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A B S T R A C T   

Wind environment is important in architectural sustainable design, as existing studies show that it 
can be considerably influenced by building morphologies. This study aimed to develop a data- 
mining framework to quantitatively evaluate and compare influences on Low-Wind-Velocity 
Area (LWVA) of common cuboid-form buildings with typical morphological parameters. The 
data-mining framework was originally developed by integrating multiple computational methods 
for rapid in-depth iterative analyses, including the generation of building models using para-
metric modelling, the big data generation based on hybrid model, and the statistical metric 
analysis method. The hybrid model was created by combining the CFD model and machine 
learning model. The accuracy and efficiency of the framework were fully demonstrated through 
the comprehensive validation and analyses of different models. The data of more than fifty 
thousand building cases with different morphological parameters and relevant wind conditions 
were generated and analyzed. Influences on LWVA of morphological parameters of cuboid-form 
building was comprehensively evaluated, including the visualization of multiple parameters, 
calculation and comparison of several correlation coefficients. It suggested that the reduction of 
height and width on the windward side would significantly decrease the LWVA and promote the 
outdoor ventilation. The change of depth would have relatively limited influence on the LWVA. 
Multivariate regression model-fit and variance analyses were further implemented, and it was 
found that there was a relatively significant linear correlation between the LWVA and morpho-
logical parameters. The equation of multivariate regression model was provided for extra rapid 
prediction. The study outcome could contribute to efficient evaluation of LWVA and provide 
useful information for sustainable design.   
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1. Introduction 

Under the background of global warming, wind environment is gaining importance in architectural sustainability [1]. It is closely 
related to urban heat island, air renewal, thermal comfort, and building energy usage. Nowadays, wind environments influenced by 
building morphologies are often considered in the relevant studies of urban micro climates and architectural design in the early stage 
[2]. Comparison of numerous designs would help in the exploration of underlying mechanisms and design optimizations, especially for 
multiple morphological parameters. It is relatively time-consuming and complicated to implement iterative analyses by using con-
ventional methods with repetitive modelling and complex simulations [3]. Comprehensive evaluations for multiple building mor-
phologies are relatively primitive. These motivate us to develop a novel methodology based on data mining approach for in-depth 
quantitative analyses of wind environments. 

1.1. Conventional methods and buildings in wind-environment studies 

Experimental and Computational Fluid Dynamics (CFD) methods were widely used to evaluate wind environments, wind energy 
usage, thermal comfort and built environmental under certain conditions [4]. They were demonstrated by numerous studies and 
engineering applications [5,6]. Experimental and CFD methods often required input wind data obtained from measurement [7]. There 
were usually strict requirements for the measurement in many aspects. These often made the entire process slow, complicated, and 
expensive. Therefore, prediction technologies with low cost were becoming an optional efficient choice [8]. Hao et al. thought that 
existing studies of outdoor thermal comfort and behavior are limited by the so-called ‘small data’ approach [9]. Most studies employed 
site measurement, questionnaires and interviews in the last two decades. Those studies were labor-intensive and the methods 
mentioned above could only cover limited sites over a particular period of time. Because of the limitation of sample size, the ‘small 
data’ approach was underpowered statistically. As the data collection protocols were often different in different studies, it was difficult 
to compare the findings from different studies. 

Cuboid form was one of the most common forms for buildings. We implemented an on-site investigation of 383 residential com-
munities in an urban area of China. And cuboid-form buildings could be found in 221 residential communities. Many kinds of buildings 
were in cuboid form with different sizes, including residential buildings, office buildings, commercial buildings, educational buildings, 
and so on. Aynsley et al. used to call the kind of buildings as ‘bluff bodied’ [10]. Winds would be separated at the windward surfaces 
after meeting the cuboid-form buildings [11]. Wind tunnel experiments suggested that the patterns of wind velocity magnitudes 
around buildings were complicated and influenced by building form ratios and wind directions [12]. 

1.2. Relevant methods of big data and artificial intelligence 

Nowadays, with the development of big data and artificial intelligence, usages of the cutting-edge technologies in relevant studies 
of built environment kept on increasing. Zhang et al. used machine learning model to predict environmental indicators via 
morphological indicators. They compared seven machine learning algorithms for modelling the nonlinear relationship between the 
building morphology and the outdoor environments of 150 workers’ villages in Shanghai [13]. Zhao et al. employed a deep learning 
simulation method to explore the effects of land use types and density on the spatial distribution of PM2.5 pollutants in the city of 
Wuhan [14]. Kabošová et al. introduced and tested an environment-driven design technique at the urban and architectural scale. The 
optimal design solution was merged for the urban configuration and architectural shape by utilizing the interplay between the 
architectural intention and weather influences. They did a case study through the real-time iterative analysis of the environmental 
performance of multiple design variants [15]. Li et al. developed a deep transfer learning neural network to predict and simulate more 
accurate and realistic building energy usage. An on-campus experiment with a wireless sensing system was conducted. The accuracy of 
local microclimate condition prediction could be improved by using the proposed method [16]. Hao et al. used social media to quantify 
park attendance in response to hot weather conditions. They collected a lot of geographically coded Twitter data in a large urban park 
in the city of Hong Kong in different climates. They acquired park attendance data, and captured occupant thermal sensation and 
comfort using a questionnaire. The performance of biometeorological indicators was compared [9]. There were some relevant studies 
of wind environments and urban micro climates. Lee et al. proposed a machine learning algorithm by considering the terrain features 
from satellite imageries to overcome the limitation of engineering judgment [17]. They compared effects of terrain similarity and 
distance from station on basic wind speed. They claimed that it should be the first time to explore this kind of artificial intelligence 
approaches to determine the basic wind speed. 

