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altered training intensity and correlates
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Abstract

Background: The mechanism for cardiac hypertrophy process that would be a benefit for improvement of
cardiovascular endurance needed to be investigated throughly. Specific intensity of training may play a role for
homeostasis process in cardiac during training. In the present study, we examine the effect of different intensity of
treadmill training on cardiac hypertrophy process and autophagy related gene expression in male wistar rats.

Methods: Three different intensities of treadmill training were conducted on 15 male wistar rats (Low Intensity: 10m/
minute, Moderate Intensity: 20m/minute, and High Intensity: 30m/minute) compared to 5 sedentary rats as control.
Training duration was 30min per day, frequency was 5 days per week, during 8weeks period. Heart weight and heart
weight/body weight ratio were measured after the experiments. Left ventricle myocardium was taken for microscopic
analysis with HE staining. mRNA was extracted from left ventricle myocardium for examining αMHC and autophagy
related gene expression (PIK3CA, mTOR, LC3, p62) using semi quantitative PCR.

Results: We observed that altered training intensity might stimulate cardiac hypertrophy process. MI and HI training
increased heart weight and heart weight/body weight ratio. This finding is supported by microscopic result in which
cardiac hypertrophy was found in MI and HI, with focal fibrosis in HI, and increased αMHC gene expression in MI (p <
0.05) and HI (p = 0.076). We also observed decreased PIK3CA (LI 0.8 fold, MI 0.9 fold), mTOR (LI 0.9 fold, MI 0.9 fold), LC3 (LI
0.9 fold, MI 0.8 fold, HI 0.8 fold), and p62 (LI 0.8 fold, MI 0.9 fold) compared to control. Interestingly, we found increased
mTOR (HI 1.1 fold) and p62 (HI 1.1 fold) compared to control.

Conclusion: Training with different intensity creates different cardiac hypertrophy process based on heart weight and
heart weight/body weight ratio, microscopic examination and autophagy related gene expression.
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Background
Cardiovascular fitness can be improved by regular train-
ing. A well-trained athlete can achieve a cardiac output
double that of a sedentary person, in part because training
causes cardiac hypertrophy, which is defined as enlarge-
ment of the heart [1]. Training stimulates increase of
cardiac performance, which is initiated by anatomical

tissue rearrangement, followed by optimizing its function,
called as physiological cardiac hypertrophy. In the other
side, pathological cardiac hypertrophy indicated by ana-
tomical change like fiber replacements, loss of cardiomyo-
cytes, lead to heart failure and sudden death [2, 3].
Cardiac hypertrophy is initiated in order to follow process

of physiology. Physiological cardiac hypertrophy can be de-
fined as a benign increase in heart mass with morphological
alteration, which represents a physiological adaptation to
chronic training. There has been some questions about
whether high intensity training could develop pathological
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cardiac hypertrophy, but there is no evidence showing re-
modeling due to training leads to long-term cardiac disease
progression, cardiovascular disability, or sudden cardiac
death [4, 5]. Furthermore, left ventricle hypertrophy after
long term training is reversible following detraining [6, 7],
so it can be concluded that physiological cardiac hyper-
trophy induced by training is a benign adaptation [2].
Sustained training increased the oxygen demand of the

muscles. Whether the demand is met depends mainly on the
adequacy of cardiac output and proper functioning of the re-
spiratory system. After several weeks of training, cardiac out-
put is increased, which also increases the maximal rate of
oxygen delivery to tissues/VO2max [1]. Many studies con-
firmed that cardiac adaptations to training are closely related
to increased VO2max. However, little is known about cardiac
hypertrophy related to different intensity, especially at mo-
lecular level. The question remains about how much training
is optimal for cardiovascular benefit and what molecular
mechanism for cardiac hypertrophy process that would be a
benefit for improvement of cardiovascular endurance [8, 9].
Genetic mouse models have provided substantial

