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Brief Communication

Introduction

Doppler ultrasound of the common carotid artery is used to 
infer central hemodynamics.[1] For example, the change in 
the carotid artery corrected flow time  (ccFT) –  the systolic 
time corrected for heart rate (HR) – tracks volume loss and 
administration in various patient populations.[2] Specifically, 
two groups found that the ccFT fell with hemodialysis.[3,4] 
Furthermore, one of these investigations reported that ccFT 
increased back to predialysis baseline with passive leg 
raise (PLR);[4] the PLR is a maneuver well known to increase 
central blood volume. Similarly, Mackenzie et al. noted falling 
and rising ccFT with blood donation and PLR,[5,6] respectively, 
whereas Barjaktarevic et al. observed that ccFT augmentation 
during PLR predicted the change in stroke volume (SV) in 
undifferentiated shock.[7]

In addition to ccFT, changing carotid artery flow by Doppler 
ultrasound has been used as a surrogate for SV during 
resuscitation.[8,9] Carotid blood flow is calculated by multiplying 
the velocity time integral  (VTI) by the area of the carotid 
artery; thus, VTI is directly related to the volume of blood 
pumped through the carotid per cardiac cycle. Nevertheless, 
while conflicting data exist for both carotid flow and ccFT as 
SV surrogates,[10‑13] many of these investigations suffer from 
diminished measurement precision due to human factors[14] and 
do not report the least significant change for the number of cardiac 
cycles sampled before and during a hemodynamic intervention.
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To clarify these discrepant observations, we have previously 
reported that both carotid VTI and ccFT require averaging 
multiple cardiac cycles to confidently detect change;[15] we have 
also shown that both changing VTI and ccFT correlate with 
SV during various preload modifying maneuvers in healthy 
subjects.[16,17] However, we did not correlate changing carotid 
VTI with ccFT during these maneuvers which represents a 
noteworthy gap in our knowledge, given that one group found 
a poor relationship between ccFT and carotid blood flow.[18]

In this study, therefore, we correlated changing ccFT 
with carotid artery VTI during lower body‑negative 
pressure  (LBNP) and release as a model of central blood 
volume loss and resuscitation in participants with no previous 
medical history. LBNP is a well‑validated paradigm wherein 
central blood volume falls as blood is drawn by vacuum 
to the lower body; then, upon the release of the negative 
pressure, central blood volume returns to baseline.[19] Our 
investigations were enabled by a novel, wireless, wearable 
Doppler ultrasound patch capable of measuring ccFT and VTI 
simultaneously. We hypothesized that there would be a strong, 
linear correlation between changing ccFT and carotid VTI 
and that the correlation would strengthen with the number of 
averaged cardiac cycles.

Methods

Clinical setting
Adults with no prior medical history were recruited; none were 
taking cardiovascular medications. The study was approved by 
the Research Ethics Board of the Mayo Clinic (IRB number 
19‑010136); written informed consent was obtained from all 
participants.

Doppler system
The US Food and Drug Administration cleared, wireless, 
wearable, 4 MHz Doppler ultrasound patch  (Flosonics 
Medical, Sudbury, Canada) was placed, and the ccFT and VTI 
were captured as described previously.[17,20]

Lower body‑negative pressure
Each stage of the LBNP protocol was 5 min long, beginning 
with resting baseline. LBNP was reduced by 15 mmHg per 
stage down to and including − 60 mmHg and then by 10 mmHg 
down to and including − 80 mmHg, as tolerated. The final stage 
was release of LBNP to atmospheric pressure. All subjects 
underwent this seven‑stage protocol in duplicate with a 30‑min 
washout period in between sessions.

Statistical analysis
Cardiac cycles with artifacts or during LBNP stage transition 
were excluded. Artifacts were detected by HR discordance 
of  <0.8 or  >1.3‑fold change between devices and visual 
inspection of the Doppler spectra for phonation or deglutition 
signatures. Both ccFT and VTI were referenced to resting 
baseline to model increasingly severe hypovolemia. The change 
from the lowest-achieved LBNP stage back to atmospheric 
pressure is used as a model of rapid blood transfusion. Data 

were analyzed over two temporal windows  –  a 10‑beat 
average and a whole‑stage average. To account for multiple 
measurements per subject, the relationship between ccFT 
and VTI was assessed using repeated‑measures linear 
correlation  (Rrm) across negative pressure stages. To detect 
an Rrm of 0.8, with a power of 0.8 and a significance level 
of 0.05, we calculated a required minimum sample size of 
approximately 11 for each stage for a multilevel model with 
7 stages.