There was a great potential for the usage of artificial intelligence systems to assess predictive modifications of urban wind, 
including velocities, energy, loading and so on. Khattak et al. used wind tunnel experiments combined with interpretable tree-based 
machine learning algorithms to estimate turbulence intensity near airport runways [18]. Glumac et al. investigated a multi-fidelity 
machine learning framework by taking advantage of the main benefits of two CFD approaches to ensure the simulation accuracy of 
wind loading while maintaining the computational efficiency [19]. Wu et al. proposed a fast courtyard wind simulation platform based 
on the parallel courtyard Lattice Boltzmann Method to optimize the design structure and wind environments [20]. Higgins et al. used 
artificial intelligence tools to generate an adequate database to improve the generation of urban wind energy. Their study presented 
the wind tunnel experimental results of buildings with different forms [21]. 

Some studies focused on the development and evaluation of relevant methods using the cutting-edge technologies. Park et al. 
compared performances of eight machine learning algorithms for predicting natural ventilation rate. Their study found that the al-
gorithm of deep neural network has the best prediction performance with the evaluation metrics [22]. Zheng et al. proposed a 
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framework and a deep learning model for urban local dense wind speed forecasting. They developed a Convolutional Long Short-Term 
Memory (ConvLSTM) and Long Short-Term Memory (LSTM) combinatorial deep learning model to learn the features of input historical 
weather image series of Hong Kong datasets. Their proposed model was verified, and could effectively forecast wind speed series with 
large amplitude and rapid frequency changes [23]. 

1.3. Research gaps 

Though conventional simulation methods such as CFD models have been widely recognized, they are often complicated in 
simulation settings and their computational running time is relatively long. Especially, comparative investigations that require iter-
ative analyses would be time-consuming. Emerging computational methods have powerful functions in morphological modelling, 
predictions and evaluations. It would be important to explore their potential in sustainable design and wind-environment studies. 

Research gaps could be summarized as follows: (1) In-depth quantitative analyses of building wind environments influenced by 
morphological parameters and consideration of relevant sustainable design strategies were not many. (2) Application of data mining 
and integration of multiple computational models was primitive in studies of building wind environments. (3) Existing studies could 
provide limited information to wind-environment optimization based on comprehensive adjustment of morphological parameters in 
large ranges. 

In our study, these research gaps will be covered from several aspects: (1) In-depth quantitative analyses using computational 
methods: A data-mining framework will be proposed by integrating multiple computational methods, including parametric modelling, 
hybrid models, and statistical analyses, to provide efficient, accurate, and in-depth analyses of Low-Wind-Velocity Area (LWVA) 
influenced by building morphological parameters. This covers the gap by presenting a novel approach that utilizes computational 
methods for comprehensive evaluation. (2) Application of data mining and integration of multiple computational models: after the 
development of the data-mining framework and demonstration of its accuracy and efficiency, the study covers the gap by introducing 
an advanced methodology for wind environment studies. (3) Limited information for wind-environment optimization: The study 
provides specific findings regarding the influences of morphological parameters on LWVA, quantitatively evaluating their effects. It 
also offers a multivariate regression model for rapid prediction of LWVA. By providing detailed insights into how morphological 
parameters affect LWVA and offering a predictive model, the study addresses the gap by providing valuable information for wind- 
environment optimization in sustainable design. 

1.4. Research framework 

Based on the analysis of research gaps, this study will focus on the development of data-mining framework that can quantitatively 
evaluate and compare influences on the Low-Wind-Velocity Areas (LWVAs) of typical morphological parameters of common cuboid- 
form buildings. The LWVAs have been defined as the areas with the wind velocities under the product of 0.3 and the original reference 
wind velocities. The value of 0.3 was the wind velocity ratio provided by assessment criteria of wind environment at the pedestrian 
level (height = 1.5 m) around buildings from previous studies [24,25]. As presented in Fig. 1 below, the data-mining framework will be 
developed by integrating multiple computational methods to implement efficient in-depth iterative analyses for LWVAs influenced by 
the morphological parameters. As explained in the following methodology section, there will be three major parts in the development 
of the data-mining framework. First, 3D building models will be created automatically using parametric modelling. Second, big data of 
LWVAs related to numerous building cases will be generated based on the development of hybrid model. Third, the generated data will 
be evaluated by using the statistical metric analysis method for implementing the data mining. 

