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1   |   INTRODUCTION

Lynch syndrome (LS), also known as hereditary non-
polyposis colorectal cancer (HNPCC), is an autosomal 
dominant cancer predisposition syndrome accounting 
for approximately 1%–5% of all diagnosed colorectal can-
cers (CRC) (Hampel et al., 2005; Rubenstein et al., 2015; 

Vasen,  2005). LS is characterized by a significantly in-
creased risk of developing endometrial cancer (EC) and 
CRC, as well as ovarian, small bowel, stomach, hepatobi-
liary, urinary, brain or central nervous system cancer, and 
sebaceous tumors (Cohen & Leininger, 2014). LS is caused 
by a defect in the DNA mismatch repair (MMR) path-
way, (Kunkel & Erie, 2005; Tamura et al., 2019), or by a 

Received: 1 April 2022  |  Revised: 19 October 2022  |  Accepted: 3 November 2022

DOI: 10.1002/mgg3.2104  

C L I N I C A L  R E P O R T

Characterization of a germline variant MSH6 c.4001G > C in 
a Lynch syndrome family

Ciyu Yang1  |   Maksym Misyura1  |   Sarah Kane2  |   Vikas Rai1  |   Alicia Latham2  |   
Liying Zhang1,3

1Department of Pathology, Memorial 
Sloan Kettering Cancer Center, New 
York, New York, USA
2Department of Medicine, Memorial 
Sloan Kettering Cancer Center, New 
York, New York, USA
3Department of Pathology and 
Laboratory Medicine, David Geffen 
School of Medicine, University of 
California, Los Angeles (UCLA), Los 
Angeles, California, USA

Correspondence
Liying Zhang, Department of Pathology 
and Laboratory Medicine, David Geffen 
School of Medicine at UCLA, 10833 
Le Conte Ave, Los Angeles, CA 90095, 
USA.
Email: liyingzhang@mednet.ucla.edu

Funding information
Department of Pathology, Memorial 
Sloan Kettering Cancer Center, Grant/
Award Number: P30 CA008748

Abstract
Background: Germline variants in the DNA mismatch repair (MMR) genes 
(MLH1, MSH2, MSH6, and PMS2) cause Lynch syndrome, an autosomal domi-
nant hereditary cancer susceptibility syndrome. The risk for endometrial cancer 
is significantly higher in women with MSH6 pathogenic/likely pathogenic (P/LP) 
variants compared with that for MLH1 or MSH2 variants.
Methods: The proband was tested via a clinical testing, Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT). RT-
PCR was performed using patient's blood DNA and cDNA was analyzed by DNA 
sequencing and a cloning approach.
Results: We report a 56-year-old female with endometrial cancer who carries 
a germline variant, MSH6 c.4001G > C, located at the last nucleotide of exon 
9. While the pathogenicity of this variant was previously unknown, functional 
studies demonstrated that this variant completely abolished normal splicing and 
caused exon 9 skipping, which is expected to lead to a prematurely truncated or 
abnormal protein.
Conclusion: Our results indicate that this variant likely contributes to cancer 
predisposition through disruption of normal splicing, and is classified as likely 
pathogenic.
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deletion in the epithelial cell adhesion molecule (EPCAM) 
(OMIM#: 185535) gene, leading to a transcriptional read-
through which silences the downstream mutS homolog 2 
(MSH2) (OMIM#: 60309) gene (Goel et al., 2011; Kuiper 
et al., 2011; Niessen et al., 2009).

The MMR proteins MLH1, MSH2, MSH6, and PMS2 are 
encoded by MutL homolog1 (MLH1) (OMIM#: 120436), 
MSH2, mutS homolog 6 (MSH6) (OMIM#: 600678) and 
post-meiotic segregation increased 2 (PMS2) (OMIM#: 
600259) genes, respectively. MSH2 couples with either 
MSH6 or MSH3, and MLH1 interacts with PMS2 or MLH3 
to form heterodimeric complexes (Jiricny,  2006). These 
complexes are responsible for surveillance and correction 
of errors made during DNA replication, repair, and recom-
bination (Jiricny,  2006). Germline P/LP variants in the 
MMR gene generally lead to tumors with characteristic 
mutational signature, microsatellite instability (MSI), and 
loss of expression of one or more MMR proteins detected 
by immunohistochemistry (IHC) (Boland et al.,  2008). 
Although EPCAM is not an MMR gene, germline dele-
tions of 3′ end of the EPCAM gene leads to epigenetic 
silencing of the neighboring MMR gene MSH2 by hyper-
methylation (Kuiper et al., 2011; Ligtenberg et al., 2009).