evidence about molecular pathway that regulates physio-
logical cardiac growth. Signaling cascades responsible for
mediating physiological cardiac hypertrophy is IGF1-
phosphoinositide 3-kinase (PI3KCA/p110α)-Akt-mTOR
pathway [2, 4]. mTOR is an atypical serine/threonine
protein kinase that affects gene transcription, protein
translation, regulation of cell growth, apoptosis, and
autophagy [10]. mTOR is encoded by a single gene in
mammals and represents the catalytic subunit of
mTORC1, which is the main regulator of cellular growth
in response to different environmental and intracellular
conditions. It promotes anabolic process such as protein
synthesis while inhibits catabolic pathways such as au-
tophagy in cardiovascular system [11, 12] .

Autophagy is a conserved mammalian catabolic
process by which unwanted cellular cargos and dysfunc-
tional organelles are discarded in a lysosome-dependent
manner [13]. Autophagy in cardiovascular system can be
referred as cardiac autophagy. Endurance training may
alter cardiac autophagy that leads to a protective role
against hypoxia and ischemia-reperfusion injury [14, 15].
Recent studies have shown that acute and chronic en-
durance training enhances autophagy in cardiac muscles
[16–19]. A proper regulation of cardiac autophagy is im-
portant because a chronic upregulation of cardiac
autophagy may induce a detrimental effect.
In cardiac hypertrophy, cardiac myocytes rearrangement

by different intensity of chronic endurance training may
strongly involves autophagy. However, the effect of differ-
ent intensity of chronic training on cardiac autophagy re-
mains unclear. The objective of this study is to examine the
effect of different intensity of treadmill training on cardiac
hypertrophy process and autophagy related gene expression
in male Wistar rats. In the present study, we postulate that
different intensity of training creates a different response in
cardiac hypertrophy and correlates with cardiac autophagy.

Methods
Animals
We obtained 20 male wistar rats aged 8 weeks, weighed
200 ± 50 g, from PT. Biofarma, Bandung, Indonesia. The
rats were placed in a standardized cage (5 rats in each
cage), given pellet rodent diet (normal Chow Diet) and
water ad libitum every day. The dark and light cycle envir-
onment were maintained within 12 h with stable humidity
and temperature around ±22–24 °C. Adaptation to envir-
onment conducted in 2 weeks period, food and water pro-
vided ad libitum. The procedures for treatment of the
animals were conducted according to the guide for the

Table 1 Primers used for Semi quantitative-PCR analysis

Gene Symbol Primer Sequence (5′ to 3′)
Upper strand: sense
Lower strand: antisense

Product
Size
(bp)

Annealing
(°C)

Cycle References

αMHC GAGCAGGAGCTGATCGAGAC 151 60 35 [26]

CCTCTGCGTTCCTACACTCC

PIK3CA ACCTCAGGCTTGAAGAGTGTCG 137 59 35 [27]

CCGTAAGTCGTCGCCATTTTTA

mTOR CTGATGTCATTTATTGGCACAAA 170 57 35 [28]

CAGGGACTCAGAACACAAATGC

LC3 GGTCCAGTTGTGCCTTTATTGA 153 59,5 35 [28]

GTGTGTGGGTTGTGTACGTCG

p62 CTAGGCATCGAGGTTGACATT 116 56 35 [29]

CTTGGCTGAGTACCACTCTTATC

GAPDH GTTACCAGGGCTGCCTTCTC 177 61 35 [30]

GATGGTGATGGGTTTCCCGT
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use and care of laboratory animals [20] and were approved
by Research Ethics Committee of Universitas Padjadjaran
with approval number, No 676/UN6.KEP/EC/2018.