In the creation of hybrid model, the CFD simulation model and machine learning model will work in coordination to efficiently 
generated big data for mining. Both the CFD model and machine learning model will be validated to ensure the accuracy of generated 
data. The LWVAs and morphological parameters will be visualized, and correlation coefficients will be calculated and compared 
comprehensively. Influences on LWVA of morphological parameters of cuboid-form buildings will be comprehensively evaluated, 

Fig. 1. The data-mining framework.  
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including the visualization of multiple parameters, calculation and comparison of several correlation coefficients. Multivariate 
regression model-fit analysis and variance analysis will be implemented to further analyze the linear relationship between the pa-
rameters. The multivariate regression model will also provide rapid prediction function after the validation. The study outcome will 
contribute to efficient evaluation and provide useful information for the optimization of LWVA in sustainable design. 

2. Research methodology 

2.1. Generation of 3D building models using parametric modelling  

(1) Geometry and case settings of cuboid-form buildings 

The establishment of hybrid model required massive data of LWVAs of building cases for training the machine learning model. The 
study intended to implement hundreds of cases of CFD simulations. LWVAs of cuboid-form buildings with various heights, widths and 
depths would be simulated under different wind velocities (Fig. 2). As presented in Table 1, there were 100 buildings cases with 
combinations of various morphological parameters; the inlet wind velocities on the reference height were set as 1 m/s, 2 m/s and 3 m/s 
for the 100 cases; there were totally 300 cases of CFD simulations as training data. 

In the table, the values of widths, depths and heights were typical for common residential buildings in modern cities around the 
world; the values of wind velocities on the reference height could be universally observed in urban areas. In this study, wind velocities 
have been respectively set as 1, 2 and 3 m/s in the development of the hybrid model. These are typical wind velocities in urban areas, 
especially for the developing cities with relatively high densities in the middle south east of China. The wind conditions of simulations 
were set according to well-recognized climate data, including International Weather for Energy Calculation (IWEC), Chinese Typical 
Year Weather (CTYW) and Solar and Wind Energy Resource Assessment (SWERA). Take Wuhan City as an example, the local monthly 
average wind velocities are in the range of 1.0–1.5 m/s; the local monthly average high wind velocities are in the range of 2.0–3.0 m/s; 
the local monthly average low wind velocities are in the range of 0–1.0 m/s.  

(2) Parametric modelling algorithm of cuboid-form buildings 

Conventional manual modelling usually required drawings of lines and surfaces following several steps. The parametric modelling 
could be completed automatically using program based on the given morphological parameters of width, depth, and height. Similarly, 
the cuboid boundaries could also be generated using the other three parameters for the subsequent CFD simulations. It was efficient to 
generate numerous building models with different morphological parameters by simply adjusting parameters of the parametric- 
modelling program. In this study, the modelling scripts were developed in the environment of Grasshopper of Rhino [26]. In the 
program, the floor plane surfaces were created first based on the defined reference points; the cuboid-form building models were 
generated using the ‘extruding’ component with the surfaces and defined building heights. 

2.2. Big data generation based on development of hybrid model 

2.2.1. CFD simulation model 
CFD simulation procedures consisted of governing equations, computational domain, and boundary conditions. All the simulations 

were following the well-recognized Best Practice Guideline COST 732 (European Cooperation in Science and Technology) [27]. 

Fig. 2. The wind direction, morphological parameters and LWVA of cuboid-form building.  
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(1) Governing equations in CFD simulation 

The RANS method demonstrated by existing studies and engineering applications was accurate and efficient for our study [26,24]. 
A modified k-ε model employed for the turbulent kinetic energy (k) and the dissipation rate (ε) was adopted for the simulation of 300 
cases [28]. The CFD software Flow Simulation was adopted to solve the RANS equations. As presented in following transparent 
equations, ρ is the fluid density, μ is the dynamic viscosity; ui and uj are the velocities of the unit volumes xi and xj; σk and σε are the 
turbulence Prandtl numbers corresponding to the turbulent kinetic energy and dissipation rate; Cμ, Cε1, and Cε2 are the empirical 

constants; μt = fu
Cμρk2

ε is the turbulence viscosity; PB = −
gi
σB

1
ρ

∂ρ
∂xi
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(2) Computational domain, grid generation and boundary conditions 

All the simulation cases were set with the same size of computational domain following the guidelines COST 732 [27] (Table 2). 
Grids of CFD simulations were generated according to parametric building models by adopting Cartesian-based technology. The 
generation procedures included the subtraction of building models using body-fitting algorithm, division of computational domain, 
and automatic refinement [30]. Grids were simplified with appropriate densities to promote simulation efficiency and reduce 
computational loads. 

The reference wind velocities on the 10 m height were set as 1.0 m/s, 2.0 m/s and 3.0 m/s in CFD simulations. The initial wind 
velocity on the vertical profile can be defined by the equation below: u∗

ABL is the reference velocity, κ is the von Karman constant, z is 
the height, z0 is the aerodynamic roughness longitude [31]. 

U(z)=
u∗

ABL

κ
ln
(

z + z0

z0

)

(5)  

2.2.2. Data/image processing method 
Data/image processing method was used for the quantitative comparison of the LWVAs at the pedestrian level (height = 1.5 m) 

around buildings [32]. In this study, the analysis boundaries were all in the same sizes as the simulation boundaries. 
Wind-velocity-magnitude images with the same sizes and resolutions were processed in the image processing tool of ImageJ. Slight 
differences among CFD simulation results could be distinguished based on accurate pixel value statistics. In the images, a pixel was the 
smallest area with a given color according to the numerical value of wind velocity at a coordinate. The single-pixel area could be 

Table 1 
Building cases with combinations of various morphological parameters.  

