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Abstract
Purpose: Registration of 3-dimensional ultrasound images poses a challenge for ultrasound-guided radiation therapy of the
prostate since ultrasound image content changes significantly with anatomic motion and ultrasound probe position. The purpose
of this work is to investigate the feasibility of using a pretrained deep convolutional neural network for similarity measurement in
image registration of 3-dimensional transperineal ultrasound prostate images. Methods: We propose convolutional neural
network-based registration that maximizes a similarity score between 2 identical in size 3-dimensional regions of interest: one
encompassing the prostate within a simulation (reference) 3-dimensional ultrasound image and another that sweeps different
spatial locations around the expected prostate position within a pretreatment 3-dimensional ultrasound image. The similarity
score is calculated by (1) extracting pairs of corresponding 2-dimensional slices (patches) from the regions of interest, (2)
providing these pairs as an input to a pretrained convolutional neural network which assigns a similarity score to each pair, and (3)
calculating an overall similarity by summing all pairwise scores. The convolutional neural network method was evaluated against
ground truth registrations determined by matching implanted fiducial markers visualized in a pretreatment orthogonal pair of x-
ray images. The convolutional neural network method was further compared to manual registration and a standard commonly
used intensity-based automatic registration approach based on advanced normalized correlation. Results: For 83 image pairs
from 5 patients, convolutional neural network registration errors were smaller than 5 mm in 81% of the cases. In comparison,
manual registration errors were smaller than 5 mm in 61% of the cases and advanced normalized correlation registration errors
were smaller than 5 mm only in 25% of the cases. Conclusion: Convolutional neural network evaluation against manual reg-
istration and an advanced normalized correlation -based registration demonstrated better accuracy and reliability of the con-
volutional neural network. This suggests that with training on a large data set of transperineal ultrasound prostate images, the
convolutional neural network method has potential for robust ultrasound-to-ultrasound registration.
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Introduction

The ability to accurately aim radiation beams at the intended

target while avoiding surrounding healthy tissues is critical for

the success of prostate external beam radiation therapy

(EBRT). Currently, implanted markers are used for accurate

prostate localization during EBRT. However, there are several

disadvantages with this approach such as morbidity associated

with the implantation procedure,1-3 lack of volumetric infor-

mation for managing anatomic deformations and volume

changes,4-6 and potential marker migration before and during

radiotherapy that may result in systematic errors.1,2,4

Transperineal ultrasound (US) prostate imaging was

recently introduced commercially and deployed clinically7,8

as an alternative nonionizing image-guidance modality that

could potentially eliminate some of the limitations of trans-

abdominal US guidance.9,10 However, US image guidance is

challenged by variable operator-dependent image quality

and technique-induced nontrivial differences in images of

the same anatomy.10,11 Intensity-based image registration

methods are widely used for medical image registration

applications.11-13 However, due to comparatively low image

quality of US images,14 standard intensity-based similarity

metrics for US image registration do not guarantee a satis-

factory performance. Furthermore, corresponding 3-

dimensional (3-D) US image pairs can appear quite different

depending on the transducer position and orientation and

thus confound predetermined image features. As a result,

intensity-based methods may not be very robust for 3-D

US image registration. Even the manual registration of US

volumes can be a difficult task.

In this article, we evaluate the feasibility of an alternative

approach, a 3-D US image registration framework based on

image matching with a pretrained deep convolutional neural

network (CNN). Deep CNNs present a powerful methodology

that has been used for a variety of medical image analysis

tasks,15,14 but research on CNNs for medical image registration

is still considered to be in early stage15 with few articles on the

subject.16-21 For multimodal image registration in particular, an

emerging concept is to use CNNs on registered and misregis-

tered image pairs in order to learn and subsequently apply a

similarity measure that captures the underlining complex cor-

relation across modalities.16,17,20 We consider such CNN-based

strategy particularly attractive for the registration of US image

pairs acquired at different time instances given that these

images generally present nontrivial confounding differences

in intensity and content.

Using CNN to measure image similarity ideally requires

that a CNN be trained with 3-D US images having ground truth

registration results in order to have the CNN design and learn

robust US image features most suitable for the application.