Treadmill training protocol
Twenty male-wistar rats were divided into four groups: 3
groups of treadmill training (Low Intensity with treadmill
speed 10m/minute; Moderate Intensity with treadmill
speed 20m/minute, and High Intensity with treadmill
speed 30m/minute) and sedentary control (n = 5 for each
group). This number of rats for each groups was calculated
based on minimal sample calculation. The treadmill train-
ing intensities were defined based on lactate accumulation
levels and followed previous study [21]. Rats were randomly
allocated to 4 groups upon arrival, then acclimatized and
habituated to environment for 2 weeks, followed by tread-
mill adaptation for another 2 weeks, then continued with
treadmill training for 8 weeks, with frequency 5 days per
week, and duration 30min per day (Additional file 1: Figure
S1). This study followed the protocol described by Vita et
al., with a different detail purposes and scheme of the
research [22].
At last training day, on 9 o’clock in the morning, in

Animal Laboratorium of Universitas Padjadjaran, rats
were sacrificed immediately after last training under in-
haled isoflurane flow rate or concentration to 5% or
greater, continued until 1 minute after breathing stopped
[23]. Isoflurane was chosen as the anaesthetic drugs
according to ethical approval as issued. Heart samples
were collected; weighed; and dissected to separate left
ventricle myocardium. Samples were snap frozen in li-
quid nitrogen and stored at − 80 °C or fixed with PFA
for histological studies.

Histology
Left ventricle myocardial tissues were fixed in buffered
paraformaldehyde solution (4%) and embedded in paraf-
fin. Then, 2-μm thick sections were placed on adhesive
slides and stained with hematoxylin-eosin. Samples were
visualized using a Leica microscope (LEICA ICC50 HD)
at 400x magnification using standard procedure. All
imaging were performed with group identity blinded
whereby at least 10 random images were obtained from
each slide. Images were then quantified using imaging
software (LAS EZ 2.0). The widths of randomly selected
cardiomyocytes were measured from 100 LV cardiomyo-
cytes to represent each sample.
Histologic examination of the LV muscles was reviewed

by a single expert cardiac pathologist (RW) who was blinded
to all other features of the samples characteristics. All sam-
ples were evaluated for the presence or absence of the fol-
lowing myocardial features: cardiomyocyte hypertrophy,
myofiber disarray, and focal fibrosis. Hypertrophy was
diagnosed if myocytes consistently had enlarged and

hyperchromatic nuclei, and cell diameters greater than the
diameters of 3 red blood cells/RBCs [24]. Myofiber
disarray included cellular interlacing, whirling, or herring-
bone patterns [25]. Myocardium was evaluated for the
presence or absence of focal fibrosis. In non-dilated hearts,
myocyte diameter is directly proportional to the extent of
hypertrophy. Therefore, hypertrophy was considered mild
if myocyte overall diameters were 3–4 RBCs, moderate if
they were 4–5 RBCs, and severe if they were > 5 RBCs.
Myofiber disarray was graded as mild if its extent was 1 to
25% of the myocardial area on the microscopic slide, mod-
erate if 26 to 50%, and severe if > 50%. Focal fibrosis was
determined to be absent if there was no focal fibrosis, mild
if there was 0 to 5, moderate if there was 6 to 10, and
severe if there was > 10 focal fibrosis of the myocardial

Fig. 1 Evaluation of Cardiac Hypertrophy After 8 Weeks of Treadmill
Training with Different Intensity. a A significant increased of heart weight
values were found in MI (a) and HI (b) compared to control. b Heart
weight/body weight ratio showed even more significant increase in MI (a)
and HI (b) compared to control. Data was presented as average mean±
standard error of mean (SEM) with p<0.05 considered as significant (*) and
p<0.01 considered as very significant (**)
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area. This histology characterization was adaptated from
another study with some modification [24].

RNA extractions and semi-quantitative PCR
RNA from left ventricle myocardial tissue were extracted
using TRIsure reagent (Bioline, United Kingdom). Quantifi-
cation of RNA extracted from the tissue were done using
Multimode Microplate Reader at 268/280 nm absorbance
spectrophotometry (M200 Pro, Tecan, Morrisville, NC).
One Step RT PCR Kit (Bioline, United Kingdom) were used
to conduct semiquantitative PCR, GAPDH were used as

housekeeping gene. Electrophoresis Gels were visualized
using BluePad Detection system and Image J were used for
visualization and quantification of PCR band. Table 1
provided lists of primers sequences used in this study.