Heights (m) Widths (m) Depths (m) 

9, 12, 15, 18, 21 24, 30, 36, 42, 48 9, 12, 15, 18 

Note: The inlet wind velocities on the reference height were set as 1 m/s, 2 m/s and 3 m/s for the 100 
cases. There would be totally 300 cases of CFD simulations. 

Table 2 
Size of computational domain for all the simulation 
cases.  

Windward extension 120 m 
Leeward extension 330 m 
Lateral extension 150 m 
Vertical extension 150 m 

Note: Extensions are between the building and domain 
boundaries. 
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calculated based on the setting scale of the boundary width (450m-1516 pixels). A LWVA could be obtained by multiplying the 
single-pixel area (0.088 m2) and measured pixel number of the area with particular colors. 

2.2.3. Machine learning model  

(1) Creation of machine learning model 

The script of machine learning model was created in the software program Jupyter Notebook of Anaconda. Several libraries 
including Numpy, Pandas, and Scikit-Learn were adopted to provide two major functions of prediction and prediction evaluation. The 
model of ‘Extremely Randomized Trees’ was selected due to its relatively high accuracy and efficiency for predictions of LWVAs in this 
study. Its functions included classification, regression and clustering [33]. The model could improve generalizability or robustness as it 
reduced the variance by combining predictions of several base estimators. Its randomness went a further step in computing the way of 
splits in comparison with the similar averaging algorithm of Forests of Randomized Trees. In addition, the best threshold was selected 
from all the thresholds generated for every candidate feature based on the splitting rule. Because the variance of prediction model 
could be further reduced in comparison with Forests of Randomized Trees [33].  

(2) Training and improvement of machine learning model 

The Excel files that contained building information and analysis results of LWVAs were read and standardized. The irrelevant, 
duplicate or incomplete data were removed or modified, and text-based data were converted to numerical values; the data were further 
processed by dropping the morphological parameters of cuboid-form buildings as the original parameters of features; the rest pa-
rameters of LWVAs were used as the prediction regression target for the original parameters. 

The entire data set was split into two segments of training data and test data for the machine learning model. The proportion of 
training data and test data was decided by setting the parameters appropriately using the algorithm with the split function of Pandas 
library. The training data were fed to train the machine learning model using the ‘Extremely Randomized Trees’ algorithm. The model 
would look for the pattern in the data automatically to make the original parameters of features fit the prediction regression target. 
After the training, the initial machine learning model could make primary predictions of LWVAs based on the given building 
morphological parameters. The predictions were evaluated and the parameters of the machine learning model were adjusted for 
several times to improve the accuracy of results. 

2.2.4. Validation method of hybrid model  

(1) Grid-independence analysis for CFD simulation model 

The Grid Convergence Indexes (GCIs) were calculated in the grid independence analysis for CFD simulation model. The calculation 
process is presented in the following equations: Fs is the safety factor (Fs = 1.25), εrms is the root mean square relative error, r is the grid 
refinement ratio (r = 2), p is based on the second-order discretization of all terms (p = 2), n is the number of measurement points (n =
10), εi is the value of velocity (V) or turbulence kinetic energy (TKE) of winds at measurement points [34,35]. Three sets of coarse grid, 
medium grid and fine grid were constructed for the calculation and analysis of GCIs. 

GCI =Fs
εrms

rp − 1
(6)  

εrms =

(∑i=n
i=1ε2

i

n

)1
2

(7)    

(2) Experimental validation for CFD simulation model 

CFD simulation model was further validated by comparing its result with a well-recognized wind-tunnel experiment done by Brown 
et al. from the US Environmental Protection Agency [26,36,37]. In the wind tunnel, total 77 cubes were placed in 11 rows and 7 
columns. The wind velocities on the 12 profiles in the centerline of the cube array were compared through the evaluation of statistical 
discrepancies between the experiment and CFD simulation [38,39]. The calculation method of statistical discrepancies is presented in 
the following subsection.  

(3) Calculation of R-squared for machine learning model 

R-squared was calculated to evaluate the prediction performed by machine learning model. It was a statistical measure of fit which 
could indicate the variation between the predicted dependent variable and original parameters [40]. The calculation was implemented 
by using the metric method of SK-Learn. As shown in the equation below, u is the residual sum of squares, v is the total sum of squares 
[41]. 
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R2 = 1 −
u
v

(8)    

(4) Calculation of statistical discrepancies for hybrid model 

Statistical discrepancies were analyzed for the validation of hybrid model, including the CFD simulation model and machine 
learning model. This study respectively evaluated the statistical discrepancies between the wind velocities generated by the experi-
ment and CFD simulation, and the statistical discrepancies between the LWVAs predicted by CFD simulation and machine learning 
model. Predicted Root Mean Square Division (PRMSD), Normalized Mean Square Error (NMSE), Fractional Bias (FB), and Correlation 
Coefficient (CC) were calculated. Their calculation processes were presented in the following equations: n is the number of mea-
surement points, Xi and Ri are two values measured at a point for comparison, Xm and Rm are the mean values of series of Xi and Ri 
respectively (Xi, Xm are the values for validation; Ri, Rm are the values for reference, E.g.: CFD simulation versus experiment, machine 
learning prediction versus CFD simulation). 