However, acquiring a large number of US training data sets

with validated ground truth registration is logistically challen-

ging. We hypothesize that a pretrained deep CNN22 designed to

find correspondence (similarity) of image patches can still be

used to measure the similarity of US images as such a network

has been trained on a large data set to successfully compare

image patches while accounting for a wide variety of changes

in image appearance. Thus, we design a registration method

based on this pretrained deep CNN and evaluate its perfor-

mance with 3-D transperineal US images acquired from

patients undergoing prostate radiotherapy.

Figure 1. Study design, ground truth, and quantitative evaluation.
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Methods and Materials

Treatment Procedure and Data Acquisition

For this study, with institutional review board approval transper-

ineal US imaging of the prostate was performed with the Clarity

Autoscan system (Elekta, Stockholm, Sweden) for several pros-

tate patients during simulation and treatment delivery. The

Clarity Autoscan system combines infrared tracking and US

imaging with the Clarity Autoscan probe to enable prostate

localization during radiotherapy simulation and treatment. The

Clarity Autoscan US probe is enclosed mechanically swept 3 to

7 MHz transducer that provides 3-D US images through the

acquisition of a series of 2-D planes along the elevational direc-

tion of the transducer. In particular, for the acquisition of 3-D

transperineal US images of the prostate, the probe is placed

between the patient’s legs in contact with the perineum. This

placement allows prostate imaging through the acoustic window

provided by the perineum. The specific data acquisition through-

out simulation and treatment is briefly described below.

Prior to computed tomography (CT) simulation scanning,

the Clarity US probe is fixed in imaging position between the

patient’s legs and left in place throughout the simulation pro-

cedure. Infrared reflective markers attached to the probe are

tracked by a calibrated camera fixed on the room ceiling. This

allows a simulation 3-D US image acquired immediately after

the CT simulation scan in the same patient position to be recon-

structed and referenced in the coordinate system of the CT

device and thus automatically registered to the planning CT.

Once completed, the CT contours of several structures (pros-

tate, bladder, and rectum) are transferred from the planning CT

to the simulation US image. The prostate contours (with mod-

ifications if deemed necessary) are set as an image-guidance

volume. Once approved, a treatment plan is imported in the

Clarity system to localize the treatment isocenter position

within the 3-D simulation US image. (The treatment isocenter

is a fixed point in the coordinate system of the medical linear

accelerator at the focus of the central axes of all radiation

beams deliverable by the accelerator.)

Before treatment, the Clarity US probe is fixed in imaging

position between patient’s legs and left in place throughout the

Figure 2. Pretrained deep convolutional neural network used in this

study. Pattern code used: Horizontal stripes ¼ Conv þ ReLU, solid

color ¼ max-pooling, checkered ¼ fully connected later (ReLu exists

between fully connected layers as well).22 Conv indicates convolu-

tional neural network; ReLU, rectified linear unit.

Figure 3. Ultrasound-to-ultrasound registration framework.
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treatment procedure including the actual beam delivery. Infra-

red reflective markers attached to the probe are tracked by a

calibrated camera fixed on the room ceiling. This allows a

treatment 3-D US image acquired before radiation delivery to

be reconstructed and referenced in the coordinate system of the

medical linear accelerator. The treatment 3-D US image is

registered to the planning 3-D US image manually by over-

laying the image-guidance volume (prostate) contours from the

simulation US onto the prostate identified on the treatment US.

A 3-D shift vector representing a rigid translational transform is

then calculated by the Clarity system such that the isocenter-

prostate spatial relation reflected in the treatment US image

matches the intended isocenter-prostate spatial relation

captured in the planning US image. Hereafter, we refer to the

rigid translational transform obtained in this manner as manual

registration. The manual registration is recorded but not

applied for the treatment.

