 172 m 7.10 96.1 26.0
10 117.44◦E 25.28◦N 159 m 7.13 121 23.8
11(T) 117.54◦E 25.34◦N 177 m 7.53 76.1 38.1
12 117.53◦E 25.21◦N 143 m 7.09 99.7 22.5
13 117.5◦E 25.14◦N 153 m 7.35 43.6 11.9
14 117.55◦E 25.10◦N 109 m 6.90 90.9 17.9
15 117.52◦E 25.01◦N 89 m 7.31 95.4 21.8
16 117.52◦E 24.99◦N 83 m 7.60 59.8 15.0
17 117.55◦E 24.92◦N 35 m 7.20 91.2 20.1
18 117.60◦E 24.81◦N 27 m 7.16 87.3 19.2
19 117.60◦E 24.74◦N 16 m 7.15 87.0 17.9
20 117.63◦E 24.66◦N 8 m 7.07 88.1 17.9
21(T) 117.76◦E 24.63◦N 13 m 7.58 77.5 20.7

Xixi River
24 117.23◦E 24.66◦N 136 m 7.18 52.1 15.0
25 117.25◦E 24.61◦N 78 m 7.31 55.8 14.8
26 117.33◦E 24.54◦N 37 m 7.38 59.3 15.6
27 117.37◦E 24.50◦N 23 m 7.40 59.9 15.0
28 117.40◦E 24.48◦N 24 m 6.71 156 9.3
29 117.43◦E 24.52◦N 20 m 7.13 91.2 14.6
30 117.45◦E 24.58◦N 27 m 6.87 82.7 26.5
31 117.59◦E 24.56◦N 16 m 7.04 106 21.6
32 117.69◦E 24.50◦N 1 m 6.94 141 37.5
33 117.75◦E 24.49◦N 1 m 7.01 173 49.0

Nanxi River
34 117.55◦E 24.26◦N 70 m 7.29 70.4 15.2
35 117.67◦E 24.34◦N 16 m 7.00 91.0 20.5
36 117.76◦E 24.35◦N 7 m 6.96 120 26.2
37 117.90◦E 24.36◦N −1 m 6.99 299 38.43

(continued on next page)
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Table 1 (continued)

Sampling site Longitude Latitude Altitude pH TDS
(mg/L)

HCO3
−

(mg/L)

Estuary
22 117.74◦E 24.56◦N 7 m 7.00 90.3 20.7
23 117.78◦E 24.52◦N 29 m 7.08 88.8 19.6
38 117.79◦E 24.47◦N 7 m 6.95 99.5 22.5
39 117.90◦E 24.48◦N −2 m 7.05 105 20.7
40 117.89◦E 24.44◦N 0 m 7.02 720 32.0
41 117.87◦E 24.43◦N 0 m 6.99 97.2 20.5
42 117.86◦E 24.42◦N 5 m 7.00 99.0 21.6

were determined by an inductively coupled plasma mass spectrometry (ICP-MS, ELAN
DRC-e, Perkin Elmer, Waltham, Massachusetts, USA), and the concentrations of major
elements (including Al, Ca, Fe, K, Mg, Mn, Na, and Ti) were analyzed by an inductively
coupled plasma optical emission spectroscopy (ICP-OES, Optima 5300DV, PerkinElmer,
Waltham, Massachusetts, USA) (Liu, Han & Li, 2021). To restrict the mass interferences of
BaO+ on Eu during the instrument testing process, a liquid-liquid extraction method was
employed to remove Ba efficiently, as well as other matrix elements (Shabani & Masuda,
1991). The precision and accuracy of measurement were evaluated by repeated analysis of
standard solution with multi-element, which were better than ±3% for major elements
and better than ±5% for REEs, respectively.

Chemical index of alteration
The chemical index of alteration (CIA) of SPM can indicate the degree of weathering
(i.e., the evolution degree from luminum–silicate minerals (especially feldspar) to clay
minerals) in the source region (Nesbitt & Young, 1982). The higher CIA value means the
more intensive leaching of Na, K, and Ca in silicate minerals, that is the stronger chemical
weathering. The CIA > 80% indicates strong chemical weathering; 60% < CIA < 80%
indicates moderate chemical weathering; CIA < 60% indicates weak chemical weathering.
The CIA can be obtained by the calculation of molecular proportions, as the formula:

CIA= [Al2O3/Al2O3+CaO∗+Na2O+K2O×100] (1)

where CaO* (mol/kg) is the molecular mass concentration of CaO incorporated in the
silicate fraction of the rock. A correction is made for carbonate and apatite content
(McLennan, 1993). In brief, if CaO/Na2O (mole ratio) > 1, the mole fraction of CaO* is
replaced by the mole fraction of Na2O; if CaO/Na2O < 1, CIA is calculated directly using
the mole fraction of CaO.

REE fractionation indexes and anomalies
The Post Archean Australia Shale (PAAS)-normalized REE patterns for SPMwas calculated
as the formula (Han et al., 2009):

REEN=REESPM/REEPAAS (2)
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The PAAS-normalized La/Yb ratio ((La/Yb)N), La/Sm ratio ((La/Sm)N), and Sm/Yb
ratio ((Sm/Yb)N) indicate the relative fractionation between LREE and HREE, between
LREE and MREE, and between MREE and HREE in SPM, respectively (Xu & Han, 2009):

(La/Yb)N= (La/Yb)SPM/(La/Yb)PAAS (3)

(La/Sm)N= (La/Sm)SPM/(La/Sm)PAAS (4)

(Sm/Yb)N= (Sm/Yb)SPM/(Sm/Yb)PAAS (5)

The anomalies of Ce (δCe), Eu (δEu), and Gd (δGd) are calculated as the formulas
(Hissler et al., 2015; Olivarez & Owen, 1991):

δCe=CeSPM/CePAAS/(0.5×LaSPM/LaPAAS+0.5×PrSPM/PrPAAS) (6)

δEu= EuSPM/EuPAAS/(0.67×SmSPM/SmPAAS+0.33×TbSPM/TbPAAS) (7)

δGd=GdSPM/GdPAAS/(0.33×SmSPM/SmPAAS+0.67×TbSPM/TbPAAS) (8)

The positive and negative Ce and Eu anomalies are determined by the values of >1 and
<1, respectively. The δGd > 1.6 implies the presence of anthropogenic Gd sources (Louis
et al., 2020).

Statistical analysis
Boxplot was used to show the ranges of the concentrations of

∑
REE,

∑
LREE,

∑
MREE,

and
∑

HREE of SPM in different regions of the Jiulongjiang River basin. The normal
distribution of the sample data set were tested via the Shapiro–Wilk test before Pearson
correlation analysis. Pearson correlation coefficient determined the relationship between
physicochemical parameters and REE fractionation proxies of SPM. All statistical analyses
were performed by the SPSS 18.0 software (SPSS Inc., Chicago, IL, USA) and all graphs
were drawn by SigmaPlot 12.5 software (Systat Software GmbH, Erkrath, Germany).