Germline variants in MMR genes result in a cumula-
tive risk of up to 60% to develop CRC in men, and up to 
50% in women; and a risk of up to 50% to develop EC at 
75 years of age (Dominguez-Valentin et al., 2020). MLH1 
and MSH2 P/LP variants account for more than 50% of all 
LS colorectal cancer in many studies (Hampel et al., 2008; 
Moller et al.,  2017; Sjursen et al.,  2016; Yurgelun 
et al., 2015). MSH6 and PMS2 germline P/LP variants are 
less common, accounting for about 6%–17% and less than 
15% of all MMR gene deleterious variants in LS patients 
respectively (Bonadona et al., 2011; Hampel et al., 2008; 
Moller et al.,  2017; Sjursen et al.,  2016). However, more 
recent studies indicate MSH6 and PMS2 P/LP variants 
account for 24%–29% and 22%–24%, respectively, of all 
germline P/LP variants associated with Lynch syndrome 
which is much more prevalent than the previous studies 
(Espenschied et al., 2017; Latham et al., 2019). Germline 
EPCAM deletions occur in at least 1%–3% of the LS fami-
lies (Tutlewska et al., 2013). Individuals with MSH6 P/LP 
variants tend to develop CRC at an older age than those 
who carry MLH1 or MSH2 P/LP variants and have reduced 
penetrance (Baglietto et al.,  2010; Berends et al.,  2002; 
Hendriks et al., 2004; Wijnen et al., 1998). In women har-
boring MSH6 P/LP variants, the risk for colorectal cancer 
is significantly lower than that in individuals harboring 
MLH1 and MSH2 P/LP variants, while the risk for endo-
metrial cancer is significantly higher by age 70 (Hendriks 
et al., 2004). The cumulative risk for diagnosis of endome-
trial cancer through lifetime is 16%–49% for individuals 
who contains MSH6 P/LP variants (Baglietto et al., 2010; 

Bonadona et al., 2011; Moller et al., 2018). The incidence 
of EC is 26-fold higher in women who carry MSH6 patho-
genic variants, compared with incidence for the general 
population (Baglietto et al., 2010). Therefore, determining 
MSH6 variant pathogenicity is of significant clinical rele-
vance, particularly for predicting cancer risks.

The clinical interpretation of variants involving the last 
nucleotide of an exon is difficult due to uncertain molecu-
lar effects of such alterations. Variants at this position may 
result in missense substitutions (Kanai et al., 1999), and/or 
disruptions of normal splicing leading to skipping of one 
or more exons (Barreiros et al., 2018; Vettore et al., 2010; 
Yamada et al., 2007). Typically, variants in the last nucle-
otide of an exon are classified as a variant of uncertain 
significance (VUS) according to the American College of 
Medical Genetics and Genomics/Association for Molecular 
Pathology (ACMG/AMP) guidelines (Richards et al., 2015) 
in the absence of additional functional, segregation, and 
splicing studies. A variant in the last nucleotide of exon 9 
of MSH6 gene (c.4001G > A) has been reported to segregate 
with disease in multiple LS families (Hendriks et al., 2004; 
Klarskov et al.,  2011; Wijnen et al.,  1999), and has been 
classified as pathogenic. However, there are no functional 
data supporting the pathogenicity of the other variants 
affecting the same nucleotide, including c.4001G > C. In 
this report, we demonstrated that the MSH6 c.4001G > C 
variant, identified in 56-year-old woman diagnosed with 
uterine endometrioid carcinoma with microsatellite in-
stability high (MSI-H) and loss of MSH6 protein expres-
sion, disrupts normal splicing and results in complete loss 
of exon 9, which presumably leads to premature protein 
truncation or abnormal protein. Our results indicate that 
this variant likely contributes to cancer predisposition 
through disruption of normal splicing, and can be classi-
fied as likely pathogenic based on ACMG/AMP guidelines.