PRMSDES =
1

Em
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(Ei − Si)
2

n

√

(9)  

NMSEES =

∑n

i=1
(Ei − Si)

2

∑n

i=1
(Ei × Si)

(10)  

FBES =
Em − Sm

0.5 × (Em + Sm)
(11)  

CCES =

∑n
i=1[(Ei − Em) × (Si − Sm)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Ei − Em)
2

√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Si − Sm)
2

√ (12)  

2.3. Statistical metric analysis method 

Statistical metrics analysis method was adopted for the analysis of influences of building morphological parameters. Customized 
analysis programs were developed using R-project language to analyze the data features, including distribution, correlation and so on. 

2.3.1. Visualization method of data distribution 
The ‘excel’ files were created first to contain the data of LWVAs and morphological parameters of buildings. The unreasonable data 

were eliminated, and missing data were supplemented. Then, the data was imported and converted to matrices. The data were 
visualized in figures to show the distributions of parameters for comparisons. The plotting was implemented by adopting the ‘gather’ 
function and the component of ‘ggplot’ in the R-project environment. The arrangements of figures were improved by adjusting or 
adding the parameters of functions. 

2.3.2. Statistical test method 
The well-recognized Shapiro-Wilk test (S–W test) was selected as for normality test in the statistical test. The sampling distribution 

tended to be normal in large samples, regardless of the data shape [42]. As presented in the equation below, the calculation of S–W test 
is based on the correlation between the data and corresponding normal scores [43]: n is the number of observations, x(i) are the values 
of the ordered sample, ai is the tabulated coefficients. 

W =

( ∑n
i=1aix(i)

)2

∑n
i=1(xi − x)2 (13)  

2.3.3. Calculation method of correlation coefficients 
The coefficients of Pearson, Spearman and Kendall Correlations were calculated for paired parameter groups respectively by using 

Table 3 
The ranges of correlation coefficients and correlation strengths.  

Ranges of correlation coefficients Strengths of correlation 

0.0–0.2 Very weak 
0.2–0.4 Weak 
0.4–0.6 Middle 
0.6–0.8 Strong 
0.8–1.0 Very strong  

H. Guo et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e29137

8

the correlation calculation function with the three methods in the ‘R Project’ software tool. The relationship between the ranges of 
correlation coefficients and correlation strengths is presented in Table 3. 

A Pearson Correlation Coefficient (PCC) was a statistical measure that could describe the strength of linear relationship between 
two groups of parameters [44]. The interval or ratio-level parameters should be bivariant distributed and linearly related. The PCC 
calculation process is presented in the equation below: N is the number of pairs of scores, x and y are parameters from two groups, 

∑

xy is the sum of products of paired parameters, 
∑

x and 
∑

y are the sums of parameters of x and y respectively, 
∑

x2 and 
∑

y2 are the 
sums of squared parameters of x and y respectively. 

ρp =
N
∑

xy − (
∑

x)(
∑

y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
N
∑

x2 − (
∑

x)2][N
∑

y2 − (
∑

y)2]
√ (14)  

Because the parameters might not always meet the parameter requirements of PCC, Spearman Correlation Coefficient (SCC) and 
Kendall Correlation Coefficient (KCC) were calculated to further analyze the correlation comprehensively [45]. A SCC was another 
statistical measure that could describe the strength and direction of relationship between two groups of ranked parameters [46]. 
Analysis of KCC could provide a distribution free test of independence and a statistical measure of the strength of dependence between 
two groups of parameters [47]. The calculations of SCC and KCC are presented in the following two equations: (1) di is the difference in 
ranks of the parameters, n is the number of data points of the two parameters; (2) nc is the number of concordant, nd is the number of 
discordant. 

ρs = 1 −
6
∑

d2
i

n(n2 − 1)
(15)  

τ= nc − nd

n(n − 1)/2
(16)  

2.3.4. Multivariate regression analysis and variance analysis 
Multivariate Regression Analysis (MRA) aimed to analyze the linear correlation relationships between the independent and 

dependent variables of LWVAs and morphological parameters of cuboid-form buildings. Change pattern of LWVAs depended on the 
changes of morphological parameters could be described by the regression model. The strength of the linear correlation was estimated 
by fitting a line to the observed data. The analysis of significance, single stratum of parameters and covariance could be carried out [48, 
49]. Variance Analysis (VA) aimed to obtain information about the quality, validity and performance of the multiple linear regression 
models. The factors which have most influences could be found in a multidimensional model. The variances within a model were split 
into several parts, and the relationship within them was set up [50]. 

3. Results analysis 

3.1. Validation results of hybrid model  

(1) Results analysis of GCIs 

In the grid-independence analysis, a CFD simulation of a cuboid-form building was used as a case study. The building was 36 m in 
width, 12 m in depth, and 15 m in height. The inlet wind velocity was set at 2.0 m/s on the reference height. Coarse, medium and fine 
grids were constructed respectively. V and TKE of winds were measured at two lists of ten points with different heights on the 
centerline in front of the windward side (x = 30 m) and behind the leeward side (x = − 50 m) of the building respectively. 