Statistics
The results of all individual values (n = 5) were presented
in Additional file 2. SPSS 20.0 software was used for statis-
tical analysis, the results were presented in Additional file 3.
The presented results were mean ± standard error of mean
(mean ± SEM). One Way ANOVA/Kruskal Wallis were

Fig. 2 Evaluation of Microscopic Cardiac Hypertrophy After 8 Weeks of Treadmill Training with Different Intensity. [A1–4] Representative photomicrographs
of Left Ventricular (LV) myocardium after Hematoxylin and Eosin. Longitudinally oriented cardiomyocytes are displayed for control and exercised rats. [B1–
3] Representative photomicrographs of cardiomyocyte hypertrophy found in LI (20%), MI (100%) and HI (100%). Cardiomyocyte cells were compared to
RBC (Red blood cell). [C] Representative photomicrograph of mild myofiber disarray in MI (60%) and HI (100%). [D1–3] Representative photomicrographs of
focal fibrosis in HI (100%). [E] A significant increased of cardiomyocyte cells size were observed in MI and HI training (a) compared to control (100%) and
between LI and MI (b), LI and HI (c), MI and HI (d). Data was presented as average mean ± standard error of mean (SEM) with p< 0.05 considered as
significant (*) and p< 0.01 considered as very significant (**)
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used to examine mean differences between groups with
LSD post hoc test (for data with normal distribution) or
Mann Whitney test (for data without normal distribution),
with 95% confidence interval (p < 0.05).

Results
Effects of training on heart weight and heart weight/body
weight ratio
The rats of the four experimental groups had the similar
initial body weights (200 ± 50 g). The number of animals
in each group included in each analysis is 5/5. Heart
weights were recorded after termination and then com-
pared to body weights to examine the ratio. We found a
significant difference of heart weight in MI (1.304 ± 0.04)
and HI (1.404 ± 0.07), compared to control (1.112 ± 0.07),
as showed in Fig. 1a. The heart weight to body weight
ratio showed an even more significant increase in MI
(0.0041 ± 0.00011) and HI (0.0042 ± 0.00016) compared to
control (0.0034 ± 0.00012) (Fig. 1b), reflecting characteris-
tics of cardiac hypertrophy.

Effects of training on histology
Training with different intensity resulted in a different hist-
ology characteristics presented in Fig. 2a-d and Table 2. For
myocyte hypertrophy, we found none in control, 20% mild
myocyte hypertrophy in LI, 40% mild and 60% moderate
myocyte hypertrophy in MI, and 20% mild and 80%

moderate myocyte hypertrophy in HI. As for myofiber dis-
array, we found none in Control and LI, 60% mild myofiber
disarray in MI, and 100% mild myofiber disarray in HI.
And for focal fibrosis, we found none in Control, LI, and
MI, but 20% mild, 50% moderate, and 20% severe focal fi-
brosis in HI. We also found a significant increase in per-
centage cardiomyocyte cell size in MI (116.4 ± 2.04) and HI
(125.6 ± 3.03) training compared to control (100%) and LI
(103.1 ± 2.38) (Fig. 2e).

αMHC mRNA expressions in left ventricle myocardium of
Wistar rats
In order to confirm cardiac hypertrophy in training heart,
we also examined αMHC gene expression using semi-
quantitative PCR. PCR bands of αMHC were normalized
using GAPDH. The result is presented in Fig. 3. In MI
and HI groups, αMHC gene expression were increased
(MI 1.1 fold, p < 0.05 and HI 1.2 fold, p = 0.076) compared
to control.