RESULTS
Hydrochemical characteristics
The pH, TDS, and HCO3

− concentration of river water at different sampling sites in the
Jiulongjiang River are showed in Table 1. The pH values ranged from 6.7 to 7.9 (mean
7.2± 0.3), indicating the neutral and slightly alkaline riverwater. TheTDS varied intensively
with a range of 27.1–720 mg/L (mean 111± 107 mg/L). Moreover, the higher TDS mainly
occurred in the water of the estuary region. The HCO3

− concentrations ranged from 7.5
mg/L to 49.0 mg/L (mean 22.1 ± 9.1 mg/L) and showed an increasing trend downstream.
Particularly, the water of tributary in the Beixi River had higher HCO3

− concentrations
compared to the main stream.
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The concentrations of major elements in SPM and CIA values
The concentrations of the major elements in SPM are shown in Table 2. The average Al,
Ca, Fe, K, Mg, Mn, Na, and Ti concentrations in SPM were 151± 22.6 g/kg, 4.8± 7.8 g/kg,
49.6 ± 20.2 g/kg, 17.3 ± 3.7 g/kg, 4.3 ± 2.3 g/kg, 1.2 ± 0.5 g/kg, 2.1 ± 1.9 g/kg, and
2.9 ± 0.6 g/kg, respectively. Generally, the concentrations of the major elements slightly
varied among the sites in the river, except for several sampling sites. For example, the No.
21 and 34 sites had relatively high Ca, Mg, and Na concentrations. However, Al and Fe
concentrations at the 34 site were significantly lower than those at other sites, but not
at the 21 site. Furthermore, most metal elements, besides Mn, were at a relatively high
concentration at the 37 site. The CIA values varied among the sites in the river with a range
of 83.2%–95.7% (89.6 ± 4.8%), except for the exceptionally low value of 63.7% at the 34
site (Table 3). Particularly, the CIA values in the tributary of the Beixi River were slightly
lower than those in the main stream.

REE concentrations of SPM
The concentrations of single REE in SPM at different sampling sites are shown in Table 4.
The total REE (

∑
REE) concentrations of SPM ranged from 111 mg/kg to 1,292 mg/kg

with an average of 376 ± 191 mg/kg (Fig. 2), which were higher than those of the UCC
(146 mg/kg) (Taylor & McLennan, 1985), the local soils of Fujian Province (198 mg
kg−1) (Chen et al., 1992), the SPM of world rivers (175 mg/kg) (Viers, Dupre & Gaillardet,
2009), and the PAAS (185 mg/kg) (Taylor & McLennan, 1985)). The LREEs accounted for
the largest proportion of total REEs in SPM at all sites. The

∑
LREE concentrations of

SPM ranged from 95.5 mg/kg to 1093 mg/kg with an average of 324 ± 164 mg/kg. The∑
MREE and

∑
HREE concentrations of SPM varied from 12.5 mg/kg to 162 mg/kg (mean

42.2± 22.9mg/kg) and from2.6mg/kg to 36.9mg/kg (mean 10.2± 5.1mg/kg), respectively.
For spatial distribution, the

∑
REE

∑
LREE,

∑
MREE and

∑
HREE concentrations of SPM

in the main stream of Beixi River were similar to those in the Xixi River and Nanxi River
(Fig. 2). However, these concentrations in the tributary of Beixi River were significantly
lower than those in the main stream, but near to those in the estuary region.

PAAS-normalized REE patterns of SPM
The PAAS-normalized REE patterns of SPM at each site were showed in Table 5. The
PAAS-normalized REE ratios of SPM at most sites were larger than 1, except for the parts
of REEs at the 11, 34, and 40 sites. The pattern of average SPM in the main stream of Beixi
River was almost identical to that in the Xixi River and Nanxi River (Fig. 3). Additionally,
the pattern in the tributary of Beixi River was similar to that in the estuary region. Overall,
the enrichment of REEs in SPM was larger in the main stream than that in tributary and
estuary. The (La/Yb)N ratio, (La/Sm)N ratio, and (Sm/Yb)N ratio of SPM at different sites
are shown in Fig. 4. The (La/Yb)N and (Sm/Yb)N ratios at all sites were higher than 1,
indicating the enrichment of LREE andMREE relative to HREE in SPM. The (La/Yb)N and
(Sm/Yb)N ratios generally showed a decreasing trend downstream in the Beixi River. The
(La/Sm)N ratio of SPM varied within a wide range of 0.7–1.3, indicating the strong spatial
variability between LREE and MREE fractionation in the river.
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Table 2 The concentrations of major elements of SPM in the Jiulongjiang River. (T) indicates the site
located in tributary of the Beixi River.

Sampling site Al
(g/kg)

Ca
(g/kg)

Fe
(g/kg)

K
(g/kg)

Mg
(g/kg)

Mn
(g/kg)

Na
(g/kg)

Ti
(g/kg)

Beixi River
1 175 2.83 45.9 17.4 3.45 2.92 1.84 2.33
2 167 2.59 38.7 12.8 2.89 0.86 1.24 1.79
3 171 2.49 45.5 15.3 3.14 0.97 1.18 2.08
4(T) 86.9 4.80 169 14.7 3.97 1.14 2.58 2.38
5 151 2.87 56.9 17.0 3.85 0.99 1.39 2.18
6(T) 153 3.76 51.6 22.6 5.40 0.76 1.73 3.07
7(T) 138 4.64 52.6 22.4 4.69 1.68 1.21 3.47
8(T) 139 4.72 51.3 22.6 4.84 1.61 1.25 3.36
9 141 3.68 54.6 19.9 5.01 0.97 1.70 2.91
10 153 2.83 53.9 18.2 3.94 1.09 1.24 2.56
11(T) 141 4.61 53.3 20.5 3.95 1.63 0.81 3.37
12 149 2.31 54.5 18.7 3.73 0.99 1.05 2.86
13 181 1.93 36.3 10.5 1.87 0.94 0.37 2.12
14 148 2.32 70.5 16.8 3.31 0.79 0.93 3.41
15 146 2.87 48.8 18.0 3.58 1.31 1.49 2.83
16 162 4.31 40.6 15.0 3.00 1.08 1.87 2.96
17 155 1.76 54.7 17.1 3.20 1.22 1.01 3.01
18 153 2.97 54.8 16.5 3.47 1.11 1.05 3.23
19 151 3.08 53.0 16.9 3.47 1.20 1.49 3.21
20 154 2.45 52.4 17.8 3.31 0.99 1.10 3.15
21(T) 152 12.9 47.4 19.2 8.04 1.43 7.18 4.04

Xixi River
24 160 3.10 41.9 15.1 2.82 0.76 1.14 2.40
25 164 2.79 40.8 14.8 2.79 0.80 1.19 2.45
26 165 2.65 43.8 13.4 2.74 1.03 0.94 2.54
27 171 3.18 47.9 14.7 3.01 1.20 0.94 2.68
28 146 2.97 43.4 18.4 2.91 1.62 1.60 2.97
29 158 2.60 45.0 14.6 2.88 1.26 0.99 2.61
30 162 3.97 36.7 15.6 3.23 1.80 2.36 2.90
31 165 2.01 45.8 16.3 2.91 0.96 1.33 3.05
32 151 3.73 44.7 13.9 3.01 1.03 1.85 3.29
33 153 3.47 41.9 15.6 3.58 0.77 2.37 1.52

Nanxi River
34 66.2 53.3 26.3 18.6 12.40 0.58 10.48 3.36
35 145 3.15 36.3 12.4 3.07 1.36 2.62 2.60
36 145 3.20 33.8 11.7 2.79 3.04 1.91 1.88
37 222 8.53 63.4 32.3 13.9 1.71 7.72 5.18

(continued on next page)

Liu and Han (2021), PeerJ, DOI 10.7717/peerj.12414 10/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.12414


Table 2 (continued)

Sampling site Al
(g/kg)

Ca
(g/kg)

Fe
(g/kg)

K
(g/kg)

Mg
(g/kg)

Mn
(g/kg)

Na
(g/kg)

Ti
(g/kg)

