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Abstract

The PARKIN (PARK2) ubiquitin ligase and its regulatory kinase PINK1 (PARK6), often mutated 

in familial early onset Parkinson’s Disease (PD), play central roles in mitochondrial homeostasis 

and mitophagy.1–3 While PARKIN is recruited to the mitochondrial outer membrane (MOM) 

upon depolarization via PINK1 action and can ubiquitylate Porin, Mitofusin, and Miro proteins on 

the MOM,1,4–11 the full repertoire of PARKIN substrates – the PARKIN-dependent ubiquitylome 

- remains poorly defined. Here we employ quantitative diGLY capture proteomics12,13 to elucidate 

the ubiquitylation site-specificity and topology of PARKIN-dependent target modification in 

response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites 

in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that 

PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using 

complementary interaction proteomics, we found depolarization-dependent PARKIN association 

with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of PARKIN’s 

active site residue C431, which has been found mutated in PD patients, largely disrupts these 

associations. Structural and topological analysis revealed extensive conservation of PARKIN-

dependent ubiquitylation sites on cytoplasmic domains in vertebrate and D. melanogaster MOM 

proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway 

re-sculpts the proteome to support mitochondrial homeostasis.

PARKIN, a RING-HECT hybrid E3 ubiquitin ligase,14 is recruited to the MOM in cancer 

cell lines, mouse embryo fibroblasts (MEFs), and primary neurons to promote mitophagy in 

response to mitochondrial depolarization.1,2,15,16 This process requires PINK1, which binds 

the MOM translocase (TOMM) complex and phosphorylates PARKIN on multiple residues 

to promote MOM localization and ligase activation.17–20 The best understood PARKIN 
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substrates are MFN1/2 and RHOT1/2 (MIRO in Drosophila), MOM-tethered GTPases 

whose PARKIN-dependent proteasome turnover alters fission-fusion cycles and 

microtubule-dependent trafficking of mitochondria, respectively.1,5,6,7,8,10,11 The MOM 

porin proteins VDAC1/2/3 are also ubiquitylated by PARKIN, and are required for PARKIN 

localization on mitochondria through a poorly understood mechanism.9,21 Proteomic studies 

of purified mitochondria have also identified additional proteins whose abundance is either 

decreased or increased upon PARKIN activation or mitochondrial depolarization,1,4 but 

precisely how these proteins are regulated and the extent to which ubiquitin is involved is 

unclear. Consequently, we do not have a comprehensive understanding of cellular PARKIN 

targets, which is critical for elucidating how PARKIN promotes mitochondrial homeostasis. 

Moreover, for the vast majority of E3s, including PARKIN, the extent to which ubiquitin 

transfer is site-specific and signal-dependent is largely unknown, and a global understanding 

of site-specificity across a wide range of substrates is lacking for any E3. Such information 

is necessary for decoding the cellular and molecular topology of E3 function and for 

defining how the ubiquitin system re-sculpts the proteome.

We set out to systematically identify cellular PARKIN-dependent ubiquitylation targets and 

the dynamics of modification in a site-specific manner using quantitative diGLY (QdiGLY) 

proteomics. QdiGLY merges antibody-based capture of “diGLY remnant” containing 

peptides (marking ubiquitylated proteins after trypsinolysis) and stable isotopic labeling 

with amino acids in culture (SILAC) to identify ubiquitylation sites that are dynamically 

induced, in this case, upon mitochondrial depolarization.12,13 To overcome inherent 

stochastic sampling for low abundance diGLY peptides (see Figure S1a,b),12,13 we 

performed 73 control and QdiGLY profiling experiments in 4 cell lines with and without 

elevated PARKIN levels (~10-fold) (Figure S2a) in a 3-tiered manner, varying the length of 

depolarization with carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (Figure 1a, Table 

S1). In some cases, protein turnover was blocked by proteasome inhibition with bortezomib 

(Btz) or autophagy inhibition with bafilomycin A (BafA) (Table S1). Elevated PARKIN 

levels were used to increase the likelihood of capturing signal-dependent and 

mechanistically relevant ubiquitylation events that would otherwise be below the level of 

detection due to low stoichiometry or abundance.