PIK3CA and mTOR mRNA expressions in left ventricle
myocardium of wistar rats
We also examined PIK3CA and mTOR gene expressions
in left ventricle myocardium of Wistar rats using semi-
quantitative PCR. PCR bands of PIK3A and mTOR were
normalized using GAPDH. The result is presented in
Fig. 4a-c. Training with low and moderate intensities sig-
nificantly decreased PIK3CA gene expression (LI 0.8, MI
0.9, p < 0.05). mTOR gene expression also significantly
decreased (LI 0.9 fold, MI 0.9 fold p < 0.05) compared to
control, but interestingly, training with high intensity
increased mTOR gene expression (HI 1.1, p < 0.05).

LC3 and p62 mRNA expressions in left ventricle myocardium
of wistar rats
We examined the autophagy related gene expression using
semi-quantitative PCR. PCR bands of LC3 and p62 were
normalized using GAPDH. The result is presented in Fig.
4a, d-e. Training significantly decreased expression of
autophagy gene LC3 (LI 0.9 fold, MI 0.8 fold, HI 0.8 fold,
p < 0.05) in left ventricle myocardium compared to con-
trol. On the other side, training significantly decreased
p62 gene expression (LI 0.8 fold, MI 0.9 fold, p < 0.05),
and increased p62 gene expression (HI 1.1 fold, p < 0.05).

Discussion
The heart contains multiple cell types, including myocytes
(muscle cells), nonmyocytes (fibroblasts, endothelial cells,
mast cells, leukocytes, vascular smooth muscle cells/mural
cells), and the surrounding extracellular matrix. It is well
accepted that cardiac myocytes represent 30–40% of the
cell population in the adult rodent and human heart, so it
represents 70–80% of the heart’s volume. Hypertrophy of

Table 2 Histologic Characterization of Cardiac Hypertrophy by
Different Intensity

Control

None Mild Moderate Severe

Myocyte hypertrophy 5 (100%) 0 0 0

Myofiber disarray 5 (100%) 0 0 0

Focal fibrosis 5 (100%) 0 0 0

Low-Intensity

None Mild Moderate Severe

Myocyte hypertrophy 4 (80%) 1 (20%) 0 0

Myofiber disarray 5 (100%) 0 0 0

Focal fibrosis 5 (100%) 0 0 0

Moderate-Intensity

None Mild Moderate Severe

Myocyte hypertrophy 0 2 (40%) 3 (60%) 0

Myofiber disarray 2 (40%) 3 (60%) 0 0

Focal fibrosis 5 (100%) 0 0 0

High-Intensity

None Mild Moderate Severe

Myocyte hypertrophy 0 1 (20%) 4 (80%) 0

Myofiber disarray 0 5 (100%) 0 0

Focal fibrosis 0 1 (20%) 3 (60%) 1 (20%)
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cardiac myocytes appears to be the predominant factor
that contributes to heart enlargement as a response to
chronic training [9, 31].
Different intensity of training may create different re-

sponse of cardiac hypertrophy. In response to moderate
training, cardiac hypertrophy occurs as an adaptive
physiological response that is associated with normal or
improved cardiac function [32, 33]. However, it is una-
voided that endurance training have correlation with
maladaptive responses in cardiac hypertrophy which is
involving abnormal dynamic regulation of blood
pressure, and histological rearrangement forming fi-
brotic tissue. Benito et al. had reported that fibrotic tis-
sue in myocardial parenchyma as a consequence of
regenerative and adaptive process can cause electrical
impulse reentry lead to arrhythmogenicity [34].

In this present study, we found cardiac hypertrophy in
MI and HI, supported by increased heart weight, heart
weight/body weight ratio, histology, % cardiomyocyte
cell size and increased αMHC gene expression. Tread-
mill is one of animal modes that can induce physio-
logical cardiac hypertrophy, measured both at the whole
heart, ventricle, and individual cardiomyocyte level. This
hypertrophy can be detected after 4 weeks of training,
and reaches plateau after a few months if the training is
sustained [35]. Our study also finds focal fibrosis in HI
group, which may be associated with maladaptive
training-induced cardiac remodeling. At least one animal
study suggests that long-term, intensive endurance train-
ing (treadmill running for 16 weeks) is shown to be asso-
ciated with fibrosis within the right ventricle. However
in this study, the most marker of myocardial fibrosis

