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Recent studies suggest that interleukin 6 (IL-6) is released from
contracting skeletal muscles; however, the cellular origin, secre-
tion kinetics, and signaling mechanisms regulating IL-6 secretion
are unknown. To address these questions, we developed imaging
methodology to study IL-6 in fixed mouse muscle fibers and in
live animals in vivo. Using confocal imaging to visualize endog-
enous IL-6 protein in fixed muscle fibers, we found IL-6 in small
vesicle structures distributed throughout the fibers under basal
(resting) conditions. To determine the kinetics of IL-6 secretion,
intact quadriceps muscles were transfected with enhanced green
fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days
later anesthetized mice were imaged before and after muscle
contractions in situ. Contractions decreased IL-6-EGFP–containing
vesicles and protein by 62% (P , 0.05), occurring rapidly and
progressively over 25 min of contraction. However, contraction-
mediated IL-6-EGFP reduction was normal in muscle-specific
AMP-activated protein kinase (AMPK) a2-inactive transgenic
mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP
vesicles, an effect that was inhibited in the transgenic mice. In
conclusion, resting skeletal muscles contain IL-6–positive vesicles
that are expressed throughout myofibers. Contractions stimulate
the rapid reduction of IL-6 in myofibers, occurring through an
AMPKa2-independent mechanism. This novel imaging methodol-
ogy clearly establishes IL-6 as a contraction-stimulated myokine
and can be used to characterize the secretion kinetics of other
putative myokines. Diabetes 62:3081–3092, 2013

S
keletal muscle is a critical tissue for whole-body
glucose metabolism during both normal and
pathological conditions. There is increasing evi-
dence that skeletal muscles express myokines,

hormone-like factors that are released into the serum to
function in an autocrine, paracrine, or endocrine man-
ner (1–5). In recent years, numerous myokines have
been proposed to be secreted from muscle, including
interleukin-6 (IL-6) (1), fibroblast growth factor 21 (3),
follistatin-like 1 (2), insulin-like 6 factor (4), and most
recently irisin (5). Thus, skeletal muscle is potentially the

largest endocrine organ in the body, and myokine release
may provide a significant mechanism for crosstalk with
other tissues.

Of these putative myokines, IL-6 has been the most ex-
tensively studied (1,6). IL-6 has been proposed to be se-
creted from skeletal muscle and to function in an
autocrine manner to activate signaling proteins mediating
glucose uptake (7), glycogen metabolism (8), fat metabo-
lism (9), and muscle hypertrophy (10). Despite consider-
able investigation of IL-6, the exact cellular origin of IL-6
within the muscle tissue is not well understood. In fact,
previous studies have not clearly detected IL-6 protein
within the muscle fibers from human biopsies (11) or
mouse muscle sections (10) unless a state of inflammation
(12,13) or injury (10) was present. It is possible that the
biopsy procedure itself causes IL-6 release and contami-
nation from invading macrophages (14), interfering with
the ability to determine the exact level and localization of
IL-6 within the muscle fibers. Thus, whether IL-6 is present
in skeletal muscle fibers under normal, resting conditions
is not fully understood.

There is considerable evidence that exercise increases
circulating concentrations of IL-6 based on studies dem-
onstrating an increased arterial/venous IL-6 difference
across contracting skeletal muscles (1,6,15–17). However,
studies analyzing the cellular localization of IL-6 within
muscle fibers during exercise are limited. In one study,
bicycle ergometer exercise for 2 h resulted in increased
detection of IL-6 protein near the sarcolemma region of
vastus lateralis muscle (11). Since light microscopy cannot
distinguish the sarcolemma from the interstitial space, one
interpretation of this finding is that the detected IL-6 did
not originate from muscle fibers but instead arose from
biopsy- and/or exercise-induced macrophage infiltration
(14). If muscle fibers are the source of increased circulating
IL-6 during exercise, then the number of secretory vesicles
containing IL-6 in the muscle fibers might be expected to
decrease with contractions, not increase. Given the ambi-
guities of previous data, one aim of the current study was to
determine the kinetics and time course of a putative IL-6
release from contracting skeletal muscle fibers.

Exercise increases AMP-activated protein kinase (AMPK)
activity in skeletal muscle, and AMPK signaling pathways
have been proposed to mediate multiple metabolic effects
(18). Exercise-stimulated AMPK activity in muscle has been
associated with an increase in circulating IL-6 during exer-
cise (19), although a direct link between AMPK activation
and IL-6 protein release from muscle fibers has not been
reported (19,20). AMPK stimulation has also been reported
to alter IL-6 expression, albeit with conflicting results (21–
23). In one report, 24 h of incubation of C2C12 muscle cells
with the AMPK activator AICAR increased IL-6 mRNA (21).
In another report, 2–4 h of AICAR incubation of soleus and
extensor digitorum longus muscles decreased IL-6 mRNA
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(22,23) and IL-6 secretion into the incubation media (23).
Thus, the role of AMPK in the regulation of IL-6 in skeletal
muscle has not been established.