Using HCT116 cells expressing HA-PARKIN (HCT116PARKIN, Tier 1), we performed 34 

control and QdiGLY experiments (Table S1), quantifying 4772 non-redundant 

ubiquitylation sites in 1654 proteins (Figure 1a,b). In 18 of these experiments using Btz or 

CCCP/Btz for 1h, we identified 443 diGLY sites (261 proteins) with log2 Heavy:Light 

(H:L) ratios ≥1.0 (2-fold change) in at least one experiment (Figure 1b–c, S2a–c, Table 

S1,S2), with a Pearson’s correlation of 0.69 for two representative experiments (Figure S2e). 

Sixteen additional Tier 1 experiments with depolarization times up to 10 h identified 537 

non-redundant diGLY sites (304 proteins), including 192 diGLY sites (138 proteins) also 

identified at 1h (Figure S2d). Comparison of log2(H:L) ratios for 48 Tier 1 sites in 36 

proteins at 1 and 8 h post CCCP treatment from parallel experiments revealed persistent or 

increased ubiquitylation for 34 sites when proteasome activity is blocked (Figure S2f).

To systematically determine PARKIN dependence and compare targets in distinct cell lines, 

we performed 6 QdiGLY experiments in HeLa versus HeLaPARKIN cells (Tier 2) with 
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CCCP/Btz (1h) and reverse SILAC labeling (Figure 1a, Table S1,S2). As expected,4–7 

CCCP-dependent MFN2 poly-ubiquitylation in HeLa cells required PARKIN expression 

(Figure S2a). We identified 582 PARKIN-dependent diGLY peptides (303 proteins) (Figure 

1b), with a Pearson’s correlation of 0.88 for duplicate samples (Figure S2e) and significant 

overlap across biological triplicates (Figure 1d). Importantly, 165 diGLY sites (99 proteins) 

were common to Tiers 1 and 2 with 1h of depolarization (Figure 1e). This increased to 191 

sites (144 proteins) when all Tier1 and Tier 2 data were compared (Table S2). We refer to 

the overlapping set of ubiquitylation sites with 1h of depolarization and their associated 

proteins as Class 1 candidate PARKIN-dependent targets while proteins found in both cell 

lines but with different sites of ubiquitylation are referred to as Class 2 (Table S2). While a 

2-fold increase in H:L ratio was used as a threshold for regulated ubiquitylation, many 

diGLY sites were induced 30–60-fold upon depolarization (Figure 1f, Table S2), indicating 

highly dynamic target modification via PARKIN.

Class 1 targets were enriched in mitochondrial proteins (p<1.76×10−17), although numerous 

cytoplasmic proteins were also identified (Figure 2, S2i). In total, 60 Class 1 and 2 targets 

were linked with mitochondria or ER-type membranes, including 36 MOM proteins. 

Candidate cytoplasmic targets included proteasome subunits, the VCP/p97 ATPase, and 

proposed autophagy adaptors (SQSTM1, CALCOCO2/NDP52, and TAX1BP1).

We next performed 22 control and QdiGLY profiling experiments using HCT116 or 

neuronal SH-SY5Y cells (Tier 3, Figure 1a–b, Table S1, S2), which display primarily mono-

ubiquitylated forms of MFN2 ubiquitylation upon depolarization apparently due to low 

levels of endogenous PARKIN (Figure S2a). Cumulatively, 838 diGLY sites (391 proteins) 

in HCT116 and 337 diGLY sites (235 proteins) in SH-SY5Y had log2(H:L) ≥1.0 (Figure 

1b), with extensive overlap across Tier 1 and 2 data sets (Figure S2g) and biological 

triplicates in SH-SY5Y (1h/CCCP) (Figure S2h). Fifteen sites in 12 Class 1 or 2 targets were 

found in both cell lines, while 29 and 27 CCCP-dependent diGLY sites in 27 and 17 Class 1 

or 2 proteins were detected in SH-SY5Y or HCT116 cells, respectively (Figure 2, Table S1, 

S2). Additionally, 124 Tier 3 sites were identified in 29 Class 1 or 2 proteins that were 

distinct from Class 1 sites. Thus, many PARKIN-dependent diGLY targets were confirmed 

at endogenous PARKIN levels. Ubiquitylation of several candidate substrates was 

demonstrated by immunoblotting, and ubiquitylation was reduced upon PARKIN RNAi for 

several targets tested (Figure S3a–d).