Commonly, prostate image-guided radiation therapy

(IGRT) relies on implanted fiducials to align the prostate target

prior to radiation delivery. To this end, as illustrated in Figure 1

(bottom), reference digitally reconstructed radiographies

(DRRs) are generated from a CT volume during treatment

planning. The DRRs capture the positions of the projected

fiducials markers with regard to the treatment isocenter. Thus

concurrently with the treatment US acquisition and registra-

tion, a pair of 2-D x-ray images are acquired with an On-

Figure 4. Subimage selection and 2-D image slicing (patch extraction). (A) 2-D slicing of the 3-D simulation US image, (B) 2-D slicing of the 3-

D treatment US image. US indicates ultrasound.
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Board Imager on a Varian 23EX Linac (Varian Medical Systems,

Palo Alto, California). Such a pair of 2-D x-ray images allows

localization of the fiducials in the coordinate system of the radia-

tion delivery system. Then, a rigid body 3 degree-of-freedom

transform (a 3-component vector) is calculated by aligning 4

prostate-implanted fiducial markers in corresponding pairs of

reference DRRs and the 2-D x-ray images. This 3-D shift vector

represents the rigid translational transformation that needs to be

applied to match the isocenter-prostate spatial relation captured

by the pair of x-ray images to the intended isocenter-prostate

spatial relation captured in the simulation CT. Ideally, both the

US and the x-ray image guidance should result in the same pros-

tate shifts to align the target in the coordinate space of the treat-

ment device. Discrepancies are interpreted as errors in the US–US

registration in comparison the x-ray fiducial-based registration

that is widely used clinically.

In the present study, the x-ray-based translational transforms

(shifts) calculated for patients undergoing prostate IGRT serve

as a ground truth for evaluating the accuracy of the proposed US-

to-US registration method. Simulation 3-D US images acquired

during initial planning CT and 3-D US treatment images (US

images acquired right before treatment) serve as inputs and a

translational transform (vector shift) is the output as shown in

Figure 1 (top). The evaluation is conducted by calculating the

norm of the difference between the 2 registration vectors (ground

truth and the results obtained with the proposed method).

Deep CNN

In the proposed method, a CNN (or ConvNet) is used for

matching of 2-D image slices. Convolutional neural network

is a type of feed-forward artificial neural network in machine

learning that is proven to be successful for image and video

analysis. The input for the network is an image pair of 2-D

slices and the output is a similarity score. Due to the lack of

training data for the deep CNN, the proposed method uses a

pretrained CNN (Figure 2) described by Zagoruyko et al.22

The pretrained CNN (Figure 2) designed to find correspon-

dence (similarity) of image patches consists of convolutional

layers, rectified linear unit (ReLU) layers, max-pooling layers,

and a fully connected layer (for overview of CNNs architec-

tures, refer to23 and references therein). Specifically, a list of all

layers from bottom up includes convolutional layer 1

(Cð96; 7; 3ÞÞ; ReLU layer 1, max-pooling layer (Pð2; 2Þ); con-

volutional layer 2 (Cð192; 5; 1Þ); ReLU layer 2, max-polling

layer 2 (Pð2; 2Þ); convolutional layer 3 ((Cð256; 3; 1ÞÞ; ReLU

layer 3, fully connected layer 1 (Fð256Þ), and ReLU layer 4,

fully connected layer 2 (Fð1)). Following the notation in a

previous study,22 Cðn; k; sÞÞ is a convolutional layer with n

filters of spatial size k� k applied with stride s, (Pðk; sÞ) is

a max-pooling layer of size k� k applied with stride s, and

FðnÞ denotes a fully connected linear layer with n output units.

The output of the network is the output of the fully con-

nected layer (Fð1)), which is a score number representing the

similarity of the 2 input 2-D image slices. The CNN we used is

pretrained with the Liberty benchmark data set containing more

than 450�000 image patches (64 � 64 pixels).22 The training

process optimizes an objective function with hinge-based loss

term and squared l2—norm regularization using supervised

training with neural network. More training details can be

found in the original article.22

Registration Framework

Figure 3 illustrates the CNN (ConvNet) framework for regis-

tering 3-D treatment US images (acquired right before

Figure 5. Mean registration errors for different similarity metrics on developmental images.