2   |   MATERIAL AND METHODS

2.1  |  Subject

Our proband is a 58-year-old woman who was diagnosed 
with uterine endometrioid carcinoma at age 56 with 
MSI-H and loss of MSH6 protein expression. A four-
generation pedigree (Figure 1) indicated that at least three 
family members were affected with LS-related cancers. 
The proband's maternal grandfather was affected with 
prostate cancer. The proband's mother and brothers were 
diagnosed with LS. The proband was tested via a clinical-
grade testing using NYSDOH-  and CLIA-approved 
Memorial Sloan Kettering-Integrated Mutation Profiling 
of Actionable Cancer Targets (MSK-IMPACT) and was 
identified to carry the MSH6 (NM_000179.2) c.4001G > C. 
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This variant was classified as VUS and likely pathogenic by 
different laboratories in ClinVar (https://www.ncbi.nlm.
nih.gov/clinv​ar/varia​tion/23321​4/). Given the conflicting 
interpretations of pathogenicity of this variant, the patient 
was assigned onto an IRB-approved protocol and agreed 
to provide additional blood samples for further characteri-
zation of this variant at Memorial Sloan Kettering Cancer 
Center (MSKCC). Peripheral blood samples were collected 
and submitted to the Diagnostics Molecular Genetics 
Laboratory at MSKCC. Control RNAs were from unrelated 
cancer patients who do not carry the MSH6 variant.

2.2  |  In silico analysis

Sequence data spanning the MSH6 locus for Homo 
sapiens [Chromosome 2: 47,783,082.0.47,810,101] 
was obtained from the Ensembl Genome Browser 
(http://www.ensem​bl.org/index.html). Primers were 

designed using the Primer 3 software (http://bioin​
fo.ut.ee/prime​r3-0.4.0/). In silico evaluation of the 
variants was performed through Alamut (Interactive 
Biosoftwar), which include SSF, MaxEnt, NNSPLICE, 
and GeneSplicer tools.

2.3  |  cDNA analysis

Total RNA from the patient was extracted using the 
PAXgene BloodRNA Kit (PreAnalytiX, Qiagen, Valencia, 
CA) and was subsequently used for cDNA synthe-
sis (Superscript III First-Strand Synthesis SuperMix, 
Invitrogen Life Technologies, Carlsbad, CA). Control RNA 
was extracted from another unrelated cancer individual 
who did not carry the MSH6 variant. RT-PCR was per-
formed through SuperScript™ III First-Strand Synthesis 
SuperMix (Invitrogen) for RT and then the JumpStart 
REDTaq Ready Mix (Sigma) for PCR, with control cDNA 
or the patient's cDNA in the presence of M13-tagged for-
ward and reverse primers (Forward, E7F: 5′-GTA AAA 
CGA CGG CCA GT TGAAACTGCCAGCATACTCAT-3′; 
Reverse, E10R: 5′-CAG GAA ACA GCT ATG AC 
TCAACTCAAAGCTTCCAATG-3′). Each PCR reaction 
contains 12.5 μl 2× JumpStart REDTaq Ready Mix, 2 μl 
10  μM primers (1  μl for each primer), 2  μl cDNA, and 
water to make a final volume of 25 μl. PCR reactions were 
performed under the following conditions: 96°C for 5 min, 
94°C for 30 s (35×), 64°C for 45 s (35×), and 72°C for 60 s 
(35×) with a final extension at 72°C for 5 min (1×).

2.4  |  Cloning

To test whether the mutant allele is able to generate any 
normal transcript, RT-PCR products were cloned into 
pCR4 TOPO vectors (Invitrogen, Carlsbad, CA), following 
procedures of the pCR4 TOPO TA Cloning Kit (Invitrogen, 
Carlsbad, CA). DNA from colonies was amplified using the 
forward E7F and the reverse primer E10R, and subjected 
to direct DNA sequencing analysis using the forward PCR 
primer (BigDye Terminator v3.1 Cycle Sequencing kit and 
3730 DNA Analyzer, Applied Biosystems, Foster City, CA).