To complement QdiGLY proteomics, we used anti-HA affinity purification-mass 

spectrometry (AP-MS),22 to identify depolarization-dependent high confidence candidate 

HA-PARKIN-interacting proteins (HCIPs) in duplicate experiments in 293TPARKIN cells 

(Figure 3a, S4a, Table S3), with further validation in HeLaPARKIN cells (Figure S4b, Table 

S4) (see METHODS). Because PARKIN action is dynamic, we examined multiple time 

points (1, 4, or 8 h) after depolarization in the presence or absence of Btz or BafA. To allow 

a semi-quantitative assessment of interactions, we compared bait-normalized average 

assembled peptide spectral matches (APSMs) for proteins that were HCIPs under at least 

one condition examined unless otherwise noted (Figure 3a, S4a, Tables S3, S4). Without 

depolarization, no HCIPs were common to both wild-type PARKIN biological duplicates, 

consistent with PARKIN auto-inhibition prior to activation23 (Figure 3a, Supplemental 
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Text). Remarkably, upon depolarization, 4 classes of HCIPs were identified in at least one 

condition examined (Figure 3a,b): 1) 20 MOM proteins, including MFN1/2, RHOT1/2, and 

VDACs, HK1/2, the fission protein FIS1 and its interacting protein TBC1D15, and the 

translocase components TOMM20 and TOMM70, 2) the autophagy adaptors SQSTM1/p62, 

CALCOCO2 and TAX1BP1, 3) subunits of the catalytic and regulatory particles of the 

proteasome, and 4) the VCP/p97 ATPase implicated in MFN1 turnover.7 Nineteen of the 26 

mitochondrial and autophagy proteins and 39 of 40 proteasome subunits found in 293T cells 

were also identified in at least one condition examined in HeLa cells (Figure 3b,S4b). 

Depolarization-dependent interaction of FLAG-PARKIN with selected endogenous HCIPs 

was verified by anti-FLAG immunoprecipitation and immunoblotting (Figure S5). 

Strikingly, 21 of the 27 mitochondrial and autophagy receptor proteins found associated 

with PARKIN, as well as 8 subunits of the regulatory particle of the proteasome and VCP, 

were also identified as Class 1 or 2 PARKIN-dependent ubiquitylation targets (Figure 2, 3b, 

Table S2).

PARKIN activation is thought to reverse auto-inhibition by its N-terminal ubiquitin-like 

domain (UBL), which has been proposed to sterically hinder E2 interaction with the 

catalytic center.20,23 We explored the role of these regions in MOM recruitment, MFN2 

ubiquitylation, substrate binding, and proteasome association using 5 mutants (Figure S6a): 

1) ΔUBL, lacking the UBL domain (residues 1–80), 2) K27/48R, which blocks 

ubiquitylation of two regulated diGLY sites in the UBL (Figure 2), 3) S65A and S65E, 

which block PINK1-dependent phosphorylation of the UBL domain implicated in PARKIN 

activation in vitro,18 and 4) C431S, removing the active site Cys in RING2. The PD patient 

mutation PARKINC431F fails to localize to mitochondria in response to depolarization.15,20 

Consistent with this, PARKINC431S failed to localize to mitochondria, efficiently poly-

ubiquitylate MFN2, or interact robustly with MOM substrates in response to depolarization 

(Figure 3a, S6a–d). In contrast, K27/K48R, S65A, and S65E mutants displayed near wild-

type activity for localization, MFN2 ubiquitylation, and interaction with MOM proteins at 1 

h post depolarization (Figure 3a, S6a–d, Table S3, S6), although we cannot rule out a kinetic 

effect of these mutations. PARKINΔUBL displayed readily detectable association with MOM 

substrates in the absence of depolarization, consistent with some loss of auto-inhibition,22 

but nevertheless showed enhanced substrate association upon depolarization, suggesting 

residual PINK1 dependence despite the absence of the UBL and S65. However, MFN2 

ubiquitylation was reduced compared with wild-type PARKIN, suggesting reduced 

ubiquitylation activity. PARKINΔUBL also lacked a robust increase in proteasomal binding 

(Figure 3a).