As presented in Table 4, all the results of GCIs were less than 5% that could meet the recommendation from former studies [51]. The 
results proved the grid accuracy of the CFD simulation model. The model could predict the winds well using the three grid sets. The 
coarse grid set was selected to promote the simulation efficiency.  

(2) Result analysis of R-squared 

For the machine learning model, initial calculation results of R-squared were around 80%–95% in the stage of evaluation and 
improvement of the model. The R-squared could reach 97.7% when the adjustment parameters of test size equaled 0.1 and random 
state equaled 33 in the algorithm of ‘Extremely Randomized Trees’. The result analysis showed that the R-squared was quite close to 

Table 4 
GCIs of V and TKE at the discrete measurement points.  

Grids Discrete points Grid 1-2 Grid 2-3 Grid 1-3 

GCI of V (%) X = − 50 m 0.995 4.457 1.378 
X = 30 m 2.607 1.440 3.875 

GCI of TKE (%) X = − 50 m 2.509 1.874 4.227 
X = 30 m 3.311 0.946 4.244  
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100%. The relatively high R-squared demonstrated that the prediction was sounding correct.  

(3) Results analysis of statistical discrepancies 

Analysis of statistical discrepancies included the CFD simulation model and machine learning model of the hybrid model. In the 
evaluation of statistical discrepancies between the LWVAs predicted by CFD simulation and machine learning model, there were total 8 
building cases with 3 different wind conditions (Table 5). For the 8 building cases: the morphological parameters were randomly 
selected within the entire range between the maximum and minimum morphological parameters of the training data; they were totally 
different from the training data of machine learning model. 

The calculation results of statistical discrepancies are presented in Table 6, including the comparison of experiment and CFD 
simulation model, and the comparison of CFD simulation model and machine learning model. Results can be summarized as follows for 
the both two comparisons: (1) PRMSD, NMSE, and FB were relatively close to 0; (2) CC was close to 1. They could meet the standards 
recommended by the COST criteria: NMSE < 1.5, and − 0.3 < FB < 0.3 [26,52]. The analysis of statistical discrepancies further 
suggested that: the prediction made by CFD simulation model had a good agreement with the experimental measurement; and the 
predictions made by the validated CFD simulation model and machine learning model were relatively close to each other. The accuracy 
of the hybrid model was demonstrated. 

3.2. Visualization and correlation analysis of LWVAs and morphological parameters 

The analysis focused on the correlation of LWVAs and morphological parameters. Total 52,500 building cases with different 
morphological parameters and relevant wind conditions were analyzed. The morphological parameters include W, D and H. A 
customized R-Project calculation program was applied to implement the statistical test, calculation of PCCs, SCCs and KCCs. The result 
of S–W test of W, D, H, and LWVA is presented in Table 7. The distribution of H, W, V, D, and LWVA of 52,500 building cases is 
presented in Fig. 3. 

The statistical test results of all the parameters suggested that all the parameters were in non-normal distribution. The calculation 
results of PCCs, SCCs, and KCCs of LWVAs and morphological parameters (Table 8) showed that: the correlation of LWVA and building 
height was the highest, the second one was the correlation of LWVA and building width, the third one was the correlation of LWVA and 
building depth, and the lowest one was the correlation of LWVA and wind velocity (Fig. 4). 

3.3. Multivariate regression analysis results and evaluation  

(1) Multivariate regression model-fit analysis 

In the multivariate regression analysis, the morphological parameters V, H, W, and D were used as the predictor variables; the 
LWVA was used as the response variable. As presented in Table 9, the coefficients, significance, multiple and adjusted R-square values, 
and p-value are generated in the multivariate regression model fit summary. The analysis shows that the morphological parameters V, 
H, W, and D are highly significant in model fitting. The p-value (<2e-16) was relatively low. Both the multiple and adjusted R-square 
reached 94.91% after adjustments; as they are close to 100%, they are relatively high. The analysis confirms the prediction accuracy of 
multivariate regression model. The visualization of coefficients of multivariate regression model are presented in Fig. 5. According to 
the coefficients, the LWVA prediction equation can be expressed as follows. A rapid prediction of LWVA can be easily implemented 
using the equation.  

LWVA=(− 37.71)✕V+(293.20) ✕H+(107.85) ✕L+(8.23) ✕W− 4123.65                                                                                                

In Fig. 6, residuals versus fitted, normal Q-Q, scale location, and residuals versus leverage are presented respectively. The results 
can be summarized as follows: (1) The residuals versus fitted plot can illustrate the non-linear relationship between the response and 
predictors. In this study, it shows that there are some nonlinear patterns in the residuals at the right according to the horizontal trend 
line. (2) The normal Q-Q plot shows that most the residuals can follow a straight dashed line. This suggests that the residuals are 
normally distributed. And there can be an assumption of linear regression. There are relatively small deviations when the theoretical 

Table 5 
The eight building cases with three different wind velocities.  