Fig. 3 αMHC mRNA Expression in Cardiac Muscles After 8 Weeks of Treadmill Training with Different Intensity. a 8 weeks of Treadmill Training with
Different Intensity Stimulates αMHC mRNA Expression in Rat Cardiac Muscle (Left ventricle myocardium). b A significant increase of αMHC mRNA
Expression were found in MI compared to control (a), between LI and MI (b), and between LI and HI (c). αMHC mRNA expression in HI is increased
with p = 0.076, compared to control. Data was presented as average mean ± standard error of mean (SEM) with p < 0.05 considered as significant (*)

Gunadi et al. BMC Sports Science, Medicine and Rehabilitation            (2019) 11:9 Page 6 of 9



Fig. 4 (See legend on next page.)
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returned to baseline after discontinuation of training.
This suggests that the fibrosis is of the reactive pheno-
type, which is reversible after detraining [33, 34].
Our study also shows an altered autophagy gene expres-

sion based on different intensity. LI and MI may increase
autophagy gene expression, supported by decreased LC3,
p62, mTOR, and PIK3CA relative ratio normalized by
GAPDH. However, HI may decrease autophagy, supported
by decreased LC3 and increased p62, mTOR relative ratio
normalized by GAPDH. Recent studies have shown that
endurance training can enhance autophagy in cardiac mus-
cles [16, 36]. Increased autophagy in LI and decreased
autophagy in HI may be associated with a decrease and in-
crease of protein synthesis that correlates with cardiac
hypertrophy.
The best signaling cascades responsible for mediating

physiological cardiac hypertrophy is IGF1-PI3KCA/
PI3K(p110α)-Akt pathway. mTOR is a downstream
pathway of IGF1-PIK3CA that has long been considered
to be a potent autophagy regulator, as inhibition or acti-
vation of mTOR regulates autophagy [37]. In this study,
we found a decrease of mTOR and PIK3CA gene
expression in LI and MI, suggested autophagy may be
increased in cardiac muscle as a result of training-
induced adaptation. Interestingly, we also found cardiac
hypertrophy in MI training, this suggest that cardiac
hypertrophy may occur from other pathway, like gp130/
JAK/STAT pathway, but a future study is needed to con-
firm this hypothesis.
The limitation of this study is that we did not

examine cardiac function and collagen deposition in
left ventricle. There are also possibilities that the
physiological cardiac hypertrophy after training could
be affected by other factors, such as hormonal [38],
genetic [39], or other metabolic factors [40]. This
study has been demonstrated the effect of different
intensity of treadmill training on cardiac hypertrophy
of male wistar rats, and may not be applicable in
humans. Further study has to be carried out to know
the effect of different treadmill intensity on cardiac
hypertrophy in humans, in order to determine how
much training is optimal for cardiovascular benefit,
which is correlated with cardiac physiological adapta-
tion after training with autophagy regulation involve-
ment [8, 9].

Conclusion
In summary, different training intensity might stimulate
different process of cardiac hypertrophy that correlates
with autophagy. LI training may increase autophagy
related gene expression, but not inducing cardiac hyper-
trophy. MI training may induce cardiac hypertrophy with
increased autophagy related gene expression, while HI
training may induce cardiac hypertrophy with decreased
autophagy related gene expression.
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Additional file 1: Figure S1. Experimental Design of the Research. Animals
were randomly allocated to 4 groups upon arrival. Three treadmill training
intensities (Low-Intensity/LI, Moderate-Intensity/MI, and High-Intensity/HI) and
one group without treadmill training/Control, were compared. (DOCX 44 kb)

Additional file 2: Individual Data of The Research. (DOCX 27 kb)

Additional file 3: Statistical Results of The Research. (DOCX 104 kb)
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