Our data suggest that PARKIN interacts with and promotes the site-specific ubiquitylation 

of numerous mitochondrial and cytoplasmic proteins, thereby extending previous studies 

examining abundance of mitochondrially-enriched proteins.1,4 To place candidate PARKIN-

dependent ubiquitination targets into a structural and functional framework, we have created 

an interactive resource that integrates dynamic ubiquitylation data with available structural 

information (Figure S7b–e, and METHODS). We explored the spatial relationship between 

protein localization, structure, and conservation for 90 Class 1 sites on 36 candidate 

PARKIN substrates (Figure 4a–d, S7a, Table S5). We found that 90% of ubiquitylated 
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lysine residues are conserved in mouse, 78% in zebrafish (D. rerio, Dr), and 51% in the 29 

conserved orthologs in D. melanogaster (Dm), which harbors an active PARKIN-PINK1 

pathway.6 Moreover, 38% of sites were conserved in all 3 species, and 22 of 36 proteins 

have at least one site conserved from human to D. melanogaster (Figure 4a–d, S7a). DiGLY 

sites were observed on multiple structural elements (α-helices, β-sheets, and loops) and no 

obvious sequence motif was identified by MOTIFX, indicating that PARKIN specificity is 

driven primarily by substrate recruitment and/or proximity rather than specific target 

sequences.

Of the 17 MOM targets whose structures or membrane orientations are defined, all 

identified ubiquitylation sites are presented on the cytoplasmic surface (Figure 4c,d), 

consistent with the idea that PARKIN re-sculpts the MOM proteome via its cytoplasmic 

recruitment. Fifty-nine percent of Class 1 and 2 targets had one or two sites of ubiquitylation 

while 41% of targets had 3–15 sites that were PARKIN-dependent based on Tier 2 analysis 

(Figure S7f). Of the 8 Class 1 and Class 2 sites identified in MFN1, all but 2 are located in 

helical motifs flanking the 2 C-terminal membrane-spanning regions, suggesting localized 

ubiquitylation (Figure 2 and Figure 4d). We detected 14 Class 1 and 2 sites in HK1, but 

unlike MFN1, these sites were comparatively delocalized across both globular domains in 

HK1 (Figure 4c). Similarly, TOMM70 was decorated extensively over its 10 cytoplasmic 

TPR motifs (Figure 2,4d). While we cannot exclude the possibility that some ubiquitylation 

events occur downstream of PARKIN activation, the fact that we find many of the targets as 

PARKIN-interacting proteins (Figure 3b) is consistent with direct ubiquitylation (see 

Supplemental Text). An understanding of how PARKIN ubiquitylates topologically diverse 

proteins and domains within proteins requires further study but will be facilitated by the site-

specificity date reported here.

PARKIN appears to promote rapid turnover of some targets but not others. In total, 12 of the 

Class 1 and 2 proteins identified here (see Figure 2), like MFN1/2 and RHOT1/2,1,4,7,10,11 

likely undergo proteasomal turnover, including C1QBP1 (Figure S3c,d), FIS1, and CISD1, 

as their total levels are also decreased upon PARKIN activation.1,4 In contrast, previous 

studies4 have identified 50 preferentially cytoplasmic proteins or protein complexes that are 

enriched in mitochondria in response to depolarization. Consistent with this, we identified 

11 of these proteins or components of protein complexes as Class 1 or 2 targets (Figure 2 

and S7g), possibly reflecting an under-appreciated dynamic recruitment process impacting 

mitochondrial homeostasis. These include the autophagy adaptor p62, previously linked 

with mitochondrial clustering after damage24, as well as TBC1D15 and DNML1, which are 

known to interact with FIS1 to regulate fission-fusion cycles.25 In addition to p62, we also 

identified candidate autophagy receptors, CALCOCO2 and TAX1BP1, which are 

ubiquitylated upon depolarization and associate with PARKIN in the presence of BafA 