Estuary
22 140 4.36 46.3 18.3 4.33 1.06 2.26 3.41
23 149 5.12 47.5 17.6 4.62 1.31 2.19 2.95
38 145 3.36 44.3 15.6 4.06 1.76 1.64 3.10
39 133 4.42 44.8 18.4 5.63 1.32 2.76 3.58
40 138 2.51 37.9 22.4 7.75 0.67 3.90 3.01
41 140 3.63 44.5 18.1 5.13 1.33 2.32 3.37
42 140 3.47 42.4 18.4 5.10 1.28 2.19 3.52

Ce, Eu, and Gd anomalies in SPM
The Ce, Eu, and Gd anomalies in SPM at different sites are shown in Fig. 5. The Ce of
SPM at most sites showed a slight negative anomaly (δCe: 0.8–1.0), except for the relatively
large negative anomaly at the 1 and 28 sites with a δCe value of 0.70 and 0.43, respectively.
The Eu of SPM at most sites showed negative anomaly (δEu: 0.7–1.0). Exceptionally, a
positive Eu anomaly occurred at the 21 and 34 sites with a δEu value of 1.15 and 1.24,
respectively. Additionally, the δEu value generally showed an increasing trend along with
the flow direction of the main stream. The δGd values of SPM at most sites ranged from
1.5 to 1.6, except for a relatively higher δGd value at the 37 site (1.72) and a relatively lower
value at the 28 site (1.40). This result indicates that the SPM in the Jiulongjiang River is
almost not affected by anthropogenic Gd sources.

DISCUSSION
Variation of REE concentrations and PAAS-normalized REE ratios in
SPM
Controls of REE concentrations in SPM of river water by weathering
processes
The clay minerals of SPM mainly derived from the weathering of rocks are important
carriers of REE (Migaszewski & Galuszka, 2015). Thus, the REE concentrations of SPM are
closely associated with the lithologic distribution in a basin. In the main stream of Beixi
River, the PAAS-normalized REE ratios of SPMpositively correlated with Al concentrations
andCIA values, and negatively correlatedwith TDS, Fe, K, andMg concentrations (Table 6).
These results indicated that the REE concentrations of SPM were dominated by silicate
weathering in the main stream, similar to the report from the downstream of Zhujiang
River (Xu & Han, 2009). In the basin, the weathering of magmatic rocks and clastic
sedimentary rocks contributes to abundant Al-silicate minerals (clay minerals) into soils.
These clay minerals, which carry most REEs, are transferred into the river by soil erosion,
resulting in the increment of REE concentration in SPM (Linders et al., 2018). Thus, the
PAAS-normalized REE ratios positively correlated with Al concentrations in SPM.

In the tributary of Beixi River, the PAAS-normalized REE ratios of SPM positively
correlated with Ca concentrations and negatively correlated with CIA values. These
results indicated that the REE concentrations of SPM in the tributary were also affected

Liu and Han (2021), PeerJ, DOI 10.7717/peerj.12414 11/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.12414


Table 3 The molality of metal oxides, CaO/Na2O ratio, and the CIA value of SPM in the Jiulongjiang
River. (T) indicates the site located in tributary of the Beixi River.

Sampling site Al2O3

(mol/kg)
CaO
(mol/kg)

K2O
(mol/kg)

Na2O
(mol/kg)

CaO/Na2O CIA
(%)

Beixi River
1 3.25 0.07 0.22 0.04 1.8 91.5
2 3.10 0.06 0.16 0.03 2.4 93.4
3 3.17 0.06 0.20 0.03 2.4 92.4
4(T) 1.61 0.12 0.19 0.06 2.1 83.9
5 2.80 0.07 0.22 0.03 2.4 90.9
6(T) 2.83 0.09 0.29 0.04 2.5 88.4
7(T) 2.56 0.12 0.29 0.03 4.4 88.0
8(T) 2.57 0.12 0.29 0.03 4.3 88.0
9 2.61 0.09 0.25 0.04 2.5 88.8
10 2.83 0.07 0.23 0.03 2.6 90.7
11(T) 2.61 0.12 0.26 0.02 6.5 89.7
12 2.77 0.06 0.24 0.02 2.5 90.8
13 3.36 0.05 0.13 0.01 6.0 95.7
14 2.74 0.06 0.21 0.02 2.9 91.6
15 2.70 0.07 0.23 0.03 2.2 90.3
16 3.00 0.11 0.19 0.04 2.6 91.7
17 2.87 0.04 0.22 0.02 2.0 91.7
18 2.83 0.07 0.21 0.02 3.2 91.9
19 2.80 0.08 0.22 0.03 2.4 90.9
20 2.86 0.06 0.23 0.02 2.6 91.4
21(T) 2.82 0.32 0.25 0.16 2.1 83.2

Xixi River
24 2.96 0.08 0.19 0.02 3.1 92.8
25 3.04 0.07 0.19 0.03 2.7 92.4
26 3.06 0.07 0.17 0.02 3.2 93.6
27 3.17 0.08 0.19 0.02 3.9 93.2
28 2.71 0.07 0.24 0.03 2.1 90.0
29 2.93 0.06 0.19 0.02 3.0 92.7
30 3.00 0.10 0.20 0.05 1.9 90.9
31 3.07 0.05 0.21 0.03 1.7 91.9
32 2.80 0.09 0.18 0.04 2.3 91.5
33 2.83 0.09 0.20 0.05 1.7 90.4

Nanxi River
34 1.23 1.33 0.24 0.23 5.8 63.7
35 2.69 0.08 0.16 0.06 1.4 90.6
36 2.68 0.08 0.15 0.04 1.9 92.1
37 4.11 0.21 0.41 0.17 1.3 84.6

(continued on next page)
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Table 3 (continued)

Sampling site Al2O3

(mol/kg)
CaO
(mol/kg)

K2O
(mol/kg)

Na2O
(mol/kg)

CaO/Na2O CIA
(%)

Estuary
22 2.60 0.11 0.23 0.05 2.2 88.7
23 2.75 0.13 0.23 0.05 2.7 89.3
38 2.69 0.08 0.20 0.04 2.3 90.6
39 2.46 0.11 0.24 0.06 1.8 87.2
40 2.56 0.06 0.29 0.08 0.7 85.6
41 2.60 0.09 0.23 0.05 1.8 88.7
42 2.60 0.09 0.24 0.05 1.8 88.4

by carbonate weathering. Han, Yang & Zeng (2021) reported a significant correlation
relationship between Ca concentrations and REE concentrations of SPM upstream of the
Zhujiang River mainly distributed by carbonate rocks. Moreover, the

∑
REE,

∑
LREE,∑

MREE,
∑

HREE, and REE concentrations, PAAS-normalized REE ratios of SPM in the
tributary were lower than those in themain stream (Figs. 2 and 3). A similar result about the
low REE concentrations of SPM in the karst basin has been reported by Han et al. (2009).
The CIA values of SPM in the tributary of the Beixi River were slightly lower than those
in the main stream (Table 1). The result indicated that the SPM in the tributary consisted
of many low-weathered carbonate minerals. However, the carbonate rock contains very
few REEs, with a mean

∑
REE concentration of 8.05 mg kg−1 (Han, Yang & Zeng, 2021).

Thus, the river flowing through the carbonate rock region is characteristic of the low REE
and high Ca concentrations in SPM (Xu & Han, 2009).