In the current study, we determined if intact muscle
fibers express IL-6 under basal, resting conditions. In ad-
dition, we determined if muscle contraction and AICAR
regulate IL-6 secretion in vivo. Finally, we investigated the
potential role of AMPKa2 in contraction-stimulated IL-6
release. To address these questions, we developed novel
imaging techniques that allow for kinetic analysis of IL-6–
containing vesicles within intact muscle fibers in vivo.
These studies establish that IL-6 is a contraction-induced
myokine in intact muscle fibers, but that AMPKa2 activity
does not mediate contraction-stimulated IL-6 secretion.

RESEARCH DESIGN AND METHODS

Protocols for animal use were in accordance with the guidelines of the In-
stitutional Animal Care and Use Committee of the Joslin Diabetes Center and
the National Institutes of Health. All animals were housed in a 12:12-h light:dark
cycle and fed a standard laboratory chow andwater ad libitum.Whole-body IL-6
knockout (B6.129S2-Il6tm1kopf/J) and corresponding wild-type (C57BL/6J) mice
were obtained from The Jackson Laboratory. Wild-type NMRI (Naval Medical
Research Institute) mice were obtained from Taconic, Denmark. AMPKa2-
inactive transgenic mice on an FVB background and matched controls were
also studied (24).
In situ contraction. Animals underwent a 12-h fast and were anesthetized
with 90 mg/kg pentobarbital. Sciatic nerves were bilaterally isolated, and
electrodes were placed around each nerve, which were connected to a Grass
S88 stimulation unit. One tibialis anterior (TA) muscle was stimulated for 45
min (1 train/sec, 500-ms train duration, 100 Hz, 0.1-ms pulse duration, 1–13 V),
while the muscle of the contralateral leg served as the control experiment.
After the conclusion of the contraction protocol, TA muscles were removed
and immediately fixed as previously described (25).
Image analysis of endogenous IL-6 localization in muscle fibers. From
the fixed TA muscles single fibers were isolated. Thirty fibers from each muscle
were arbitrarily isolated from the muscle with fine forceps and were subjected
to immunostaining as previously described (25,26). Primary antibodies against
IL-6 (ab-6672) and Golgi marker 130 (GM130 [ab-40881]) were obtained from
Abcam (Cambridge, MA). The secondary Alexa488 antibody (#A11008) was
obtained from Molecular Probes (Eugene, OR). Confocal images were
obtained blindly on a Zeiss LSM-410 confocal microscope with Argon Krypton
488-nm laser line for excitation of Alexa488. Z stacks were collected using
a 633 Apochromat (1.4 NA) Zeiss oil immersion objective and a zoom of 2.
Z stacks were collected at every third muscle fiber (n = 8 out of the 30 fibers
arbitrarily isolated) at two different intracellular locations. The distance cov-
ered 6 mm from the interior (approximately 12 mm from the surface) toward
the surface of the fiber using 83 frame image averaging.
Plasmid procedures and transfection. The plasmid “IL-6-pEGFP C-fusion”
was generated by PCR amplification of the IL-6 coding region from a mouse
full-length EST clone (BC132458, IMAGE #40130735; Source BioScience,
Nottingham, U.K.) using the following primers: 59-GCG GAA TTC GTC AAT
TCC AGA AAC CGC TA-39and 59-CGC CTC GAG GGT TTG CCG AGT AGA
TCT CAA AGT-39. This PCR product was cut with EcoRI and XhoI and inserted
in the EcoRI and BamHI sites of pEGFP-N1 (Clontech Laboratories, Inc.,
Mountain View, CA). To enable ligation between the XhoI site and the BamHI
site, a linker was added, which was made by hybridization between the two
oligonucleotides 59-TCGACGGATATCCGCGGGCCCGG-39and 59-GATCCCG-
GGCCCGCGGATATCCG-39. This three fragment cloning produced a coding
sequence fusion of IL-6 to the N-terminus of enhanced green fluorescent
protein (EGFP). The inserted sequence was confirmed by sequencing. The
Golgi marker pEYFP (enhanced yellow fluorescent protein)-Golgi was used as
a nonsecreted control and was obtained from Clontech (#6909–1). DNA was
grown in E. coli TOP10 cells and extracted using a Plasmid Mega Kit (Qiagen,
Valencia, CA). DNA was dissolved in water.