(Figure 2,3). Because CALCOCO2 has been shown to target bacteria for autophagy,26 it is 

an attractive candidate for involvement in mitophagy. We speculate that these related 

autophagy adaptor proteins may be dynamically recruited to the MOM and may link the 

depolarization response to the recruitment of autophagy machinery. Additionally, it is 

possible that additional cytoplasmic proteins identify here as PARKIN-dependent targets are 

transiently recruited to mitochondria but below the level of detection in previous studies. It 
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is also likely that ubiquitylation of PARKIN targets alters their enzymatic properties or 

functions prior to their turnover by the proteasome or autophagy. Potential PARKIN-

regulated functions include: 1) fusion-fission cycles (FIS1, TBC1D15), 2) small molecule 

transport (VDACs), 3) apoptosis (FKBP8, MCL1, BAX), and 4) iron-sulfur shuttling 

(CISD1), 5) protein translocation (TOMM70), or 6) proteasome assembly or activity (PSMC 

subunits) (see Supplemental Text).25,27

This work provides systematic target identification and ubiquitylation site-specificity for 

PARKIN, thereby revealing the diversity and complexity of PARKIN function on the MOM 

and in the cytoplasm. This resource will enable the development of methods that detect 

specific diGLY sites in PARKIN targets in situ, thus enabling a deeper understanding of 

how PARKIN controls mitochondrial homeostasis in tissues relevant to Parkinson’s Disease.

FULL METHODS

Sample Preparation for diGLY capture

HCT116, HeLa or SH-SY5Y cells (108) were grown in lysine free DMEM supplemented 

with 10% dialyzed FBS (Gibco), 2 mM L-glutamine, pen/strep, and light (K0) lysine (50 µg/

mL).12 Heavy media was the same except the light lysine was replaced with K8-lysine 

(Cambridge Isotopes) at the same concentration. Where indicated, cells were treated with 

Btz (1 µM), CCCP (10 µM), and/or BafA (50 nM) for the times indicated. Btz was a gift 

from Millennium Pharmaceuticals. After the indicated treatments, heavy and light cells were 

mixed 1:1 by cell number and lysed in 8 mL of denaturing lysis buffer [8 M Urea, 50 mM 

Tris pH 8.2, 75 mM NaCl, protease inhibitors (EDTA-free, Roche].12 Samples were 

incubated on ice for 10 min and then sonicated with 3 × 10s pulses. We typically obtained 

30–50mg of total protein. Lysates were digested with trypsin as described previously28 with 

one modification. Prior to trypsin digestion, lysates were diluted 1:1 with 50 mM Tris pH 

8.2 to lower the urea concentration to 4 M and digested with 10 ng/µl Lys-C (Wako) for 2 

hrs at room temperature.

Immunoprecipitation of diGLY containing peptides

Lyophilized peptides from 30–50 mg of digested proteins were resuspended in 1.3 ml of IAP 

buffer (50 mM MOPS pH 7.4, 10 mM Na2HPO4, 50 mM NaCl) and centrifuged at 14,000 × 

g for 5 minutes to remove any insoluble materials. The supernatant was incubated with α-

diGLY antibody coupled to protein A agarose or acrylamide beads for 1hr at 4°C and 

washed with IAP buffer 3× and once with PBS as described previously.12 Peptides were 

eluted by treatment with 50 µl of 5% formic acid for 10 minutes twice. The eluted peptides 

were desalted using C18 stage-tip method and resuspended in 5% formic acid prior to mass 

spec analysis. Lysates were subjected to immunoprecipitation sequentially 2 or 4 times, 

unless otherwise noted in Table S1.

Mass spectrometry analysis of diGLY peptides

Peptides were separated on 100 µm × 20 cm C18 reversed phase (Maccel C18 3µ 200Å, The 

Nest Group, Inc.) with a 165 min gradient of 6% to 27% acetonitrile in 0.125% formic 
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acid.29 The twenty most intense peaks from each full MS scan acquired in the Orbitrap 

Velos (Thermo) were selected for MS/MS (see RAW files for specific settings).

Sequest-based identification using a Human UNIPROT database followed by a target decoy-

based linear discriminant analysis was used for peptide and protein identification as 

described.12,30,31 Localization of diGLY sites employed a modified version of the A-score 

algorithm32 as described.12 A-scores > 13 were considered localized. SILAC-based site 

quantification and signal-to-noise was performed as described previously12 employing 

extracted ion chromatograms. The heavy- and light-labeled peptides from each search were 

subsequently combined using custom scripts. Other parameters used for database searching 

include: 50 ppm precursor mass tolerance; 1.0 Da product ion mass tolerance; tryptic 

digestion with up to three missed cleavages; and variable oxidation of Met (+15.994946). 