Building case No. Widths (m) Heights (m) Depths (m) 

1 47 21 17 
2 25 20 16 
3 30 19 11 
4 45 16 11 
5 20 14 9 
6 44 13 10 
7 27 11 16 
8 21 10 10 

Note: Inlet wind velocities on the reference height were set as 1 m/s, 2 m/s and 3 m/s for the 8 building cases respectively. 
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quantiles are less than − 2.5 or passes 2.0 along the x-axis. (3) The scale location plot shows that there is a horizontal line with 
randomly spread points. This indicates good homoscedasticity. (4) The residuals versus leverage plot can show the relationship be-
tween the standardized residuals and leverage points of the observations in the regression model. Leverage points usually have a large 
influence on the model estimates. Residuals represent the differences between the observed and predicted dependent variable values. 
In this study, the residuals versus leverage plot presents that most standardized residuals are in a range of − 2 to 2. There are a relatively 
few outlying values at the left and right in a range of 0.000025 and 0.00020. It suggests that a relatively few cases influence the 
regression line.  

(2) Variance analysis 

The result of variance analysis further demonstrated that the parameters of V, H, W and D had strong influences on the multivariate 
linear model (Table 10). The Df was the degrees of freedom for the independent variable and residuals. It referred to the number of 
independent values of parameters that could vary freely without breaking any constraint. The degrees of freedom were 1 for the four 
parameters of V, H, W and D. The Sum Sq was the sum of squares which were the total variation between the group means and the 
overall mean. The Mean Sq was the mean of the sum of squares, calculated by dividing the sum of squares by the degrees of freedom for 
each parameter. As the degrees of freedom were 1, the Sum Sq and Mean Sq were same for the four parameters respectively. It could be 
found that the F values were relatively large, especially for H and W (F value = 527582.54 for H; and F value = 449911.20 for W). The 
larger F value indicated that it is more likely for the variation caused by the independent variable is real and not due to chance. This is 
aligned with the correlation analysis: the morphological parameters of H and W had larger influenced on LWVA in comparison with V 
and D. The Pr (>F) is the p value of the F statistic. According to the p values (<2.2e-16), there were strong linear correlation between 
the LAV and the parameters of V, H, W, and D. 

4. Discussion 

4.1. Efficiency and accuracy of hybrid model 

The parametric modelling could largely promote the modelling efficiency for numerous building cases. Parametric modelling could 
save more than 75% time in comparison with conventional manual modelling in this study. The advantage would be even more 
significant for more cases. The integration of CFD simulation model, machine learning model and statistical metric analysis could 
largely promote the evaluation efficiency of LWVAs of cuboid-form buildings. The multivariate regression analysis further provided 
the linear model as a rapid manual calculation method for the prediction of LWVAs. 

The accuracy of hybrid model was fully demonstrated by the validation results analysis: the accuracy of CFD simulation model was 
proved by the results of analysis of GCIs and statistical discrepancies; the accuracy of machine learning model was proved by the results 
of analysis of R-square and statistical discrepancies. 

4.2. Results discussion  

(1) Trends of influences of the morphological parameters 

The trends of influences of the morphological parameters presented by the analyses of the three kinds of correlation coefficients 
were similar and consistent. The calculation results of PCCs, SCCs and KCCs all suggested that: height of cuboid-form building had the 
largest influence on the LWVA; the influence of width of the building was the second largest. There was a close relationship between 
the windward area of cuboid-form building and its influence on the LWVA. The influence of depth of the building was much smaller in 
comparison with the height and width. Therefore, the reduction of building height and width would significantly decrease the LWVA. 
It would be reasonable to control the building height for the reduction of LWVA, especially for high-density cities. 

Table 6 
Results of PRMSD, NMSE, FB and CC for the validation of hybrid model.   

PRMSD NMSE FB CC 

Experiment & CFD simulation 0.159 0.026 0.104 0.972 
CFD simulation & Machine learning prediction 0.087 0.312 0.067 0.977 

Note: PRMSD-Predicted Root Mean Square Division; NMSE-Normalized Mean Square Error; FB-Fractional Bias; CC-Correlation Coefficient. 

Table 7 
S–W test results of LWVAs and morphological parameters.  

Parameters V H W D LWVA 

W 0.63662 0.93536 0.95124 0.93536 0.985239 
p-value p-value <2.2e-16  
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(2) Discussion of multivariate regression analysis 

The multivariate regression model-fit analysis further proved that the morphological parameters of cuboid-form building could 
strongly influence the surrounding LWVA. The analysis clearly showed that there was a relatively significant linear correlation be-
tween the LWVA and morphological parameters. The multivariate regression model could be part of the hybrid model, as it was 
relatively easy to predict the LWVA by using the equation with the entering parameters. 

Fig. 3. Distribution of H, W, V, D, and LWVA of 52,500 building cases.  
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4.3. Research limitations 

Though the hybrid model could promote the efficiency of LWVA evaluation, CFD simulation model could not be replaced by 
machine learning model. Fundamentally, CFD simulation models were based on physic models, and machine learning models were 
based on mathematical empirical models. Their working mechanisms were totally different. The development of machine learning 
model and its prediction function depended on the training data generated by the CFD simulation model. This study proved that the 
development of hybrid model could integrate the advantages from different computational methods. 