The
∑

REE,
∑

LREE,
∑

MREE, and
∑

HREE concentrations, PAAS-normalized REE
ratios of SPM in the Xixi River and Nanxi River were near to those in the main stream
of Beixi River (Figs. 2 and 3). Moreover, the correlation relationships (although not
significantly) of the PAAS-normalized REE ratios with major element concentrations and
CIA values were also similar in the three rivers (Table 6). These results indicated that
the REE concentrations in the Xixi River and Nanxi River were also controlled by the
weathering of magmatic rocks and clastic sedimentary rocks. However, the non-significant
correlation relationships were likely attributed to the influences from human activities.
Compared to the wide forest upstream of the Beixi River, the Xixi River and Nanxi River
mainly pass through farmlands and residential areas (Liu & Han, 2020). Human activities
can directly cause the increment of REE into the river and disturb REE fractionation
by affecting physicochemical parameters of river water (Da Silva et al., 2018; Yang et al.,
2021).

Influences of salinity on REE concentrations in SPM of estuary water
The PAAS-normalized REE ratios of SPM in the estuary region were near to those in the
tributary of Beixi River (Fig. 3). The result is not attributed to the weathering of carbonate
minerals like that in the tributary of the Beixi River. Theoretically, the characteristics of REE
concentrations in the estuary region should inherit from the main stream of Beixi river,
Xixi River, and Nanxi River because the three main rivers have the larger water discharge
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Table 4 The concentration of REEs of SPM in the Jiulongjiang River. (T) indicates the site located in tributary of the Beixi River.

Sampling
site

La
(mg/kg)

Ce
(mg/kg)

Pr
(mg/kg)

Nd
(mg/kg)

Sm
(mg/kg)

Eu
(mg/kg)

Gd
(mg/kg)

Tb
(mg/kg)

Dy
(mg/kg)

Ho
(mg/kg)

Er
(mg/kg)

Tm
(mg/kg)

Yb
(mg/kg)

Lu
(mg/kg)

Beixi River

1 253 332 46.6 162 31.5 4.45 37.3 3.90 19.7 3.46 10.1 1.28 8.19 1.11

2 148 237 27.1 100 17.3 2.44 21.3 2.07 10.5 1.91 5.78 0.77 5.12 0.71

3 131 221 24.2 82.3 16.1 2.08 20.6 2.03 10.4 1.88 5.54 0.72 4.83 0.66

4(T) 52.2 86.2 10.5 42.4 10.3 2.27 15.2 1.73 8.61 1.56 4.26 0.53 3.38 0.49

5 92.1 162 17.9 63.3 12.5 1.76 15.8 1.59 8.15 1.49 4.40 0.59 3.94 0.55

6(T) 47.5 82.5 9.7 36.5 8.01 1.41 9.76 1.12 6.06 1.16 3.48 0.49 3.30 0.48

7(T) 62.6 108 12.3 45.8 9.20 1.78 11.7 1.18 6.03 1.13 3.36 0.44 2.91 0.43

8(T) 64.2 110 12.5 46.8 9.42 1.80 11.8 1.20 6.22 1.17 3.48 0.46 3.10 0.44

9 86.7 152 16.8 61.5 12.7 2.23 16.3 1.65 8.36 1.51 4.38 0.57 3.73 0.53

10 70.1 127 13.8 48.2 9.89 1.49 12.4 1.28 6.56 1.22 3.64 0.49 3.32 0.47

11(T) 55.9 98.2 10.8 39.1 7.63 1.42 9.29 0.91 4.62 0.86 2.58 0.34 2.31 0.33

12 87.3 164 17.4 61.2 12.3 2.01 15.2 1.54 7.96 1.49 4.43 0.59 3.87 0.55

13 95.5 188 20.7 72.7 15.6 2.15 18.5 1.95 10.5 2.05 6.44 0.93 6.42 0.93

14 91.4 168 18.4 66.3 13.2 2.08 16.5 1.66 8.64 1.60 4.84 0.66 4.37 0.62

15 84.1 151 16.0 58.7 12.0 1.87 14.9 1.57 8.12 1.55 4.70 0.64 4.21 0.61

16 101 176 20.1 69.9 14.3 2.45 17.6 1.80 9.48 1.83 5.62 0.78 5.33 0.78

17 79.8 156 16.1 56.9 11.7 1.90 14.5 1.44 7.51 1.42 4.27 0.59 3.91 0.56

18 77.2 152 16.0 57.5 11.7 1.95 14.6 1.48 7.62 1.44 4.38 0.60 3.98 0.56

19 77.2 146 15.5 55.8 11.7 1.87 14.8 1.52 8.07 1.54 4.68 0.64 4.26 0.62

20 74.1 146 15.3 53.6 11.3 1.77 14.0 1.41 7.35 1.40 4.26 0.58 3.91 0.56

21(T) 76.3 140 15.1 53.8 10.8 2.29 12.9 1.26 6.58 1.26 3.86 0.51 3.46 0.49

Xixi River

24 81.4 144 16.1 56.3 11.7 1.76 14.4 1.53 8.14 1.54 4.59 0.63 4.21 0.59

25 88.1 150 16.5 58.9 12.1 1.81 15.1 1.61 8.58 1.61 4.82 0.67 4.48 0.65

26 86.0 154 16.9 59.9 12.2 1.85 15.1 1.57 8.43 1.59 4.83 0.66 4.47 0.64
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Table 4 (continued)
Sampling
site

La
(mg/kg)

Ce
(mg/kg)

Pr
(mg/kg)

Nd
(mg/kg)

Sm
(mg/kg)

Eu
(mg/kg)

Gd
(mg/kg)

Tb
(mg/kg)

Dy
(mg/kg)

Ho
(mg/kg)

Er
(mg/kg)

Tm
(mg/kg)

Yb
(mg/kg)

Lu
(mg/kg)

27 86.9 164 17.9 64.2 12.9 1.97 15.9 1.65 8.73 1.63 4.92 0.67 4.48 0.64

28 410 334 75.7 274 49.2 6.65 57.9 6.86 34.9 6.53 18.4 2.30 14.3 1.97

29 140 183 25.3 89.7 17.3 2.60 21.0 2.28 11.8 2.21 6.44 0.83 5.44 0.76

30 106 170 19.3 69.2 13.3 2.16 16.8 1.71 9.11 1.74 5.49 0.77 5.39 0.8

31 113 186 21.5 76.7 15.0 2.33 18.7 1.87 9.79 1.84 5.51 0.73 4.89 0.69

32 90.9 161 17.8 62.3 12.1 2.01 15.1 1.48 7.59 1.41 4.26 0.58 3.85 0.55

33 87.9 150 16.3 60.0 11.6 1.89 14.5 1.44 7.43 1.39 4.18 0.56 3.80 0.55

Nanxi River

34 25.3 45.1 5.1 20.0 4.08 0.91 4.48 0.43 2.18 0.39 1.18 0.16 1.07 0.15

35 106 157 18.2 63.8 12.3 1.93 15.4 1.59 8.71 1.68 5.26 0.73 4.91 0.72

36 81.6 120 15.5 53.0 10.5 1.83 12.4 1.34 7.33 1.43 4.45 0.63 4.30 0.62

37 86.5 145 16.3 64.6 12.4 2.14 16.9 1.58 8.40 1.59 4.95 0.70 4.37 0.66

Estuary

22 63.7 121 12.9 46.6 9.56 1.71 11.8 1.20 6.26 1.18 3.61 0.50 3.29 0.47

23 50.5 92.4 10.4 39.2 7.72 1.38 9.65 0.98 5.18 1.00 3.03 0.42 2.83 0.41

38 63.9 119 13.1 47.2 9.69 1.61 11.5 1.20 6.34 1.21 3.65 0.48 3.25 0.45

39 50.5 91.6 9.7 35.2 7.59 1.33 9.36 0.98 5.23 0.99 3.00 0.41 2.73 0.40

40 39.3 73.3 7.8 29.0 5.66 1.06 6.91 0.66 3.44 0.66 1.97 0.27 1.81 0.26

41 58.9 106 11.5 42.5 8.87 1.49 10.9 1.13 6.00 1.15 3.46 0.47 3.12 0.45

42 58.8 108 11.7 43.4 8.82 1.52 11.0 1.11 5.93 1.13 3.43 0.47 3.12 0.45
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Figure 2 The
∑

REE (A),
∑

LREE (B),
∑

MREE (C), and
∑

HREE (D) concentrations of SPM in differ-
ent regions of the Jiulongjiang River basin.