For intravital imaging experiments, the quadriceps muscles of 7- to 9-week-
old male ICR mice (Taconic, Derwood, MD) were anesthetized, the skin
covering the quadriceps was opened, and the superficial muscle fibers were
transfected with gene gun bombardment with 1 mg IL-6-EGFP or EYFP-Golgi
cDNA/0.5 mg gold, as previously described (26,27). After transfection, the skin
was closed with sutures and the animals recovered for 5 days.
Intravital imaging. Five days after transfection, the overnight fasted mice
were anesthetized with phenobarbital sodium (90mg/kg, intraperitoneally), and
the skin covering the quadriceps muscle was opened to expose the quadriceps.

The mice were mounted on their side in dental cement, as previously described
(27,28). In the animals used for contraction-stimulation experiments, micro-
eletrodes were placed in the groin and knee region of the quadriceps muscle,
just before applying a coverglass. In the animals used for AICAR- or caffeine-
stimulation experiments, a catheter was placed in a tail vein. Ten minutes after
mounting, a confocal image was recorded just beneath the surface (;3 mm
below the sarcolemma) of the transfected muscle fiber. Another image 6 mm
deeper inside the fiber was also recorded. There was an additional 30-min
temperature and movement stabilization period and another basal pair of
images were obtained and used as t = 0 (t denotes accumulated contraction
time) throughout the study. The images obtained just after mounting and
30 min later did not differ significantly. The 512 3 512 pixel confocal images
were collected with a 633, 1.2 NA Zeiss C-Apochromat water immersion ob-
jective on a Zeiss LSM-410 confocal microscope with ArKr 488-nm laser line
for excitation of EGFP. Green emission light was collected between 500 and
530 nm using the standard fluorescein isothiocyanate filter. Immediately after
basal image pair (t = 0), direct electrical muscle stimulation was initiated
(frequency 2 Hz, duration 60 ms, voltage 1.1–3 V for 3 3 5 min + 1 3 10 min
eliciting repeated single contractions). The contractions of the imaged fibers
were continually monitored through the oculars of the microscope. Voltage
was adjusted accordingly to maintain force. Contraction periods were sepa-
rated by 90 s of rest. Confocal images were collected at the end of each
contraction period. AICAR was given as an intravenous bolus (1 g/kg), and
images were collected every 10 min after injection. In the animals given caf-
feine stimulation, a continuous infusion was given intravenously for 20 min
(85 mg/kg) followed by monitoring until 70 min after infusion. The caffeine
concentration was modeled after a caffeine concentration (510 mg/kg) pre-
viously shown to increase glucose transport in incubated muscle without
contractions (29). However, infusing this higher concentration in vivo would
result in whole-body contractions, instability, or death of the mouse, thereby
interfering with the experiment and imaging.
Image analysis. Images obtained in immunostained muscle fibers were
obtained as TIFF images with the Zeiss confocal software and were imported
into Metamorph Software (V. 6.1; Universal Imaging Corp., West Chester, PA).
Image stacks were created, andmaximal and average projections were created.
The total number, average gray value intensity, and average area of IL-6 and
GM130 vesicular staining were quantified throughout the field of view in the
muscle fiber. For the time-lapse image stacks of IL-6-EGFP or EYFP-Golgi, the
threshold and the classifying settings of the Metamorph software were adjusted
to count the IL-6 vesicles and avoid nonspecific background. Because of
variation in the level of IL-6-EGFP or EYFP-Golgi expression between in-
dividual transfected fibers, the actual vesicle count divided by the vesicle count
at t = 0 (T/T0) is shown.
Statistical analysis. Vesicle counts obtained from fibers in Metamorph were
imported into Sigma plot 10.0 and subjected to paired t test or one way ANOVA
against ROI fluorescence values at t = 0 (T/T0).

RESULTS

IL-6 is located in vesicle-like structures in resting
muscle fibers that are reduced by muscle contractions.
To determine if mouse TA muscle fibers contain IL-6 pro-
tein, we analyzed the intracellular localization of endoge-
nous IL-6 by immuno-staining of intact fixed fibers (Fig. 1).
Briefly, mice were anesthetized and the sciatic nerve was
attached to electrodes, and the TA muscle in one leg was
contracted in situ for 45 min. The contralateral leg was used
as a resting, basal control. After contractions, both muscles
were excised and fixed. Single muscle fibers were teased
from both muscles and immunostained for IL-6. In the TA
muscle fibers from the rested leg, IL-6 protein was observed
in discrete, dot-like vesicular structures near the sarco-
lemma (Fig. 1A, vertical arrow) and inside the fibers in the
area of the T-tubule membranes (Fig. 1A, diagonal arrow).
The IL-6–positive vesicles were not present in muscle fibers
from whole-body IL-6 knockout mice (Fig. 1C), demon-
strating the specificity of staining. In the TA muscles from
the contracted leg, the number of IL-6–positive vesicles
within the muscle fibers was significantly reduced (Fig. 1B,
arrows), which corresponded to a 62% reduction in IL-6
vesicles throughout the muscle fibers (Fig. 1D). In order to
rule out the possibility that the decrease in IL-6 vesicle
number was a result of vesicle fusion, average vesicle
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intensity (Fig. 1E) and average vesicle size (Fig. 1F) were
quantified. There was no significant difference in IL-6 vesi-
cle intensity or average area. These data demonstrate that
IL-6 protein is abundant in vesicular structures inside
mouse muscle fibers and that the number of intramyofibril
IL-6 vesicles is reduced following muscle contractions.