In our study, hundreds of building cases with the morphological parameters in certain ranges were initially simulated and used as 
training data for the machine learning model. The number of building cases was still relatively few, especially for the development of 
some neural network models. This study only considered the particular cuboid form of buildings. However, realistic buildings would be 
in complicated and numerous forms and configurations. This study focused on the influences on low-wind-velocity area from the 
morphological parameters. The other factors related to wind environments have not been studied much. And this study only 
considered the wind direction that is vertical to the windward surface of the buildings. In the realistic situations, there could be 
numerous wind directions. 

4.4. Potentials and future studies 

There is a great potential that the methodology and similar workflow can be applied in relevant studies, building performance 
evaluation and sustainable design practices considering multiple complex factors. It would help in providing useful information for 

Table 8 
PCCs, SCCs, and KCCs of LWVAs and morphological parameters.  

Parameters Pearson correlation Spearman correlation Kendall correlation 

Wind velocity − 0.019400 − 0.017100 − 0.011720 
Height 0.715418 0.717054 0.541076 
Width 0.660660 0.655217 0.479722 
Depth 0.020086 0.019809 0.013672  

Fig. 4. Correlation-strength heat map of LWVAs and morphological parameters.  

Table 9 
A brief multivariate regression fit summary.   

Intercepts V H W D 

Coefficients − 4123.65 − 37.71 293.20 107.85 8.23 
Significance *** *** *** *** *** 
Multiple R-square 0.9491 
Adjust R-square 0.9491 
p-value <2e-16 

Significance codes: 0–0.001: ‘***‘; 0.001–0.01: ‘**‘; 0.01–0.05: ‘*‘; 0.05–0.1: ‘.‘; 0.1–1: ‘‘. 
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design strategy making and morphological optimization for buildings. 
Buildings with the other representative forms and configurations can be studied in future research. Especially for influences on 

LWVAs of typical morphological parameters, similar customized models can be established for more in-depth analyses. And different 
wind directions and building orientations can be considered in the future studies. More relevant parameters of wind environments can 
be considered to comprehensively present the performance of building ventilation and urban micro climate. For example, there can be 
air exchange rate, wind velocities at particular points, and so on. 

For the methodology, the models would be improved in different ways to further promote the efficiency and accuracy. Relevant 
algorithms can be developed to help in parametric modelling and simulation meshing. The other CFD simulation models such as LES 

Fig. 5. Visualization of the coefficients of multivariate regression model.  

Fig. 6. Visualization of multivariate regression model of LWVAs prediction.  
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method can be tried with efficient computational resources. The machine learning models with a more precise prediction function can 
be tested. The integration of multiple models would be upgraded by inserting the physical equation in the modification of machine 
learning model. 

5. Conclusion 

This study has proposed a data-mining framework that can quantitatively evaluate and compare influences on Low-Wind-Velocity 
Area (LWVA) of common cuboid-form buildings with typical morphological parameters. The data-mining framework has been 
developed by integrating multiple computational methods for rapid in-depth iterative analyses, including the generation of building 
models using parametric modelling, big data generation using hybrid model, and statistical metric analysis method. The hybrid model 
has been created by combining the CFD model and machine learning model. Its accuracy and efficiency have been demonstrated 
through the comprehensive validation and analyses of different models. Influences on LWVA of morphological parameters of cuboid- 
form building have been comprehensively evaluated, including the visualization of multiple parameters, calculation and comparison 
of several correlation coefficients. Multivariate regression model-fit analysis and variance analysis have been implemented to further 
analyze and evaluate the linear relationship between the parameters. The equation of multivariate regression model has been provided 
for rapid prediction of LWVA, and its accuracy has been demonstrated. Specific findings can be summarized as follows.  

(1) This study has presented the development process of a novel data-mining framework that can provide efficient, accurate and in- 
depth analyses of LWVA influenced by building morphological parameters. It is an original attempt to integrate the multiple 
computational methods of parametric modelling, hybrid model, and statistical metric analyses. The accuracy of the hybrid 
model based on CFD model and machine learning model has been validated by calculating the GCIs, R-squared and statistical 
discrepancies. The hybrid model can generate the big data of LWVA influenced by building morphological parameters rapidly 
and precisely. Small differences of numerous cases can be easily distinguished and compared. There is a great potential to adopt 
the framework in the other relevant studies and sustainable design optimization.  

(2) Influences on LWVA of morphological parameters of cuboid-form building has been quantitatively evaluated: Influence of the 
height is the largest (PCC = 0.715, SCC = 0.717, KCC = 0.541); influence of the width is the second largest (PCC = 0.661, SCC =
0.655, KCC = 0.480); influence of the depth is much smaller than the height and width (PCC = 0.020, SCC = 0.020, KCC =
0.014). The reduction of height and width on the windward side would significantly decrease the LWVA and promote the 
outdoor ventilation. The change of depth would have relatively limited influence on the LWVA.  

(3) There is a relatively significant linear correlation between the LWVA and morphological parameters of cuboid-form buildings. 
The LWVA can be calculated manually with the multivariate regression model by entering the initial wind velocity and 
morphological parameters of cuboid-form buildings in the provided equation. 
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