3   |   RESULTS

3.1  |  The MSH6 c.4001G > C variant 
disrupts normal splicing and presumably 
leads to premature protein truncation

This variant c.4001G  > C affects the last nucleotide of 
exon 9 of the MSH6 coding sequence, which is part of the 

F I G U R E  1   Patient pedigree. The patient described here is 
a 58-year-old female who was diagnosed with endometrial and 
ovarian cancers at age 56. Her brother who also carries the variant 
MSH6 NM_000179.2 c.4001G > C was affected with colon cancer at 
age 45 and her mother was diagnosed with endometrial cancer at 
her 60s.

https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
http://www.ensembl.org/index.html
http://bioinfo.ut.ee/primer3-0.4.0/
http://bioinfo.ut.ee/primer3-0.4.0/
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consensus splice site for this exon. To evaluate the po-
tential effects of the variant on splicing, we used Alamut 
software, which incorporates four tools to predict the po-
tential effect of MSH6 c.4001G  > C on mRNA splicing. 
Three out of the four tools predicted that the variant sig-
nificantly weakens the 3′ splice acceptor site with two of 
them predicting a complete loss of the canonical acceptor 
site and another one predicting a score reduction of 57%. 
The last tool (GeneSplicer) predicted that this variant may 
not affect splicing (Figure  2a). Another learning-based 
splicing tool, SpliceAI (https://splic​eailo​okup.broad​insti​
tute.org/), predicts a loss of the canonical donor site at 
c.4001, with the high prediction score (0.88) (Figure 2b).

The effect of MSH6 c.4001G > C variant on RNA splic-
ing was evaluated by amplifying relevant regions of MSH6 
from cDNA derived from the patient. PCR was designed 
to generate a fragment that spanned exons likely to be af-
fected by this variant, including a part of exon 7, and the 
entire coding regions of exons 8, 9, and 10. Identification 
of an additional PCR product suggested the presence of 
an aberrantly spliced MSH6 transcript in the patient sam-
ple (Figure 3a). Further sequencing analysis revealed that 
the entire coding region of MSH6 exon 9 is deleted from 
the aberrantly spliced MSH6 transcript (Figure  3b). The 

deletion of MSH6 exon 9 is predicted to result in an ab-
sent or truncated protein product NP_000170.1: (p.?). The 
truncation disrupts a significant C-terminal portion of 
the MSH2 interaction domain of the MSH6 protein (res-
idues Ala1302-Leu1360) (Guerrette et al.,  1998; Kariola 
et al., 2002).

3.2  |  The variant MSH6 c.4001G > C 
completely disrupts normal splicing in the 
mutant allele

We used a cloning approach to determine whether the 
c.4001G > C variant completely abolishes normal splic-
ing. The RT-PCR products were cloned into the TOPO 
sequencing vector, and 135 colonies were sequenced to as-
sess the effect of this variant on splicing. One hundred and 
nine out of 135 colonies (109/135; 80.7%) contained the 
aberrantly spliced transcript lacking exon 9 (Figure  4b). 
The remaining 26 clones (26/135; 19.3%) contained the 
full-length transcript and all had the wild-type nucleotide 
at the c.4001 position (i.e., G), indicating that the mutant 
allele was unable to generate any full-length transcript 
(Figure 4a).

F I G U R E  2   In silico predictions of the c.4001G > C variant. (a) The Alamut software was used to evaluate the potential effects of the 
variant on splicing. Three out of the four tools predicted that the variant significantly weakens the 5′ donor splice site with two of them 
predicted complete loss of the canonical donor site and another one predicted a score reduction of 57%. The other tool predicted that this 
variant does not significantly affect splicing. (b) SpliceAI predicts a loss of the donor site with a high prediction score.

https://spliceailookup.broadinstitute.org/
https://spliceailookup.broadinstitute.org/
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4   |   DISCUSSION

Missense changes at the last nucleotide of an exon have 
been reported to cause missense substitutions, as well 
as aberrant splicing leading to exon skipping (Kanai 
et al.,  1999; Vettore et al.,  2010; Yamada et al.,  2007). 
Therefore, the clinical significance of such variants re-
mains uncertain without further functional, and/or seg-
regation analysis. In this study, we report that a missense 
substitution c.4001G > C located in the last nucleotide of 
exon 9 of MSH6 gene completely abolishes normal splic-
ing of the MSH6 transcript, and is predicted to lead to a 
prematurely truncated or absent protein.

The c.4001G > C variant has not, to our knowledge, been 
previously reported in the literature, and is absent from 
large reference population databases (e.g., The Genome 
Aggregation Database) (PM2_supporting). Although the 
arginine residue is only moderately conserved, this sub-
stitution was classified as likely pathogenic in 2019 by 
Ambry and as a VUS by Invitae in 2019 (https://www.
ncbi.nlm.nih.gov/clinv​ar/varia​tion/23321​4/). Of note, an-
other variant affecting the same nucleotide (c.4001G > A; 

p.Arg1334Gln) is a well-known pathogenic change based 
on segregation data from two LS families (Hendriks 
et al., 2004; Klarskov et al., 2011; Wijnen et al., 1999) and 
observations in other unrelated individuals affected with 
LS-associated cancers (Overbeek et al.,  2007; Susswein 
et al.,  2016; You et al.,  2010). The pathogenicity of the 
c.4001G > C variant was uncertain based on the current 
version of ACMG/AMP variant interpretation guidelines 
due to the lack of more definitive functional or segrega-
tion data.