For an individual peptide to be used for quantification of sites and proteins, it had to meet 

one of two conditions: i) Both heavy and light isotopic envelopes must be detected with 

signal-to-noise ratios above 5.0; ii) One isotopic envelope (heavy or light) must have a 

signal-to-noise ratio above 10.0. Equal mixing ratios for heavy to light cells were confirmed 

by calculating the mean log2(H:L) ratios in non-diGLY non-lysine containing peptides and 

subtracting that from the corresponding log2(H:L) diGLY ratios if necessary. Keratins were 

removed from site lists. Contributions of peptide identifications to various protein isoforms 

were condensed into a single UNIPROT descriptor using principles of parsimony. Mass 

spectrometry RAW files are available upon request.

Interaction Proteomics

Interaction proteomics was performed essentially as described previously, but with small 

modifications.22 Briefly, 293T or HeLa cells were transduced with a lentiviral vector 

expressing HA-FLAG-PARKIN (NP_004553.2) or the designated PARKIN mutants, and 

stable cell lines selected in puromycin. Cells from 4 × 15 cm dishes at 80% confluence were 

treated with CCCP (10 µM), Btz (1 µM), and/or BafA (50 nM) as indicated and after the 

indicated time, cells were harvested and lysed in 3 ml of 50 mM Tris-HCl [pH 7.4], 150 mM 

NaCl, 0.5% Nonidet P40, and protease inhibitors. Cleared lysates were filtered through 0.45 

µm spin filters (Millipore Ultrafree-CL) and immunoprecipitated with 30 µl anti-HA resin 

(Sigma). Complexes were washed 4× with lysis buffer, exchanged into PBS for a further 3 

washes, eluted with HA peptide, reductively carboxymethylated, and precipitated with 10% 

TCA. TCA-precipitated proteins were trypsinized, purified with Empore C18 extraction 

media (3 M), and analyzed via LC-MS/MS with a LTQ-Velos linear ion trap mass 

spectrometer (Thermo) with an 18 cm3 125 µm (ID) C18 column and a 50 min 8%–26% 

acetonitrile gradient. All AP-MS experiments in 293T cells were performed in biological 

duplicates and for each biological experiment, complexes were analyzed twice by LC-MS to 

generate technical duplicates. AP-MS experiments in HeLa cells were performed on a single 

IP but with technical duplicates. Spectra were searched with Sequest against a target-decoy 

human tryptic UNIPROT-based peptide database, and these results were loaded into the 

Comparative Proteomics Analysis Software Suite (CompPASS) to identify high confidence 

candidate interacting proteins (HCIPs).22 Here, a stats table derived from analogous AP-MS 

data for 166 unrelated proteins was employed to determine weighted and normalized D-

scores (WDN-score) as well as Z-scores based on spectral counts. The D-score measures the 
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reproducibility, abundance, and frequency of individual proteins detected in each individual 

analysis.

To identify PARKIN associated proteins, we filtered proteins at a 2% false discovery rate 

for those with a WDN-score ≥ 1.0, Z-score ≥ 5, and average assembled peptide spectral 

matches (APSMs) ≥ 2 in both biological duplicates. In addition to the initially identified 

proteins, APSMs for interactors with WDN-scores greater than 1 under at least one condition 

examined, or with a Z-score greater than 10 in both biological duplicates, were plotted in 

heatmap form using Multi-experiment Viewer (MeV). Due to space limitations, a subset of 

proteins which had a WDN-score ≥ 1.0 in at least one experiment were omitted from Figure 

3 but are contained in the heat maps in Figure S4 as well as Tables S3 and S4. TAX1BP1 

that was identified in PARKIN immunoprecipitates and also found to be ubiquitylated but 

did not pass the stringent cut-off for passing our scoring scheme was also displayed in the 

heat map. We note that while several proteins passed the WDN-score cut-off for PARKIN 

associated proteins in the absence of depolarization in individual experiments, there was 

essentially no overlap within biological duplicates (Table S4). In addition, for proteins with 

a maximum of 1–3 spectral counts, it is possible that those proteins were missed under some 

conditions due to stochastic sampling of low abundance proteins by LC-MS (e.g. CYB5R3, 