Full-size DOI: 10.7717/peerj.12414/fig-2

compared to the tributary of the Beixi River. In the estuary region, the PAAS-normalized
REE ratios of SPM negatively correlated with K and Mg concentrations, and positively
correlated with CIA values (Table 6), indicating the effects of silicate weathering on REE
concentrations of SPM similar to the effects in the main stream of Beixi River. Compared to
river water, the estuary water was lower in REE concentrations of SPM (Fig. 3), which was
mainly attributed to REE removal. Elderfield, Upstill-Goddard & Sholkovitz (1990) found
that significant REE removal (∼30%) occurred in the Connecticut, Delaware, Mullica,
and Tamar estuaries. During the mixing of river water and seawater, the increment
of salinity promotes the coagulation of colloidally associated Fe and Mn hydroxides
(Migaszewski & Galuszka, 2015). The flocculations easily absorb REEs and transfer them
into the sediments, resulting in significant removals of both dissolved and particulate REE.
Thus, the coprecipitation of Fe and Mn hydroxides and REEs in the estuary explained the
positive correlation (although non-significant) between the PAAS-normalized REE ratios
and Fe (and Mn) concentrations of SPM (Table 6).

Effects of REE of human activities on REE concentrations in SPM
The exceptional REE concentrations of SPM at several specific sites were likely attributed
to the intensive influence of human activities. For example, the REEs concentrations at
the 1 site were significantly higher than those at the 2 and 3 sites (Table 4), possibly due
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Table 5 The PAAS-normalized REE patterns for SPM in the Jiulongjiang River basin. (T) indicates the site located in tributary of the Beixi River.

Sampling site LaN CeN PrN NdN SmN EuN GdN TbN DyN HoN ErN TmN YbN LuN

Beixi River

1 6.61 4.17 5.28 4.77 5.68 4.12 8.01 5.06 4.21 3.49 3.53 3.12 2.90 2.58

2 3.86 2.98 3.07 2.96 3.12 2.26 4.58 2.69 2.24 1.93 2.03 1.88 1.82 1.65

3 3.43 2.77 2.74 2.43 2.91 1.93 4.42 2.64 2.21 1.90 1.94 1.76 1.71 1.53

4(T) 1.37 1.08 1.19 1.25 1.85 2.10 3.26 2.25 1.84 1.58 1.49 1.29 1.20 1.14

5 2.41 2.04 2.03 1.87 2.25 1.63 3.38 2.06 1.74 1.51 1.54 1.44 1.40 1.28

6(T) 1.24 1.04 1.10 1.08 1.44 1.31 2.09 1.45 1.29 1.17 1.22 1.20 1.17 1.12

7(T) 1.64 1.35 1.39 1.35 1.66 1.65 2.50 1.53 1.29 1.14 1.18 1.07 1.03 1.00

8(T) 1.68 1.38 1.42 1.38 1.70 1.67 2.52 1.56 1.33 1.18 1.22 1.12 1.10 1.02

9 2.27 1.90 1.90 1.81 2.29 2.06 3.49 2.14 1.79 1.53 1.54 1.39 1.32 1.23

10 1.84 1.60 1.56 1.42 1.78 1.38 2.67 1.66 1.40 1.23 1.28 1.20 1.18 1.09

11(T) 1.46 1.23 1.22 1.15 1.37 1.31 1.99 1.18 0.99 0.87 0.91 0.83 0.82 0.77

12 2.29 2.06 1.97 1.81 2.22 1.86 3.26 2.00 1.70 1.51 1.55 1.44 1.37 1.28

13 2.50 2.36 2.34 2.14 2.82 1.99 3.98 2.53 2.25 2.07 2.26 2.27 2.28 2.16

14 2.39 2.11 2.08 1.96 2.38 1.93 3.53 2.16 1.85 1.62 1.70 1.61 1.55 1.44

15 2.20 1.90 1.81 1.73 2.17 1.73 3.20 2.04 1.74 1.57 1.65 1.56 1.49 1.42

16 2.64 2.21 2.28 2.06 2.57 2.27 3.77 2.34 2.03 1.85 1.97 1.90 1.89 1.81

17 2.09 1.96 1.82 1.68 2.11 1.76 3.12 1.87 1.60 1.43 1.50 1.44 1.39 1.30

18 2.02 1.91 1.81 1.70 2.12 1.81 3.12 1.92 1.63 1.45 1.54 1.46 1.41 1.30

19 2.02 1.83 1.76 1.65 2.11 1.73 3.17 1.97 1.72 1.56 1.64 1.56 1.51 1.44

20 1.94 1.83 1.73 1.58 2.04 1.64 2.99 1.83 1.57 1.41 1.49 1.41 1.39 1.30

21(T) 2.00 1.76 1.71 1.59 1.94 2.12 2.77 1.64 1.41 1.27 1.35 1.24 1.23 1.14

Xixi River

24 2.13 1.81 1.82 1.66 2.10 1.63 3.09 1.99 1.74 1.56 1.61 1.54 1.49 1.37

25 2.31 1.89 1.87 1.74 2.17 1.68 3.24 2.09 1.83 1.63 1.69 1.63 1.59 1.51

26 2.25 1.94 1.91 1.77 2.19 1.71 3.25 2.04 1.80 1.61 1.69 1.61 1.59 1.49

27 2.27 2.06 2.03 1.89 2.32 1.82 3.42 2.14 1.87 1.65 1.73 1.63 1.59 1.49

28 10.7 4.19 8.57 8.07 8.87 6.16 12.41 8.91 7.46 6.60 6.46 5.61 5.06 4.58

29 3.66 2.30 2.87 2.65 3.12 2.41 4.51 2.96 2.52 2.23 2.26 2.02 1.93 1.77

30 2.79 2.14 2.19 2.04 2.39 2.00 3.60 2.22 1.95 1.76 1.93 1.88 1.91 1.86

31 2.95 2.33 2.43 2.26 2.69 2.16 4.01 2.43 2.09 1.86 1.93 1.78 1.73 1.60

32 2.38 2.02 2.02 1.84 2.17 1.86 3.23 1.92 1.62 1.42 1.49 1.41 1.37 1.28

33 2.30 1.88 1.85 1.77 2.10 1.75 3.12 1.87 1.59 1.40 1.47 1.37 1.35 1.28
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Table 5 (continued)
Sampling site LaN CeN PrN NdN SmN EuN GdN TbN DyN HoN ErN TmN YbN LuN