To ensure that the decrease in IL-6 vesicles was not
caused by a general contraction-induced protein leak from
the muscle fibers, we stained for an endogenous non-
secreted protein, GM130. GM130 is a widely used marker
that is bound to the Golgi membranes helping to maintain
the cis-Golgi structure (30). Under resting conditions,
GM130-positive structures were located in dot-like vesicles
throughout the muscle fiber at both the sarcolemma and
T-tubule regions (Fig. 2A, arrows). The localization, num-
ber, intensity, and average area of GM130-positive vesicle
structures did not change during 45 min of in situ
contractions (Fig. 2B, arrows; Fig. 2C). Thus, in con-
trast to IL-6 (Fig. 1), the GM130-positive structures are
not reduced during fiber contraction. These data indicate
that the contraction-induced reduction in IL-6–positive vesi-
cles is not due to a general protein leak from the muscle
fibers (Fig. 2).
Muscle contractions gradually deplete vesicular IL-6
in muscle fibers in vivo. To determine the kinetics of
contraction-mediated IL-6 vesicle reduction, we analyzed

IL-6 vesicle localization and number in muscle fibers be-
fore, during, and after a bout of muscle contractions in
situ. We expressed IL-6-EGFP in the superficial portion of
the quadriceps muscle in living mice using gene gun trans-
fection (26–28,31–33). Five days later, mice were anes-
thetized and the transfected fibers were subjected to
intravital imaging (34). An image was collected just beneath
the sarcolemma surface (fiber surface position) along with
another image 6 mm inside the fiber (fiber interior position).
During basal conditions, IL-6-EGFP was localized in vesic-
ular structures at the surface position of the transfected
muscle fiber (Fig. 3A, t = 0) and throughout the interior
location (Fig. 3B, t = 0). Thus, IL-6-EGFP–positive vesicles
were located similarly to the endogenous IL-6–positive
vesicles described in Fig. 1. Immediately after recording the
basal (t = 0) images, the muscle fibers were subjected to in
situ contractions for 3 3 5 min and 1 3 10 min, with each
contraction bout separated by 90 s of rest. Images were
obtained between each contraction bout at both surface
(Fig. 3A) and interior positions (Fig. 3B). The number of
IL-6-EGFP vesicles in both positions was reduced by ap-
proximately 50% during the first 15 min of contractions
(Fig. 3C), and the last 10 min of contraction further reduced
IL-6-EGFP vesicles to 40% of basal (Fig. 3C). The quantita-
tive data are similar to the reduction of endogenous IL-6
found by immunostaining (Fig. 1). To confirm the imaging

FIG. 1. Endogenous IL-6 is localized in vesicle-like structures in resting muscle fibers, and muscle contraction results in IL-6 vesicle reduction.
A: Image of IL-6 immunostaining displays IL-6–positive vesicle-like structures (arrows) in a resting TA muscle fiber. Bar = 20 mm. B: Image of IL-6
immunostaining in a TA muscle fiber after 45 min of in situ muscle contractions. Similar observations were made in fibers from 6 mice per group.
Inserts are magnified parts of the images. C: IL-6 knockout TA muscle fibers were immunostained for IL-6 as a negative control. D: Image
quantification of immunostained IL-6 vesicles from basal and contraction-stimulated muscles, showing a 62% reduction in the number of IL-6–
positive vesicles after 45 min of in situ contractions. E and F: Image quantification of immunostained IL-6 average vesicle light intensity (pixel
gray value) (E) and mean area (pixel area) (F) from basal and contraction-stimulated muscles, showing no changes in the average intensity or size
of the IL-6–positive vesicles after 45 min of in situ contractions compared with basal. Values are mean 6 SE, n = 6. *P < 0.005.
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results of contraction-mediated IL-6 depletion from single
muscle fibers on a whole-muscle level, IL-6-EGFP was
expressed in gastrocnemius muscles of NMRI mice using
in vivo electroporation. In situ contractions resulted in
a 68% reduction in IL-6-EGFP protein (Fig. 3D, P = 0.02,
n = 3), comparable to the reduction in vesicle number
observed using imaging.

Taken together, these intravital images show that IL-6 is
localized to vesicular structures throughout the muscle
fibers and that contractions induce a continuous reduction
of IL-6 within the muscle fibers over time (Fig. 3).