TOM22, and RHOT1 with wild-type PARKIN at 8 h post CCCP in the presence versus the 

absence of BafA, Figure 3a). The following proteins were identified in only 1 biological 

duplicate as being associated with PARKIN but were included in the heatmap (Figure 3a) as 

they are also present as Class 1 diGLY targets: SQSTM1, TAX1BP1, TBC1D15, MYO6, 

VCP, RHOT2, HK2, MDH2, CYB5R3, and ACSL4.

Immunological Methods and Microscopy

To validate interactions between PARKIN and candidate interacting proteins (Figure S3), 

293T cells stably expressing HA-FLAG-PARKIN were either left untreated or treated with 

CCCP (10 µM) or CCCP (10 µM) and Btz (1 µM) for 1 h. Extracts [50 mM Tris-HCl [pH 

7.4], 150 mM NaCl, 0.5% Nonidet P40, and protease inhibitors] from cells were subjected to 

immunoprecipitation with anti-FLAG resin (M2 agarose; Sigma), and washed complexes 

subjected to immunoblotting with the indicated antibodies. To examine MFN2 

ubiquitylation, extracts from cells lysed in denaturing lysis buffer [8 M urea, 75 mM NaCl, 

50 mM Tris, [pH 8.0], and protease inhibitors] expressing the indicated HA-FLAG-

PARKIN mutant proteins were separated on a 4–12% gradient SDS-polyacrylamide gel 

(PAGE) and blotted with anti-HA or anti-MFN2. To examine PARKIN levels in the cell 

lines employed (Figure S1), cells were lysed in denaturing lysis buffer and protease 

inhibitors and extracts subjected to SDS-PAGE and immunoblotting. To examine 

ubiquitylation of candidate PARKIN substrates by immunoblotting, HCT116 cell lines 

stably expressing the candidate substrates C-terminally tagged with HA-FLAG epitopes 

were transfected with either control siRNA or an siRNA targeting PARKIN (#1: 5’-

GGAGUGCAGUGCCGUAUUU-3’, #2: 5’-GUAAAGAAGCGUACCAUGA-3’, #3: 5’-

GGAGCCAUCGCCUAUGAAA-3’, #4:5’-GUAAAGAAGCGUACCAUGA-3’, Thermo 

Scientific). After 72 h, cells were treated with CCCP (10 µM) ± the presence of Btz to block 

proteasomal turnover of targets. At the indicated times, cells were lysed in 8 M urea and 

subjected to immunoblotting using anti-HA antibodies. Identical gels were run and probed 
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with anti-PCNA as a loading control. The antibodies used are as follows: anti-TOMM70, 

(Proteintech, 14528-1); anti-MFN2, (Epitomics, 3272-1 or Sigma, WH0009927M3); anti-

ADRM1, (Enzo Scientific, BML-PW9910); anti-Rpn10, (Enzo Scientific, BML-PW9250); 

anti-HK1, (Cell Signaling, C35C4); anti-PSMD2, (Affinity BioReagents, PA1-964); anti-

PARKIN, (PRK8, Santa Cruz, sc-32282).

To examine the localization of PARKIN and various PARKIN mutants, HeLa cells stably 

expressing HA-FLAG-tagged proteins were plated on No.1 coverslips, treated with CCCP 

(10 µM, 1h), and fixed with 4% paraformaldehyde prior to immunofluorescence using anti-

HA to detect PARKIN proteins and anti-TOMM20 to detect mitochondria. All images were 

collected with a Yokogawa CSU-X1 spinning disk confocal on a Nikon Ti-E inverted 

microscope equipped with 100× Plan Apo NA 1.4 objective lens. HA-PARKIN fluorescence 

was excited with the 491nm line (selected with an AOTF) from Spectral Applied Precision 

LMM-7 solid state laser launch. Emission was collected with a quad band pass polychroic 

mirror (Semrock) and a Chroma ET525/50m emissions filter. TOMM20 fluorescence was 

excited with the 561nm line from the LMM-7 launch, and emission collected with the 