Zhu et al 5



treatment) to 3-D simulation US images (acquired before plan-

ning). Two-D slices (patches) are extracted from the 3-D simu-

lation and treatment US images along the axes dj (j¼ 1, 2, 3) in

world (room) coordinate system.

For each 3-D shift i, a translated treatment 3-D US image is

generated. Since a shift i is not necessarily an integer value of

the intervoxel spacing, a trilinear interpolation is used to cal-

culate the voxel values of the translated image. A composite

similarity score is then calculated by summing up the similarity

scores of spatially corresponding patches. The similarity score

for each patch pair is calculated with the pretrained ConvNet

and a composite similarity score is calculated across all

patches. The translational shift that generates the maximum

composite similarity score is considered to be the translational

transform that best matches treatment and simulation US

images. The calculation of similarity score is defined in Equa-

tion 1. Figure 4A further details the process of extracting the 2-

D slices (patches) from the US simulation image (as indicated

by the ellipse in Figure 3), and Figure 4B details the process of

extracting the 2-D slices (patches) from shifted treatment

images (as indicated by the rectangle in Figure 3).

As shown in Figure 4A, the simulation US image is cropped

into a subimage, S, according to a region of interest

½Rx : Rx þ szx;Ry : Ry þ szy;Rz : Rz þ szz� encompassing the

prostate. By cropping images into smaller subregions of inter-

est, the tendency of matching images along sector boundary is

eliminated. The computational efficiency of the registration is

also improved. Here ½Rd : Rd þ szd� is the range along axis d in

world (room) coordinate system. The subimage S with size

ðszx; szy; szzÞ is then cut into 3 groups of 2-D slices

ðSdj; d ¼ x; y; z; j ¼ 1; . . . ; szdÞ in planes perpendicular to

image axes dj.
The treatment US image is cropped into treatment subi-

mages TSi corresponding to various shifts for the region of

interest. The region of interest encompasses the whole prostate

area. The process of cutting and shifting the treatment image is

presented in Figure 4B. Assuming the i-th shift vector is

ðshix; shiy; shizÞ, the subimage TSi associated with the i-th shift

corresponds to a region of interest ½Rx þ shix : Rx þ szx þ shix;
Ry þ shiy : Ry þ szy þ shiy;Rz þ shiz : Rz þ szz þ shiz�. The

shift vectors, indexed by i ðshix; shiy; shizÞ, can cover all possi-

ble registration shifts. For example, the registration shifts along

each axis can range from -15 mm to 15 mm, then the shifts shid
for d ¼ x; y; z are set to integer shifts (in millimeter) within the

range. To accelerate the calculation procedure, a multi-scale

method is used. The spacing for the shifts are set to spk in the k-

th stage, k ¼ 1; 2. The spacing of the first stage is set to be

larger than the second stage, so as to accelerate the registration

process. The search range for the second stage is set around the

shifts with maximum similarity response in the first stage. For

each shifted subimage, the patch extraction procedure is similar

to that of the simulation subimage. After obtaining the 3 groups

of 2-D slices for both the simulation subimage

ðSdj; d ¼ x; y; z; j ¼ 1; . . . ; szdÞ and shifted treatment sub-

image ðTSidj; d ¼ x; y; z; j ¼ 1; . . . ; szdÞ, the corresponding

Figure 6. Sagittal (left) and coronal (right) planes of a simulation

ultrasound image (in yellow) and a treatment ultrasound image (in

blue) overlaid after registration with various methods. The x-ray-

based fiducial registration serves as ground truth. The reported reg-

istration error is the norm of the difference between 2 vectors: the

vector for the ground truth shift and the vector for the respective

evaluated registration.
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2-D slice pairs (Sdj and TSidj) are used as input pairs to the

pretrained CNN.

The output of the network for a 2-D slice pair is a similarity

SIMidj: Then for each shifted treatment subimage

TSiði ¼ 1; . . . ;NÞ, the sum of the similarities of all 3 groups

of 2-D slices is:

SIMi ¼
X

d¼x;y;z

Xszd

j¼1
SIMidj ð1Þ

After obtaining all SIMi for the shifted treatment subimages

TSiði ¼ 1; . . . ;NÞ, the result of the registration is determined

by choosing the shift i with the highest score.