Nanxi River

34 0.66 0.57 0.58 0.59 0.74 0.84 0.96 0.56 0.47 0.39 0.41 0.39 0.38 0.35

35 2.77 1.97 2.06 1.88 2.21 1.79 3.30 2.06 1.86 1.70 1.85 1.78 1.74 1.67

36 2.14 1.51 1.76 1.56 1.88 1.69 2.65 1.74 1.57 1.44 1.56 1.54 1.52 1.44

37 2.26 1.82 1.85 1.91 2.23 1.98 3.63 2.05 1.79 1.61 1.74 1.71 1.55 1.53

Estuary

22 1.67 1.52 1.46 1.37 1.72 1.58 2.53 1.56 1.34 1.19 1.27 1.22 1.17 1.09

23 1.32 1.16 1.18 1.16 1.39 1.28 2.07 1.27 1.11 1.01 1.06 1.02 1.00 0.95

38 1.67 1.49 1.48 1.39 1.75 1.49 2.47 1.56 1.35 1.22 1.28 1.17 1.15 1.05

39 1.32 1.15 1.10 1.04 1.37 1.23 2.01 1.27 1.12 1.00 1.05 1.00 0.97 0.93

40 1.03 0.92 0.88 0.86 1.02 0.98 1.48 0.86 0.74 0.67 0.69 0.66 0.64 0.60

41 1.54 1.34 1.30 1.25 1.60 1.38 2.33 1.47 1.28 1.16 1.21 1.15 1.11 1.05

42 1.54 1.36 1.33 1.28 1.59 1.41 2.36 1.44 1.27 1.14 1.20 1.15 1.11 1.05
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Figure 3 The PAAS-normalized REE patterns for average SPM and local soils. The data of local soils of
Fujian Province were cited from Chen et al. (1992).

Full-size DOI: 10.7717/peerj.12414/fig-3

to river closure by the dam of Wananxi Reservoir. The dam can extend the residence time
of upstream water, resulting in the full absorption of REEs by clay mineral particles and
organic matter particles, i.e., high REE concentrations of SPM. Generally, river water pH
values decrease after flowing across a dam (Wang et al., 2011). A similar phenomenon
also occurred in the present study; the river water pH values decreased from 7.58 (at
the 1 site) to 6.72 (at the 2 site) (Table 1). As river water pH decreases, many REEs
associated particles or colloids are released into dissolved loads (Goldstein & Jacobsen,
1988; Johannesson et al., 2004; Migaszewski, Galuszka & Dolegowska, 2019), resulting in the
decrement of REE concentrations of SPM. The significantly higher REE concentrations
at the 28 site compared to the nearby sites (Table 4) were likely attributed to agricultural
fertilization. The concentrations of major elements at the 28 site did not show anomalous
features (Table 2), which can exclude the effects of rock weathering on REE concentrations
of SPM. However, the river water NO3

− concentration at the 28 site was 4 times higher
than the average value of Xixi River (Liu & Han, 2020), which was closely associated with
the loss of agricultural N. Since the extensive addition of REE within fertilizer (Altomare,
Young & Beazley, 2020; Dushyantha et al., 2020; Volokh et al., 1990), agricultural erosion
can cause the increment of REE concentrations of SPM. The low REE concentrations at the
34 site compared to the near sites (Table 4) were likely attributed to the strong denudation
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Figure 4 The (La/Yb)N ratio (A), (La/Sm)N ratio (B), and (Sm/Yb)N ratio (C) of SPM at the sampling
sites of different regions in the Jiulongjiang River basin.
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of regolith. The SPM at the 34 site was characteristic of high Ca andMg concentrations, low
Al and Fe concentrations, and low CIA value (Tables 2 and 3). The result was attributed to
the regolith materials which contained low-weathered carbonate minerals were denudated
and translocated into river, which explained the low REE concentrations at the site.

Eeffects of physicochemical properties on REE fractionations of SPM
River SPM is mainly derived from local soils by soil erosion (Linders et al., 2018). However,
the PAAS-normalized REE patterns of SPM showed a huge discrepancy comparedwith local
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Figure 5 The Ce anomaly (A), Eu anomaly (B), and Gd anomaly (C) of SPM at the sampling sites of
different regions in the Jiulongjiang River basin.
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soils (Chen et al., 1992) (Fig. 3). The discrepancy is mainly attributed to REE fractionations
between the colloidal (solid) pool and dissolved pool (Elderfield, Upstill-Goddard &
Sholkovitz, 1990). Overall, the (La/Yb)N and (Sm/Yb)N ratios of SPM were near 1.5,
and the (La/Sm)N ratio was near 1 in the basin (Fig. 4), indicating the enrichments of LREE
and MREE relative to HREE in SPM. The enrichment of LREE in SPM is closely linked
with the strong adsorption by clay minerals, whereas HREE prefers to form stable soluble
complexes (Da Silva et al., 2018). The river water pH plays an important role in affecting
the fractionation degree between LREE and HREE in SPM. In the main stream of the Beixi
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Table 6 Pearson correlation coefficient between physicochemical parameters and REEfractionation proxies of SPM in different regions of the
Jiulongjiang River. The normal distribution of the sample data set were tested via the Shapiro-Wilk test before Pearson correlation analysis. Statisti-
cal significant correlation at the level of P < 0.05 (*) and P < 0.01 (**).

Water pH TDS HCO3
− Al Ca Fe K Mg Mn Na Ti CIA

Beixi River (Main stream)

LaN –0.38 –0.79** –0.78** 0.58* –0.02 –0.52 –0.58* –0.35 –0.49 0.01 –0.71** 0.45

CeN –0.34 –0.86** –0.85** 0.69** –0.16 –0.55* –0.70** –0.51 –0.52 –0.17 –0.69** 0.61*

PrN –0.30 –0.85** –0.84** 0.68** –0.07 –0.57* –0.70** –0.48 –0.55* –0.10 –0.71** 0.58*

NdN –0.30 –0.83** –0.82** 0.62* –0.06 –0.54* –0.68** –0.44 –0.54* –0.08 –0.69** 0.55*

SmN –0.19 –0.90** –0.85** 0.73** –0.06 –0.62* –0.77** –0.55* –0.53 –0.16 –0.66* 0.65*

EuN 0.16 –0.75** –0.57* 0.37 0.30 –0.47 –0.49 –0.29 –0.41 0.15 –0.21 0.33

GdN –0.26 –0.87** –0.82** 0.67** –0.02 –0.57* –0.69** –0.46 –0.53 –0.09 –0.66* 0.56*

TbN –0.17 –0.88** –0.81** 0.70** 0.01 –0.61* –0.73** –0.50 –0.50 –0.11 –0.65* 0.60*

DyN –0.08 –0.90** –0.82** 0.74** –0.01 –0.64* –0.79** –0.58* –0.47 –0.16 –0.61* 0.66*

HoN 0.06 –0.93** –0.83** 0.78** –0.01 –0.69** –0.84** –0.67** –0.40 –0.20 –0.55* 0.72**

ErN 0.15 –0.90** –0.84** 0.81** –0.04 –0.71** –0.88** –0.75** –0.36 –0.26 –0.51 0.77**

TmN 0.25 –0.86** –0.81** 0.82** –0.08 –0.70** –0.91** –0.81** –0.31 –0.33 –0.45 0.82**

YbN 0.28 –0.83** –0.80** 0.84** –0.07 –0.71** –0.92** –0.82** –0.30 –0.34 –0.45 0.84**

LuN 0.37 –0.80** –0.75** 0.80** –0.04 –0.70** –0.89** –0.82** –0.24 –0.32 –0.38 0.81**

(La/Yb)N –0.69** –0.19 –0.21 –0.01 0.02 –0.02 0.09 0.30 –0.37 0.27 –0.52 –0.17

(La/Sm)N –0.53 –0.37 –0.43 0.20 0.06 –0.24 –0.15 0.04 –0.29 0.28 –0.63* 0.03

(Sm/Yb)N –0.74** 0.07 0.11 –0.30 0.01 0.25 0.38 0.58* –0.36 0.27 –0.27 –0.41

δCe 0.22 0.39 0.36 –0.18 –0.44 0.34 0.23 –0.10 0.39 –0.47 0.60* 0.01

δEu 0.50 0.37 0.55* –.63* 0.47 0.33 0.54* 0.46 0.28 0.43 0.77** –0.55*

δGd –0.71** –0.09 –0.15 –0.11 –0.03 0.20 0.22 0.33 –0.27 0.27 –0.19 –0.24

Beixi River (Tributary)