Similar to the experiments of GM130 immunostaining,
we performed in vivo imaging of a fluorescent tagged
trans-Golgi marker 1,4-galactosyltransferase (35) fused
N-terminally to EYFP (EYFP-Golgi). This was done to en-
sure that the disappearance of IL-6-EGFP was not due to a
contraction-induced protein leak from muscle fibers dur-
ing in vivo contractions. In the basal state, EYFP-Golgi was
localized in a dotted vesicular like pattern (Fig. 4A and B;
t = 0 in B) similar to GM130 (Fig. 2). There was no re-
duction in EYFP-Golgi after 25 min of in situ contractions
(Fig. 4A–C; t = 5–25 in B).
AICAR decreases vesicular IL-6-EGFP–positive
vesicles in skeletal muscle. Incubation of intact soleus
and extensor digitorum longus muscles in vitro with the
AMPK activator AICAR for 2 h has been shown to inhibit

IL-6 production (23), whereas AICAR incubation of cultured
human myotubes for 24 h increases IL-6 mRNA (21,36).
Here, we determined if short term AICAR infusion results in
the release of IL-6 from muscle fibers. Quadriceps muscles
were transfected with IL-6-EGFP, and 5 days later mice
were injected intravenously with a bolus of AICAR (1g/kg).
Changes in IL-6-EGFP were measured using time-lapse
imaging of IL-6-EGFP in situ. AICAR injection resulted in
a gradual decrease in IL-6-EGFP vesicles at both surface
(Fig. 5A) and interior (Fig. 5B) positions of the muscle
fibers. The reduction of IL-6-EGFP was specific to AICAR
injection, since saline did not result in a significant reduction
of IL-6-EGFP (Fig. 5C and D). The decrease in IL-6-EGFP
reached a plateau 70 min after injection, with an approxi-
mately 50% reduction in both positions (Fig. 5C and D). To
determine if AMPK activity mediated the effects of AICAR
on IL-6, we used muscle-specific transgenic mice that ex-
press inactive AMPKa2, the major AMPK catalytic isoform
expressed in skeletal muscle. AICAR did not decrease IL-6-
EGFP vesicle number in muscle-specific AMPKa2-inactive
mice (Fig. 5E and F). AICAR had no effect on the Golgi
marker EYFP-Golgi (Fig. 6A–D). These results indicate
that AICAR decreases IL-6-EGFP vesicle number in muscle
fibers to a degree comparable to that of in situ con-
tractions (Fig. 4) and that AMPKa2 mediates AICAR-
stimulated IL-6-EGFP vesicle reduction.

FIG. 2. Endogenous GM130 is localized in vesicle-like structures in resting muscle fibers and is not reduced by muscle contractions. A: Image of
GM130 immunostaining; shown are GM130-positive structures (arrows) in resting TA muscle fiber. Bar = 20 mm. B: Image of GM130 immunos-
taining in TA muscle fibers subjected to 45 min of in situ muscle contractions. Similar observations were made in fibers from 6 mice. Inserts are
magnified parts of the images. Bars = 20 mm. C–E: Quantification of immunostained GM130 vesicle number (C), average vesicle light intensity (D),
and average vesicle size (E) from basal and contraction-stimulated muscle fibers. No significant reduction in number, intensity, or area of GM130-
positive vesicles was detected after 45 min of in situ contractions. Values are mean 6 SE, n = 6.
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Caffeine does not decrease vesicular IL-6 in skeletal
muscle. Calcium is essential for excitation-contraction
coupling in muscle and is a well-established trigger signal
for vesicle reduction in many secretory cell types (37). To
determine if calcium mediates IL-6 vesicle reduction, the
calcium releasing agent caffeine was infused intravenously
from 0–20 min at the highest dose (85 mg/kg) possible
without inducing whole-body muscle contractions and
larger movements due to the systemic delivery in the living
mice. Caffeine had no effect on IL-6-EGFP or Golgi marker
EYFP-Golgi vesicles during the 20 min of caffeine infusion
or during the 50-min period after infusion (Fig. 7A–C). In
contrast, the caffeine infusion led to significant increases
in phosphorylation of Ca2+/calmodulin-dependent protein
kinase II both during and after infusion, indicating that the
caffeine infusion protocol had an effect at the cellular level
(Fig. 7E).
Contraction-stimulated IL-6 vesicle reduction is not
mediated by AMPKa2 activity. Our results with AICAR

and caffeine led us to hypothesize that AMPK, but not
calcium signaling, is important for contraction-mediated
IL-6 reduction. Therefore, we used the muscle-specific
AMPKa2 inactive transgenic mice to test this hypothesis.
Under basal conditions, IL-6-EGFP–positive vesicles were
similarly distributed throughout the muscle fibers when
comparing control mice with AMPKa2-inactive transgenic
mice (Fig. 8A and B). Muscle contractions similarly reduced
IL-6-EGFP vesicles at the surface and interior positions in
both wild-type and transgenic mice, demonstrating that the
contraction-induced reduction of IL-6 in AMPKa2 inactive
transgenic was fully intact (Fig. 8A and B).