Evaluation

We compared the proposed method to results from manual

registrations and some of the popular standard intensity-

Figure 7. Performance comparison of different US–US registration methods: proposed (CNN), manual registration, and ANC (Elastix). Top:

Mean errors without registration initialization. Bottom: Mean errors with registration initialization. In this case, CNN (proposed) and ANC

registrations are performed starting with a randomly selected 4 mm initial shift from the ground truth registration. US indicates ultrasound; CNN,

convolutional neural network; ANC, advanced normalized correlation.
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based similarity metrics. We used Elastix,24,25 which is a

widely used image registration tool with multiple choices of

similarity metrics as an implementation of intensity-based

registration.

In our experiments, 121 3-D US images from 5 patients (P1-

P5) were used for development and validation. The 3-D US

images were available from the Clarity system at up-sampled

uniform voxel size of 0.58 mm � 0.58 mm � 0.58 mm. (The

inherent resolution of US images acquired with the Clarity

abdominal transducer is about 0.5 mm in axial [along beam

propagation], 2 mm in lateral [within imaging plane], and 4 mm

in elevational direction). The data set for development con-

sisted of 38 images from the first 3 patients (P1, P2, and P3).

It was used to (1) find the similarity metric with the best per-

formance using the Elastix implementation and (2) to identify

the sum of CNN generated similarity scores SIMi ¼P
d¼x; y; z

Pszd
j¼1SIMidj between 2-D patches (see Equation 1)

as the combination leading to best performance of the proposed

registration framework. The developmental data set was cho-

sen as the first half (in chronological order) of each patient’s

images. To determine the best performance similarity metrics

for 3-D US image registration, a series of experiments with

Figure 8. Cumulative distributions of registration errors for the proposed (CNN), manual, and ANC registration methods. Top: Without

initialization. Bottom: With initialization. CNN indicates convolutional neural network; ANC, advanced normalized correlation.
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different similarity metrics and different shift initialization val-

ues were conducted. Four popular similarity metrics advanced

Mattes mutual information), normalized mutual information,

advanced normalized correlation (ANC), and advanced mean

squares) were tested. Since the ground truth registration

for each developmental treatment image was known, the initi-

alizations were set at 0, 2, 4, 6, and 8 mm away from the

ground truth. In this manner, we examined the changes of

performance for a particular similarity metric with changes

of initializations. Elastix parameters other than the similarity

metrics were set as follows: “NumberOfHistogramBins” ¼
32, “MaximumNumberOfIterations” ¼ 250, and “Number

OfSpatialSamples” ¼ 2048. Another important Elastix para-

meter is “NumberOfResolutions.” Values from 1 to 5 were

tested and the final value was set to 4 as it provided the

best Elastix results in the developmental experiments. The

spatial transform in Elastix was restricted to 3-D rigid body

translation.

Results

Figure 5 presents mean registration errors and respective stan-

dard deviations for different similarity metrics used with Elas-

tix on 38 developmental images and different initialization

values for the shifts. The ANC appeared to slightly outperform

the other metrics in terms of mean values and spread (as deter-

mined by the standard deviation). Thus, the ANC metric was

subsequently used with Elastix.

Figure 6 illustrates registrations performed by the 3 evalu-

ated methods (manual, CNN, ANC) along with the ground truth

registration and the starting (no registration) point for the regis-

trations. Figure 6 exemplifies the challenge in interpreting the

similarity between US images by clearly demonstrating that

even in a case where visually the manual, CNN, and ANC

methods performed reasonably well, the registration error var-

ied substantially between them.

The CNN method was then compared to manual registra-

tions (as performed by physicists at the time of treatment) and

Elastix with ANC. In the performance comparison, 83 images

(second half of the P1-P3 data sets and P4-P5 complete data

sets) were used for the evaluation.