Results

The baseline characteristics and vital signs of all included 
subjects are listed in Table 1.

In total, 39,958 cardiac cycles were captured; 17.14% of 
the beats were excluded for the following reasons: 7.61% 
stage transition, 2.55% misaligned HR between the Doppler 
and traditional HR vital sign monitor (i.e., <0.8 or >1.3‑fold 
change as compared to vital sign monitor), and 6.98% Doppler 
feature detection (e.g. dicrotic notch) failure as determined by 
either ccFT or VTI value more than two standard deviations as 
compared to the respective mean values for any given LBNP 
stage. 33,110 cardiac cycles comprised the analysis including 
4380 release‑stage beats. The correlations for changing ccFT 
and VTI are shown in Figure 1. The strength of the ccFT‑VTI 
relationship was dependent on the number of consecutively 
averaged valid cardiac cycles (R1 cycle = 0.70, R2 cycles = 0.74, 
and R10 cycles = 0.81). Release phase R was 0.38 and slope was 
4.93 for % ccFT change and R was 0.35 and slope was 1.88 
for absolute ccFT change.

Discussion

Our results demonstrated a number of clinically important 
findings. First, during progressive central blood volume loss, 
there was a strong linear correlation between falling ccFT 
and carotid VTI. Second, ccFT and VTI both also increased 
during central blood volume resuscitation, but the strength of 
their direct correlation was diminished. Finally, the correlation 
between changing ccFT and VTI was weaker and quite variable 
when fewer than six consecutive cardiac cycles were averaged; 
the correlation coefficient became stronger and stabilized 
beyond the mean of at least 20 consecutive cardiac cycles in 
this model.

Table 1: Demographics and sample characterization at 
baseline

Demographic variable (n=16) Mean±SD
Average age (years) 27±4.2
Percentage female 44
Average BMI 25.9±4.6
Mean heart rate (bpm) 63.6±8.1
Systolic blood pressure (mmHg) 132.6±8.9
Diastolic blood pressure (mmHg) 78.3±5.3
Mean arterial pressure (mmHg) 98.1±6.2
BMI: Body mass index, SD: Standard deviation
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The relationship between ccFT and carotid VTI is consistent 
with our previous work where we related each of these 
measures to changing SV during LBNP and release in healthy 

volunteers.[16,21] In this particular investigation, we observed 
that during central volume loss, the slopes of the relationship 
between percent change in ccFT and absolute change in ccFT 

Figure 1: The relationship between change in common ccFT and VTI in models of central blood volume loss and resuscitation. (a) Across decreasing 
pressure stages, the Rrm is 0.87 and the slope is 2.82, using whole‑stage average % changes. (b) Across decreasing pressure stages, the Rrm is 
0.81 and the slope is 2.79, using 10‑beat average % changes. (c) Across decreasing pressure stages, the Rrm is 0.86 and the slope is 0.88, using 
whole‑stage average absolute ccFT and VTI % change. (d) Across decreasing pressure stages, the Rrm is 0.81 and the slope is 0.87, using a 10‑beat 
average absolute ccFT and VTI % change. (e) Sample of raw ccFT (top) and VTI (bottom) values during the lower body‑negative pressure protocol. 
Shown with smooth trend lines per stage. (f) The effect of the number of consecutively averaged cardiac cycles on repeated‑measures correlation 
coefficient. ccFT: Carotid artery corrected flow time, VTI: Velocity time integral
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with percent change in carotid VTI were approximately 3.0 
and 1.0, respectively. Clinically, this means that a falling 
ccFT of 2%–4%[17,21] or 7–10 ms[7] would correlate with 
decreased carotid VTI of 6%–12% and 7%–10%, respectively. 
Conversely, the slope of the relationship between changing 
ccFT and carotid VTI was essentially double when central 
blood volume was replenished upon LBNP release. Based 
on this, a 7‑ms rise in ccFT correlates with an 11%–13% 
carotid VTI augmentation; however, this relationship was not 
statistically significant. We are curious, specifically, about 
a + 7‑ms change in ccFT because this was the optimal threshold 
for predicting at 10% SV change reported by Barjaktarevic 
et al. in undifferentiated shock.[7]