DISCUSSION

Physical exercise is an important modality to improve
whole-body metabolic state and insulin sensitivity. It
has been postulated that IL-6 secretion from exercising
skeletal muscle contributes to the exercise-induced changes

FIG. 3. IL-6-EGFP vesicles are significantly and continuously reduced in mouse muscle fibers during in situ contractions. A and B: t = 0 confocal
images of a basal quadriceps muscle fiber expressing IL-6-EGFP just prior to in situ contractions in a mouse. IL-6-EGFP is localized to vesicle-like
structures both near the surface position (A) and interior position (6 mm deeper) in the muscle fiber (B). In situ contractions were elicited for 33
5 min periods (t = 5, 10, 15) and then a 10-min period (t = 25), each separated by 90 s of rest. t = denotes accumulated contraction time. Similar
observations were made in fibers from 7 mice. Bar = 20 mm. C: Image quantification of IL-6-EGFP vesicle structures from images taken at the
surface or interior positions of the muscle fibers following each contraction period. Values are mean 6 SE, n = 7. *Denotes significant difference,
P < 0.05 compared to t = 0. D: Western blot of IL-6-EGFP protein reduction in basal or contracted IL-6-EGFP electroporated gastrocnemius
muscles. Values are mean 6 SE, n = 3 mice. *Denotes significant difference, P < 0.05.
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in whole-body metabolism, making IL-6 essential for the
beneficial effects of exercise on glucose homeostasis (38).
However, data establishing the presence and/or secretion
of IL-6 in fully differentiated skeletal muscle has been
inconclusive (11–13). Previous studies using lower res-
olution imaging of sectioned skeletal muscle suggested
that under basal conditions there is very little IL-6
protein expression within the muscle fibers (11–13).
Here, we imaged single intact fixed muscle fibers or
living muscle fibers at high resolution and detected
significant amounts of intracellular IL-6–positive vesi-
cles under resting conditions at both the sarcolemma
and T-tubule regions. The vesicles were specific for
IL-6, as these vesicles were not present in the muscle
fibers of IL-6 knockout mice. Thus, these data clearly
establish that IL-6 is present within skeletal muscle
fibers.

Muscle contraction and AICAR stimulation reduced
IL-6–positive vesicles from both surface and interior
positions within living muscle fibers. Because muscle
fibers have a T-tubule network that plays a central role in
transmembrane substrate and hormone exchange with se-
rum (27,31,39), the localization of IL-6 inside the muscle
fiber in the vicinity of the T-tubule membranes is logical,
since this would increase the surface area available for
efficient release of IL-6. Consistent with this hypothesis,
contraction-induced IL-6 vesicle reduction was rapid, with
a significant decrease in IL-6 vesicles occurring after only 5
min of muscle contractions. Our findings are compatible
with a secretory function of muscle fibers and demonstrate
that skeletal muscle fibers function as classic endocrine
cells containing depots of IL-6–positive intracellular vesi-
cles that are reduced upon contraction stimulation. The
concept of skeletal muscle fibers as a secretory cell is also

FIG. 4. In situ contraction does not reduce EYFP-Golgi vesicle structure content. A and B: t = 0 shows confocal images of a basal mouse quadriceps
muscle fiber expressing EYFP-Golgi just prior to in situ contractions. EYFP-Golgi localized to vesicle-like structures at the surface (A) or interior
positions (B) in a muscle fiber. In situ contractions were elicited for 3 3 5 min periods (t = 5, 10, 15) and then a 10-min period (t = 25), each
separated by 90 s of rest. Similar observations were made in fibers from 7 mice. Bar = 20 mm. C: Image quantification of EYFP-Golgi vesicles
structure at the surface or interior positions of the muscle fibers following each contraction period. Values are mean 6 SE, n = 7.