Figure 7 illustrates mean errors and respective standard

deviations for the 3 evaluated registration methods. Figure 7

(top) presents results without initialization and Figure 7 (bot-

tom) presents results with initialization. The initialization shift

was chosen as a random vector of size 4 mm away from the

ground truth. Without initialization, the ANC registration per-

forms poorly in comparison to the other methods both in terms

of mean errors and standard deviations (Figure 7, top). Without

initialization, the CNN performance was comparable to or bet-

ter than manual registration (Figure 7, top).

With initialization around the ground truth, ANC perfor-

mance improved (Figure 7, bottom) but remained inferior to

that of CNN both in terms of mean errors and standard devia-

tions. With initialization, the performance of the proposed

CNN method remained comparable or better to manual regis-

trations both in terms of mean errors and standard deviations.

Figure 8 presents the cumulative distributions of the regis-

tration methods across all 5 patients on the 83 validation image

pairs. It demonstrates that with initialization in 88% of the

cases CNN registration errors were smaller than 5 mm. Without

initialization, in 81% of the cases CNN registration errors were

smaller than 5 mm. The corresponding values for the ANC

method were 62% and 25% accordingly, whereas for the man-

ual registration these were within 5 mm in 61% of the cases.

These results clearly demonstrate the improvement in overall

registration accuracy that can be achieved with a pretrained

CNN in comparison to standard manual or automatic

intensity-based registration techniques.

Discussion and Conclusion

In this article, we designed and evaluated a 3-D US image

registration framework based on a pretrained deep CNN. Com-

parative evaluation of the method against manual registration

and automatic intensity-based registration with an ANC simi-

larity metric demonstrated significantly improved accuracy and

reliability with the pretrained CNN approach. One limitation of

the study is that the registration transformation had to be lim-

ited to translations only since the available “ground truth”

registrations were 3-D translations obtained by x-ray-based

marker matching performed by treating therapists. Standard

intensity-based registrations may perform better if deforma-

tions are considered and this scenario should be the subject

of further investigations.

Our results on the accuracy of the pretrained deep CNN

approach to US–US registration need to be interpreted in the

context of several uncertainties related to the establishment of

the “ground truth” x-ray-based image registration. Prostate

deformations, for instance, may be present between simulation

and treatment due to differences in rectal and bladder filling as

well as probe pressure. The magnitude of these deformations is

patient and session dependent. We evaluated the prostate dis-

tortions by measuring the relative changes in interfiducial dis-

tances from simulation to treatment. On average, the relative

change was smaller than 2% or 0.5 mm for mean interfiducial

distance of 25 mm.

Uncertainty in marker localization arising from user bias in

x-ray image interpretation is another source of error in the

determination of the ground truth. We evaluated this by com-

paring the x-ray-based shifts that we calculated to the shifts

approved and applied by the therapists during the actual treat-

ments. The standard deviation of the difference vector was (0.6,

0.6, 0.5) mm, resulting in approximately 2 mm overall uncer-

tainty at the 95% confidence level. This number provides an

estimate of the ground truth error in our study.

Our results indicate clearly the potential of using deep

CNNs for 3-D US image registration, but the overall accuracy

of the current approach based on a specific, pretrained CNN is

not sufficient to meet the requirements of prostate IGRT even

after considering uncertainty in ground truth registrations. This

Zhu et al 9



is not surprising as the CNN was pretrained with nonmedical

image data. Hence, it is expected that training the CNN with

actual US data can notably enhance the CNN performance

and future work will involve network training on a large

data set of US images. Furthermore, for practical implemen-

tation additional performance optimizations will be neces-

sary. On our hardware, it takes about 5 milliseconds to

compute the CNN similarity between a pair of 64 � 64

2-D patches. Thus, about 1 second is necessary to calculate

the similarity between a pair of 3-D images, as this involves

64 * 3 ¼ 192 evaluations between 2-D patches. In compar-

ison, normalized mutual information computation took

about 5 milliseconds. A straightforward optimization, for

instance, would be to reduce the number of patches used

for composite similarity measurement to only few that are

rich in relevant anatomical features.

We expect that performance optimizations and training

application-specific US images will allow CNN-based registra-

tion to address robustly the challenge of US-to-US prostate

registration and eliminate a major obstacle for US IGRT.
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