LaN 0.58 –0.23 –0.14 0.34 0.83* –0.38 0.07 0.71 0.60 0.69 0.80 –0.45

CeN 0.56 –0.33 –0.25 0.44 0.88* –0.46 0.10 0.79 0.54 0.73 0.86* –0.43

PrN 0.53 –0.22 –0.23 0.34 0.86* –0.36 0.05 0.77 0.52 0.74 0.79 –0.51

NdN 0.43 –0.01 –0.19 0.14 0.82* –0.17 –0.10 0.70 0.48 0.74 0.63 –0.63

SmN –0.08 0.49 –0.27 –0.36 0.66 0.39 –0.53 0.51 0.10 0.73 0.11 –0.91*

EuN –0.21 0.62 –0.24 –0.49 0.64 0.53 –0.69 0.42 0.07 0.71 –0.01 –0.95**

GdN –0.38 0.83* –0.08 –0.74 0.32 0.76 –0.77 0.11 –0.04 0.45 –0.35 –0.86*

TbN –0.60 0.90* –0.12 –0.83* 0.09 0.88* –0.79 –0.05 –0.31 0.28 –0.60 –0.77

DyN –0.60 0.85* –0.21 –0.77 0.12 0.84* –0.75 0.02 –0.38 0.33 –0.57 –0.79

HoN –0.59 0.79 –0.29 –0.71 0.17 0.79 –0.71 0.10 –0.42 0.38 –0.52 –0.81

ErN –0.49 0.65 –0.43 –0.54 0.32 0.64 –0.60 0.30 –0.42 0.52 –0.34 –0.86*

TmN –0.46 0.44 –0.61 –0.33 0.32 0.46 –0.41 0.43 –0.58 0.54 –0.25 –0.78

YbN –0.38 0.30 –0.69 –0.17 0.42 0.32 –0.32 0.56 –0.56 0.62 –0.11 –0.77

LuN –0.38 0.32 –0.66 –0.20 0.34 0.35 –0.30 0.50 –0.60 0.56 –0.17 –0.73

(La/Yb)N 0.72 –0.40 0.41 0.39 0.35 –0.53 0.26 0.13 0.90* 0.08 0.71 0.23

(La/Sm)N 0.81 –0.73 0.18 0.73 0.36 –0.83* 0.58 0.32 0.73 0.10 0.875* 0.37

(Sm/Yb)N 0.40 0.22 0.61 –0.22 0.25 0.06 –0.27 –0.15 0.88* 0.05 0.27 –0.09

δCe 0.48 –0.69 –0.38 0.76 0.73 –0.72 0.31 0.72 0.34 0.57 0.92** –0.04

(continued on next page)
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Table 6 (continued)

Water pH TDS HCO3
− Al Ca Fe K Mg Mn Na Ti CIA

δEu 0.11 0.32 –0.14 –0.19 0.82* 0.19 –0.53 0.53 0.44 0.77 0.38 –0.78

δGd 0.55 0.04 0.47 –0.01 0.43 –0.14 –0.12 0.10 0.92** 0.22 0.50 –0.14

Xixi River and Nanxi River

LaN –0.20 –0.13 –0.24 –0.15 –0.27 –0.06 –0.12 –0.18 –0.08 –0.18 0.03 0.11

CeN 0.04 –0.23 –0.24 0.00 –0.30 0.15 –0.06 –0.21 –0.48 –0.27 0.15 0.19

PrN –0.08 –0.18 –0.30 –0.11 –0.31 0.04 –0.12 –0.21 –0.14 –0.26 0.06 0.20

NdN –0.09 –0.01 –0.20 0.10 –0.13 0.23 0.10 0.00 –0.17 –0.07 0.22 0.02

SmN 0.04 –0.12 –0.32 0.08 –0.21 0.22 0.04 –0.07 –0.24 –0.17 0.17 0.12

EuN –0.26 0.19 –0.05 0.20 0.04 0.31 0.23 0.15 0.01 0.09 0.35 –0.15

GdN 0.00 0.05 –0.22 0.28 –0.01 0.39 0.26 0.14 –0.26 0.03 0.36 –0.08

TbN 0.12 –0.19 –0.43 0.08 –0.23 0.17 0.02 –0.09 –0.22 –0.20 0.14 0.16

DyN 0.13 –0.23 –0.50 0.07 –0.23 0.13 0.01 –0.09 –0.16 –0.20 0.13 0.17

HoN 0.10 –0.23 –0.52 0.07 –0.22 0.10 0.01 –0.08 –0.10 –0.17 0.14 0.15

ErN 0.00 –0.18 –0.49 0.10 –0.14 0.07 0.05 –0.02 0.01 –0.08 0.19 0.06

TmN –0.06 –0.14 –0.49 0.17 –0.02 0.06 0.12 0.07 0.14 0.04 0.28 –0.04

YbN –0.07 –0.31 –0.52 –0.01 –0.18 –0.15 –0.07 –0.12 0.16 –0.12 0.11 0.11

LuN –0.15 –0.19 –0.42 0.09 –0.03 –0.11 0.04 0.00 0.23 0.03 0.19 –0.04

(La/Yb)N –0.30 0.13 0.24 –0.26 –0.23 0.05 –0.12 –0.16 –0.33 –0.15 –0.06 0.03

(La/Sm)N –0.60* –0.08 0.05 –0.53 –0.23 –0.56 –0.36 –0.27 0.29 –0.06 –0.24 –0.01

(Sm/Yb)N 0.10 0.23 0.25 0.12 –0.06 0.48 0.15 0.04 –0.57 –0.09 0.12 0.02

δCe 0.41 –0.02 0.15 0.28 0.13 0.30 0.16 0.09 –0.53 0.02 0.14 –0.01

δEu –0.74** 0.74** 0.78** 0.18 0.58* 0.14 0.36 0.47 0.65* 0.62* 0.30 –0.62*

δGd –0.31 0.79** 0.63* 0.74** 0.79** 0.75** 0.82** 0.80** –0.17 0.81** 0.78** –0.83**

Estuary region

LaN –0.62 –0.78* –0.68 0.26 0.23 0.57 –0.80* –0.88** 0.67 –0.88** 0.38 0.81*

CeN –0.63 –0.74 –0.63 0.26 0.21 0.55 –0.77* –0.87* 0.62 –0.85* 0.36 0.79*

PrN –0.60 –0.77* –0.66 0.37 0.25 0.59 –0.82* –0.91** 0.68 –0.90** 0.27 0.86*

NdN –0.57 –0.78* –0.68 0.43 0.27 0.61 –0.82* –0.92** 0.68 –0.92** 0.24 0.88**

SmN –0.58 –0.82* –0.72 0.29 0.28 0.62 –0.84* –0.91** 0.72 –0.91** 0.36 0.85*

EuN –0.50 –0.80* –0.72 0.30 0.35 0.65 –0.78* –0.91** 0.60 –0.87* 0.36 0.80*

GdN –0.51 –0.85* –0.76* 0.29 0.34 0.65 –0.82* –0.92** 0.68 –0.91** 0.41 0.83*

TbN –0.51 –0.87* –0.79* 0.26 0.36 0.68 –0.85* –0.92** 0.73 –0.92** 0.42 0.84*

DyN –0.48 –0.89** –0.81* 0.25 0.37 0.68 –0.86* –0.92** 0.74 –0.92** 0.44 0.83*

HoN –0.49 –0.90** –0.81* 0.28 0.37 0.68 –0.87* –0.93** 0.76* –0.93** 0.41 0.85*

ErN –0.47 –0.90** –0.81* 0.27 0.38 0.69 –0.87* –0.93** 0.75 –0.93** 0.42 0.84*

TmN –0.41 –0.91** –0.84* 0.26 0.43 0.72 –0.83* –0.92** 0.69 –0.91** 0.46 0.81*

YbN –0.41 –0.92** –0.85* 0.29 0.44 0.73 –0.86* –0.94** 0.73 –0.93** 0.43 0.84*

LuN –0.35 –0.94** –0.88** 0.26 0.48 0.75 –0.84* –0.93** 0.71 –0.92** 0.47 0.81*

(La/Yb)N –0.36 0.89** 0.94** –0.26 –0.85* –0.86* 0.66 0.70 –0.59 0.67 –0.33 –0.56