IL-6 IMAGING IN MUSCLE FIBERS

3086 DIABETES, VOL. 62, SEPTEMBER 2013 diabetes.diabetesjournals.org



supported by data showing that muscles express vesicle-
associated membrane protein family members localized to
GLUT4 vesicles, and these vesicles are involved in regu-
lated secretion (40). Although the current study presents
many lines of evidence that IL-6 vesicles are undergoing

stimuli depletion from muscle fibers, consistent with a re-
lease of IL-6 into serum, our imaging method cannot vi-
sually show a release of IL-6. However, all of the data
support that this is the case. In addition to the IL-6 imaging
data, we have also shown that the Golgi marker is not

FIG. 5. IL-6-EGFP vesicles are gradually and significantly reduced by AICAR stimulation. A and B: t = 0 shows confocal images of basal IL-6-EGFP
vesicles at the surface (A) or interior (B) positions in a mouse quadriceps muscle fiber prior to i.v. administration of an AICAR bolus. Immediately
after t = 0, the AICAR bolus was given via tail vein. Similar observations were made in fibers from 5–6 mice. t = denotes accumulated time after the
bolus injection. Bar = 20 mm. C and D: Image quantification of IL-6-EGFP vesicles from images taken at the surface position (C) or interior
position (D) throughout the time period after either an AICAR or a saline bolus injection. E and F: Image quantification of IL-6-EGFP vesicles from
images taken at the surface (C) or interior (D) positions of the muscle fibers in AMPKa2-inactive transgenic mice and wild-type control mice after
bolus administration of AICAR. Values are mean 6 SE, n = 5–6. *P < 0.05 compared with t = 0.
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degraded with any of the stimulation protocols, making it
unlikely that IL-6 undergoes nonspecific degradation or
leakage. Furthermore, our findings that certain stimuli
don’t decrease IL-6 vesicle number (AICAR in AMPKa2-
inactive transgenic mice, caffeine) also suggest that IL-6
vesicle reduction is specific and not the result of a general,
stimuli-induced degradation.

We found that the maximal degree of reduction in
number of IL-6 vesicles in the muscle fibers was ;60%,
regardless of the intensity and length of the contraction
protocol. In contrast, the Golgi marker did not change with
any of the protocols. IL-6 vesicle reduction was found
without a change in IL-6 vesicle intensity or average area
and was confirmed by a similar reduction in IL-6-EGFP
protein, indicating that vesicle fusion or redistribution is
not the cause of a reduced IL-6 signal. The maximal de-
crease with AICAR stimulation was similar, with a 50%
reduction of IL-6 vesicle content. Interestingly, we have
previously reported that muscle contraction results in
a maximal reduction in GLUT4 vesicle depots of approxi-
mately 70% (34), comparable to maximal IL-6 reduction.
These findings suggest there is a limit to the degree of

decrease in protein-containing vesicles in skeletal muscle
fibers in the order of approximately 60–70%. A maximal
limit for secretory vesicle reduction has been described
in other cell types such as insulin-secreting pancreatic
cells (5–30%) (41), neuroendocrine cells (25%) (42), growth
hormone–secreting cells (5–25%) (43), mast cells (30–40%)
(44), and chromaffin cells (30%) (45). Lower maximal values
for other cell types suggest that the secretory function of
muscle may be higher. The higher capacity in muscle may
enable protein secretion even under conditions where a
low number of muscle fibers or mass of muscles are con-
tracting. This would allow for secretory functions such as
myokine secretion or GLUT4 vesicle movement to occur
even under conditions such as low-intensity exercise.

Even though our data showing a contraction-mediated
IL-6 vesicle reduction is in line with the classical concept
of secretory cell kinetics, our findings are in contrast to
a study analyzing muscle IL-6 before and after exercise (11).
Using immunohistochemistry of muscle sections from hu-
man biopsies, it was reported that IL-6, localized primarily in
the sarcolemma region, was increased 2 h after bicycle ex-
ercise (11). The discrepancy with our data, which revealed

FIG. 6. AICAR or saline stimulation does not reduce vesicle abundance. A and B: t = 0 shows confocal images of basal EYFP-Golgi vesicle structures
at the surface (A) or interior (B) positions in a mouse quadriceps fiber prior to intravenous administration of an AICAR bolus. Similar obser-
vations were made in fibers from 5–6 mice. Bar = 20 mm. C and D: Image quantification of EYFP-Golgi vesicles from images taken at the surface
position (C) or interior position (D) throughout the time period after either an AICAR or a saline bolus injection. Values are mean 6 SE, n = 5–6.
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a decrease in IL-6 signal, could be due to differences in
methods because the previous study was based on muscle
biopsies and not intact muscle in vivo (11). Interestingly,
mouse plantaris muscles subjected to surgical injury
showed significant IL-6 protein in the sarcolemma region
(10), and it has also been reported that the main source of
IL-6 within the muscle in response to muscle biopsy or
muscle isolation may be from circulating monocytes such as
macrophages (14). Thus, the increase in IL-6 protein ob-
served in the human muscle biopsies after exercise could
result from the surgical procedure combined with increased
macrophage migration during the exercise bout. Further-
more, an increase in IL-6 protein in the muscle fibers

simultaneous with an increase in the circulation is not
consistent with classical protein secretion consisting of a net
reduction of secretory content from the endocrine cell.