Semrock polychroic and a Chroma ET620/60m emission filter. Images were acquired with a 

Hamamatsu ORCA-AG cooled CCD camera controlled with MetaMorph 7 software. Nine 

z-series optical sections were collected with a step size of 0.2 microns, using the internal 

Nikon Ti-E focus motor. Z-series were deconvolved using AutoQuant blind deconvolution 

software, and are displayed as maximum z-projections. Gamma and brightness were 

adjusted on displayed images (identically for compared image sets) and percent 

colocalization was calculated by thresholding for signal at least 4 standard deviations above 

background in a single z slice (identically for compared image sets) using MetaMorph 7 

software (Table S6).

Structural Analysis of Ubiquitylation Sites and Web Portal

Using the Uniprot identifier for each protein identified, the corresponding PDB file(s) (if 

available) were determined using data from the UniProt to PDB cross-reference table (http://

www.ebi.ac.uk/pdbe/docs/sifts/quick.html). The amino acid position in the structure 

corresponding to each ubiquitylation site was calculated based on their relative position in 

the structure using the information provided by the cross reference table. Data for each 

experiment was stored in MySQL tables, which are used when accessing the data via the 

web portal. For rendering of the structural information via the web portal, Jmol: an open-

source Java viewer for chemical structures in 3D (http://www.jmol.org/) was used. Access to 

the web portal is available at: harper.hms.harvard.edu.

Gene Ontology

Gene ontology analysis was performed using DAVID.33 Additional sub-cellular localization 

parameters as designated in Figure 2 were performed manually using MITOCARTA, 

Human Protein Atlas, and Genbank.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. QdiGLY proteomics for PARKIN-dependent ubiquitylation
a, Proteomics work flow. b, diGLY sites identified and quantified across 73 experiments. 

FDR, false discovery rate. c, log2(H:L) plots for quantified diGLY peptides for 

HCT116PARKIN (experiment 17) or HeLaPARKIN (experiment 57) cells (Table S2). d, 

Overlap of ubiquitylation sites in HeLaPARKIN biological triplicates (1h CCCP + Btz) (Table 

S1, S2). e, Ubiquitylation site and protein overlap between all HCT116PARKIN and 

HeLaPARKIN experiments treated with CCCP and Btz for 1h. f, log2(H:L) ratios for selected 

diGLY sites from HCT116PARKIN (Ex 17) and HeLaPARKIN (Ex 57) (1h CCCP + Btz).
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Figure 2. PARKIN-dependent ubiquitylation sites revealed by QdiGLY proteomics
Class 1 sites are in black font. Additional sites found in Class 1 proteins are in red 

(HCT116PARKIN) or blue font (HeLaPARKIN). Site overlap in HCT116 and/or SH-SY5Y: 

magenta, orange, and green octagons. Dotted lines: interacting proteins. Rectangles 

represent Class 2 substrates. Red or blue boxes refer to additional sites identified in either 

HCT116PARKIN and HeLaPARKIN cells (Table S2). * and ^, protein levels decrease or 

increase, respectively, upon depolarization.4
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Figure 3. PARKIN associates with mitochondrial proteins and the proteasome in response to 
depolarization
a, Heat map of HCIPs (represented by APSMs) for HA-FLAG-PARKIN and mutants in 

response to depolarization in 293T cells, with or without Btz or BafA. Proteins indicated had 

WDN-scores ≥ 1.0, Z-score ≥ 5, and APSMs ≥ 2 unless otherwise noted (see METHODS).b, 

Summary of PARKIN-interacting proteins in 293T and HeLa and integration with diGLY 

sites.
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Figure 4. Structural anatomy and conservation of PARKIN-dependent diGLY sites
Structures or domain schematics are shown for Class 1 depolarization and PARKIN-

dependent diGLY sites (PDB codes, Table S5). Color-coded circles (a) indicate the 

conservation of Lys at the homologous position in M. musculus, D. rerio, and D. 

melanogaster (Table S5). For structures, regulated sites are shown in red space-filled 

models. b, Cytoplasmic proteins. RPN10, red circle. c, MOM proteins with structures. d, 

MOM proteins without structures.
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