(La/Sm)N –0.04 0.93** 0.93** –0.52 –0.73 –0.90** 0.89** 0.89** –.80* 0.89** –0.11 –0.85*

(Sm/Yb)N –0.48 0.81* 0.89** –0.13 –0.84* –0.78* 0.53 0.55 –0.47 0.53 –0.39 –0.39

δCe –0.20 0.37 0.40 –0.58 –0.31 –0.38 0.52 0.32 –0.63 0.44 0.36 –0.51

δEu 0.43 0.83* 0.75 –0.11 –0.23 –0.52 0.84* 0.73 –0.88** 0.824* –0.47 –0.72

δGd 0.35 0.79* 0.73 –0.01 –0.35 –0.62 0.84* 0.71 –0.87* 0.74 –0.41 –0.67

Liu and Han (2021), PeerJ, DOI 10.7717/peerj.12414 23/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.12414


River, the (La/Yb)N ratios of SPM ranged from 1.1 to 2.3 (Fig. 4) and water pH values
ranged from 6.7 to 7.6 (Table 1). Similarly, in the granite region of the Zhujiang River
basin, the riverine pH decreased from 8.1 to 7.4 during 2000–2014, while the (La/Yb)N
ratio of SPM increased from 1.1 to 1.3 (Xu & Han, 2009). Because HREE is preferentially
removed from associated SPM into the dissolved load with increasing river water acidity
rather than LREE (Migaszewski, Galuszka & Dolegowska, 2019). This reason also explains
the increments of (La/Yb)N and (Sm/Yb)N ratios in SPM along the flow direction and
negative correlations of them with water pH values in the main stream of the Beixi River
(Fig. 4 and Table 6). But the REE fractionation of SPM in the estuary was mainly affected
by salinity. The (La/Yb)N, (La/Sm)N, and (Sm/Yb)N ratios of SPM in the estuary region
were significantly positively correlated with TDS and HCO3

− concentrations (Table 6).
Elderfield, Upstill-Goddard & Sholkovitz (1990) reported that the preferential removal of
dissolved LREE occurred compared to HREE with the increment of salinity, which meant
the relative enrichment of LREE in SPM.

The slight negative Ce anomaly (δCe: 0.8–1.0) of SPM occurred at most sites in the
Jiulongjiang River (Fig. 5), likely related to the preferential loss of them compared to
other REEs during rock weathering (Smith & Liu, 2018). In addition to weathering process,
the negative Ce anomaly of SPM is usually controlled by the water pH value (Elderfield,
Upstill-Goddard & Sholkovitz, 1990; Xu & Han, 2009). Dissolved Ce3+ is the major form at
low pH, but it is easily oxidized to tetravalent Ce with the alkalization of river water (Da
Silva et al., 2018). With the increasing water pH value, the removal of dissolved Ce3+ as
CeO2 form leads to Ce enrichment in SPM, i.e., the less negative Ce anomaly of SPM. Thus,
the δCe values of SPM positively correlate with riverine pH values (Table 6). However,
the correlation relationships between them are not significant (P > 0.05) and the variation
of δCe values is very slight in the river. These results indicate that the Ce anomaly of
SPM is weakly affected by riverine pH, while mainly depends on lithology. Additionally,
the intensive negative Ce anomaly occurred at the 1 and 28 sites (Fig. 5), indicating
the significant influences of human activities, including the dam effects and agricultural
pollutions. Generally, the Eu anomaly of SPM is only controlled by the lithology of the
source region (Han et al., 2009). The negative Eu anomaly of SPM occurred at most
sites in the Jiulongjiang River which mainly flows through the granite region (Fig. 5),
similar results were observed in the Ipojuca River and downstream of Zhujiang River
(Da Silva et al., 2018; Xu & Han, 2009). The negative Eu anomaly of SPM in the granite
basin mainly depends on the composition and proportion of feldspar minerals, which
are commonly Eu-enriched (Nagarajan et al., 2011). However, a positive Eu anomaly of
SPM occurred at the 21 and 34 sites where the Ca and Mg concentrations were relatively
higher (Table 2 and Fig. 5). Thus, the positive Eu anomaly of SPM at the two sites is mainly
attributed to the input of carbonate minerals, which are generally Eu-depleted (Han et
al., 2009; Nagarajan et al., 2011). Generally, the positive Gd anomaly of SPM is attributed
to the Gd pollution derived from urban wastewater and modern medical treatments
(Bau & Dulski, 1996; Nozaki et al., 2000). The δGd values of SPM at most sites in the
river were less than 1.6 (Fig. 5), indicating that the Gd in SPM is almost not affected by
anthropogenic sources. Additionally, the relatively higher δGd value at the 37 site (1.72)
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was likely attributed to slight Gd pollution. Gd concentration of SPM at the 37 site was
1.4 times higher, while the concentrations of other REEs were about 1.1 times higher,
compared to that at the nearby 36 site. This result indicates that the 37 site is affected by
single Gd point pollution. However, the relatively lower δGd value (1.40) at the 28 site
was likely associated with agricultural activities. Compared to other sites in the Xixi River,
the riverine NO3

− concentrations at the 28 site were significantly 4 times higher (69 mg/L
vs. 15 mg/L) (Han et al., 2020; Liu & Han, 2020), indicating strong agricultural activities.
Moreover, the concentrations of REEs in SPM at the 28 site were about 3–4 times higher
than those at the other sites in the Xixi River, indicating the anthropogenic input of REEs
from agricultural soils. Overall, the 28 site is affected by agricultural Gd pollution although
the δGd value is less than 1.6.

CONCLUSIONS
The concentrations and fractionations of REEs in SPM were investigated in rivers regions
(including the main stream and tributary of Beixi River, Xixi River, Nanxi River, and
estuary) of the Jiulongjiang River. There were similar REE concentrations of SPM in
the main stream of Beixi River, Xixi River, and Nanxi River, these mainly flow through
the granite region; while it was lower in the tributary of Beixi River, which is associated
with widely distributed carbonates. However, the lower REE concentrations of SPM in
the estuary are mainly attributed to the removal of REEs with the increasing salinity.
Overall, the REE concentrations of SPM in riverine water are primarily controlled by
lithologic distribution, while it is also affected by salinity in the estuary. Riverine pH plays
an important role in affecting REE fractionation of SPM in the river, but the fractionation
is mainly controlled by salinity in the estuary. These results indicate that the increasing
salinity from the inland river to the estuary affects the concentrations and fractionations
of REEs in SPM.
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