A variety of software tools have been developed to 
predict the effect of an alteration on creation of novel, 
or changes to existing splice sites. Although these tools 
cannot be used to definitively classify variants in a clini-
cal laboratory setting, they can help prioritize variants of 
uncertain significance for further investigation, including 
in vitro splicing studies. Splicing prediction tools, includ-
ing SplinceSiteFinder-like, MaxEntScan, NNSPLICE, and 
SpliceAI, suggested that the MSH6 c.4001G > C variant 
may affect RNA splicing, which inspired us to pursue 
further analysis of patient-derived RNA. The c.4001G > C 
variant completely disrupted normal splicing leading 

F I G U R E  3   RT-PCR analysis demonstrates c.4001G > C leads to exon 9 skipping. (a) RT-PCR products run on QIAxcel. Two extra bands 
were observed in the patient, but not in the control. (b) Electropherogram showing that the variant causes exon skipping. The boundary of 
exons is marked by red arrow.

https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
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to skipping of exon 9 according to in vitro RT-PCR re-
sults. Since exon 9 is the penultimate exon of MSH6, the 
c.4001G > C variant is likely to escape nonsense-mediated 
decay and result in a truncated protein (p.Ala1268Glyfs*6) 
(Karousis & Muhlemann, 2019; Kurosaki et al., 2019).

The MSH6 protein contains two interaction regions 
which help in forming a heterodimer with the MSH2 
protein (Guerrette et al., 1998; Kariola et al., 2002): the 
amino-terminal interaction region (residues 326 to 575), 
and the carboxy-terminal interaction region (residues 
1302 to 1360) (Guerrette et al., 1998; Kariola et al., 2002). 
Our RT-PCR and cDNA sequencing analysis demon-
strated that the MSH6 c.4001G > C variant, which may 
lead to a truncated protein (p.Ala1268Glyfs*6), is ex-
pected to disrupt a significant portion of the C-terminal 
MSH2 interaction domain (PS3). Notably, multiple 
truncating variants downstream of Ala1268 have been 
reported in individuals with LS (Baglietto et al.,  2010; 
Barnetson et al.,  2006; Devlin et al.,  2008; Raskin 
et al., 2011). Furthermore, MSH6 c.3984_3987dup (p.Leu-
1330Valfs*12), a well-characterized LS founder mutation 

in the Ashkenazi Jewish population (Goldberg et al., 
2010; Raskin et al., 2011), has been shown to segregate 
with disease in a family affected with colorectal cancer 
(Peterlongo et al., 2003), and result in lack of MSH6 stain-
ing and tumor microsatellite instability (Goldberg et al., 
2010). Taken together, these reports strongly indicate that 
the last 31 amino acid residues are critical for MSH6 pro-
tein function (PM1), and the c.4001G > C variant likely 
results in a loss-of-function. It is worth noting that tumor 
from the proband exhibits MSI-H and loss of MSH2 and 
MSH6 protein expression, and harbors a second hit with 
the variant c.3646+1G>A located in intron 7 of MSH6, 
but not in MSH2 as tested by MSK-IMPACT (Data not 
shown), indicating that the loss of MSH2 is likely due to 
loss of MSH6. The proband's brother who was diagnosed 
with colon cancer at age 45 also had the same germline 
variant (PP1).Taken together, the strong LS family history 
(PP4) and our data indicate that the MSH6 c.4001G > C 
variant results in a likely loss-of-function, and should be 
classified as likely pathogenic according to ACMG/AMP 
guidelines.

F I G U R E  4   cDNA cloning demonstrates that the mutant allele does not produce any wild-type transcript. (a) All clones (n = 26) with 
the full-length transcript containing the normal G at the c.4001 position; (b) All clones (n = 109) with the exon 9 deletion are generated from 
the mutant C allele.
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The improved understanding of this variant has signif-
icant impact on the patient's medical management and for 
counseling of the patient and family members regarding 
disease risk and reproductive planning.
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