The similarities between our findings with muscle fibers
and classical endocrine cells led us to investigate a poten-
tial role for calcium in IL-6 vesicle reduction. Although
intracellular calcium release is a well-established signal
for release of vesicles in secretory cells, we found that
caffeine infusion, which resulted in a significant increase
in intracellular Ca2+/calmodulin-dependent protein ki-
nase II phosphorylation, had no effect on IL-6 vesicle
distribution. Our results are in line with a recent study in
incubated mouse muscles showing that calcium release

FIG. 7. Caffeine-mediated Ca
2
+/calmodulin-dependent protein kinase II (CAMK II) phosphorylation does not reduce IL-6-EGFP or EYFP-Golgi

vesicle abundance. A and B: t = 0 shows confocal images of basal IL-6-EGFP vesicles in the surface (A) or interior (B) part positions of a mouse
quadriceps muscle fiber prior to intravenous caffeine infusion. Similar observations were made in fibers from six mice. Bar = 20 mm. Immediately
after t = 0, caffeine infusion was initiated for 20 min and confocal images were collected every 10 min during and after infusion. C and D: Image
quantification of IL-6-EGFP (C) or EYFP-Golgi (D) vesicles from images taken at the surface position or interior position throughout the time
period after i.v. infusion of caffeine. Values are mean 6 SE, n = 6. E: Western blot of phosphorylated Ca

2
+/calmodulin-dependent protein kinase II

from muscle either basal, 20, or 40 min after caffeine infusion. Values are mean 6 SE, n = 5–6. *P < 0.05.
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had no effect on IL-6 mRNA production (23). The lack of
regulation by calcium is plausible given that even single
twitches result in the release of calcium within the myo-
fibers, making discriminate regulation of IL-6 release im-
possible. Thus, it is likely that calcium signaling does not
function in the regulation of IL-6 vesicle reduction in
skeletal muscle.

AMPK activation has been hypothesized to regulate, in
whole or in part, many of the metabolic and transcriptional
responses to exercise, including GLUT4 translocation and
glucose transport (46), fatty acid oxidation (47,48), mito-
chondrial biogenesis (49–51), expression of peroxisome
proliferator–activated receptor g coactivator-1a (51), and
fiber type transformation (52). AMPK has also been pro-
posed to be involved in contraction-stimulated IL-6 ex-
pression and secretion (19). Bicycle exercise for 60 min was
shown to increase both AMPK activity in muscle and IL-6 in
serum (19); however, whether AMPK mediates IL-6 vesicle
reduction has not been directly tested. Our current finding,

that AICAR injection decreases IL-6 vesicles in an AMPKa2-
dependent manner, along with our previous work showing
that this same AICAR treatment also causes AMPK activa-
tion (53), is consistent with the hypothesis that AMPK sig-
naling induces IL-6 vesicle reduction in skeletal muscle.
However, the normal contraction-stimulated IL-6 vesicle re-
duction is intact in AMPKa2-inactive mice. Thus, these
results clearly show that AMPKa2 activity is not essential for
contraction-stimulated IL-6 reduction. This result is similar
to studies in which contraction-mediated glucose transport
(24,54,55), GLUT4 translocation (34), and fatty acid oxida-
tion (56) are still intact in animal models of reduced AMPK
activity (18). Thus, redundant signaling pathways may also
exist for the regulation of IL-6 vesicle reduction with muscle
contractions.

In conclusion, we have developed a novel image-based
system to analyze the kinetics of vesicular-containing pro-
teins in living skeletal muscle. As new myokines are pro-
posed and their function in metabolic and tissue homeostasis

FIG. 8. AMPK activation is not essential for IL-6-EGFP vesicle reduction. A and B: t = 0 shows confocal images of basal quadriceps muscle fibers
expressing IL-6-EGFP prior to in situ contractions from either a wild-type control (A) or an AMPKa2-inactive transgenic (B) mouse. IL-6-EGFP is
localized to vesicle-like structures near the surface position in the muscle fibers. The interior positions are not shown but demonstrate similar
vesicle distribution. In situ contractions were elicited for 3 3 5 min periods (t = 5, 10, 15) and then a 10-min period (t = 25), each separated by 90 s
of rest. Similar observations were made in fibers from 5–6 mice. Bar = 20 mm. C and D: Image quantification of IL-6-EGFP vesicles from images
taken at the surface (C) or interior (D) positions of the muscle fibers in AMPKa-inactive transgenic mice and wild-type control mice following
each contraction period. Values are mean 6 SE, n = 5–6. *P < 0.05 compared with t = 0.
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emerges, this methodology will provide a valuable tool to
determine the intracellular source and depletion kinetics
of these putative myokines. This study provides the first
data that clearly demonstrate that intact muscle fibers act
as endocrine cells in response to muscle contractions in
vivo by rapid, stimuli-dependent decreases in the secretory
vesicle content.
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