Our data may partially explain the report by Judson et al. who 
found a poor relationship between carotid blood flow and ccFT 
in septic patients receiving intravenous fluids.[18] Although 
there are many differences between their investigation and 
ours, we suspect that at least one key mediator is the number 
of consecutive cardiac cycles considered in their study, which 
was only 3. This number of sampled heartbeats is common 
in Doppler studies, but our data illustrate why this could be 
problematic. Fewer than six consecutive cycles led to a poorer 
correlation between ccFT and carotid VTI  [Figure 1f]. Our 
current analysis is consistent with our previous report using 
the coefficient of variation of the carotid Doppler signal 
to establish least significant change;[15] we found that, on 
average, a minimum of six carotid Doppler cycles should be 
averaged to detect VTI change with statistical confidence. 
Notably, in Figure 1f, the correlation coefficient relating VTI 
to ccFT becomes strong (i.e. >0.8) when six cardiac cycles 
are averaged.

The slope difference between ccFT and VTI change during 
volume loss versus volume repletion in this model is 
unexplained, though we hypothesize that it could be due to 
changing vascular impedance downstream to the common 
carotid relative to the rest of the body during hemodynamic 
stress. For example, during progressive volume loss, release 
of adrenaline and noradrenaline shifts blood away from the 
extremities and toward the vital organs such as the brain; 
thus, the impedance of the brain relative to the body falls.[21,22] 
Accordingly, during the release stage of the LBNP, a transient 
“rush” or “overshoot” of blood to the carotid is observed as an 
“inverted U” pattern of the VTI [Figure 1e]. This phenomenon 
would raise the slope of changing carotid VTI relative to 
ccFT and diminish their correlation. We have also observed 
this phenomenon in healthy subjects performing standardized 
Valsalva maneuvers.[23] Further investigation relating the 
change in ccFT and carotid VTI to ascending aortic Doppler 
as a surrogate for SV is ongoing.

There are limitations to our analysis. First, this was a relatively 
small sample of adult participants in a physiology laboratory. 
Thus, these results cannot be definitively applied to ill patients 
in the hospital. Nevertheless, our observations are similar 
to a previous LBNP investigation that we reported, as well 

as in a study changing preload by squat maneuvers.[16,17,20,21] 
Second, we do not report SV in this dataset, a key variable 
when considering central hemodynamics. SV data have 
been collected in this LBNP model by both ascending aortic 
Doppler and noninvasive pulse contour analysis; however, it 
is outside of the present analysis, and it will be reported in a 
future investigation. The question raised in this analysis was 
the quantitative relationship between ccFT and carotid VTI 
during volume depletion and resuscitation. Third, we did not 
measure total carotid blood flow, which depends on common 
carotid artery area. We did not do so because the wearable 
Doppler patch does not measure carotid diameter and human 
measurement variability in a 6.5‑mm vessel leads to a 30% 
flow error if the diameter is misjudged by only 1 mm. Fourth, 
the release phase of our model was statistically underpowered 
to make definitive conclusions about the relationship between 
changing ccFT and VTI during volume resuscitation. 
Nevertheless, in all subjects and in all protocols, both ccFT 
and VTI increased from the lowest LBNP stage, consistent 
with our previous reports and the anticipated physiology.[16,21]

Conclusions

We investigated 16 healthy, adult volunteers during central 
volume depletion and resuscitation induced by LBNP and 
release. This study comprised 33,110 cardiac cycles which 
is quite large compared to most clinical studies that often 
sample fewer than three cardiac cycles per patient. There 
was a strong linear correlation between changing ccFT and 
VTI during central blood volume loss; the strength of this 
relationship was dependent on the number of consecutively 
averaged cardiac cycles; fewer than 6 is likely to result in a 
poorer correlation between ccFT and VTI. These results are 
important for planning future clinical investigations employing 
common carotid artery Doppler as a surrogate for central 
hemodynamics.
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