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Abstract: A seizure is a neurological disorder caused by abnormal neuronal discharges in the brain,
which severely reduces the quality of life of patients and often endangers their lives. Automatic
seizure detection is an important research area in the treatment of seizure and is a prerequisite
for seizure intervention. Deep learning has been widely used for automatic detection of seizures,
and many related research works decomposed the electroencephalogram (EEG) raw signal with
a time window to obtain EEG signal slices, then performed feature extraction on the slices, and
represented the obtained features as input data for neural networks. There are various methods
for EEG signal decomposition, feature extraction, and representation, and most of the studies have
been based on fixed hardware resources for the design of the scheme, which reduces the adaptability
of the scheme in different application scenarios and makes it difficult to optimize the algorithms
in the scheme. To address the above issues, this paper proposes a deep learning-based model for
seizure detection, mainly characterized by the two-dimensional representation of EEG features and
the scalability of neural networks. The model modularizes the main steps of seizure detection and
improves the adaptability of the model to different hardware resource constraints, in order to increase
the convenience of the algorithm optimization or the replacement of each module. The proposed
model consists of five parts, and the model was tested using two epilepsy datasets separately. The
experimental results showed that the proposed model has strong generality and good classification
accuracy for seizure detection.

Keywords: EfficientNet neural network; seizure detection; epilepsy; EEG feature representation

1. Introduction

Between 1% and 2% of the world’s population endures seizures, which are temporary
events caused by abnormal neuronal activity in the brain. Seizures are unpredictable
for patients in their daily lives and are a potential cause of their disability or even death.
Seizures are emotionally stressful for patients and their families, and treatment is costly and
expensive. There are many methods used for the treatment and rehabilitation of seizure,
some of which are daily medications provided to patients to reduce the number of seizures,
such as the use of the drug Epidiolex. There are also treatments that reduce the extent of
seizures, such as electrical stimulation, including vagus nerve stimulation and responsive
neurostimulation. To apply therapies during seizures, seizure detection is a prerequisite.
Therefore, many researchers have focused on the automatic detection of seizures [1], and
many electroencephalogram(EEG)-based classification schemes have been generated.

EEG is an important means of recording neuronal activity in the brain and contains
information that reflects the overall activity of the cerebral cortex. Because the EEG during
a seizure is different from when the brain is normal, the EEG can be used to detect seizures.
This is important for carrying out automatic closed-loop treatment of seizure and is one
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of the key technologies for developing artificial intelligence systems and tools for the
treatment of seizure. In addition, seizure detection can also be used for the assessment of
the effect of patient treatment.

Deep learning is a widely followed machine learning paradigm that works in a mul-
tilevel combination and obtains high-level features from the input data. Deep learning
does not require the manual design of the corresponding feature extractor for each clas-
sification problem. The structure of a deep neural network always contains more than
two implicit layers, and the weights of each layer are adjusted according to the input data
during training. The trained network can produce corresponding classification results
for different input data. Deep learning techniques are now widely used for EEG signal
classification, including seizure detection. Most of the related studies first use the EEG
data to generate the input data for the network and then train the network to acquire
the ability to classify the EEG. Because of the black-box nature of neural networks, it is
always difficult for a network to reduce the dimensionality of the input data, so it is not
always appropriate to use the raw EEG data as the input data. Different kinds of input
data can affect the classification performance of neural networks. Therefore, many studies
decompose the original EEG to obtain many slices of the EEG signal and then use each
slice to extract features in the time domain, frequency domain, time–frequency domain, etc.
The representation of the features are the input data of the neural network. The input data
can be one-dimensional, two-dimensional, or high-dimensional. The input data of differ-
ent dimensions have different processing complexities. We want the input data to retain
the important information in the slices and have a lower dimensionality. After training,
the trained neural network will obtain new deep features, and the classifier calculates the
classification results based on the depth of the features. The obtained results can be used
as the classification results of slices and for further processing to obtain the classification
results of EEG signals.

Although there are many studies that have used deep learning to classify EEG signals,
most of them have designed their schemes based on the hardware resources they have,
which makes it impossible to scale the width, depth, and resolution of the neural network
when these schemes are deployed on different hardware platforms. In addition, because of
the fixed structure of the neural network, the form of the input data representation is
closely related to the structure of the neural network, which likewise reduces the possibility
of reusing a network’s structure or the input data’s representation algorithm in future
research. If the coupling among different technical parts in a scheme is stronger, it is more
difficult to replace different parts in the future using new algorithms, which also leads
to the difficulty of optimizing this scheme. It is the motivation of this paper to make the
proposed scheme better adapted to different hardware resource constraints and to facilitate
the introduction of new algorithms for scheme optimization.

In this paper, we propose a deep learning-based model with two core features: the
two-dimensional representation of EEG features and the scalability of the neural network.
The EfficientNet neural network [2] was introduced into the model, and this was done for
two purposes. One purpose was to improve the classification performance of the model by
using the network’s transfer learning capability, and the other purpose was to enhance the
model’s ability to adapt to different hardware resource constraints and different kinds of
input data by using the ability that the depth, width, and resolution of the network can be
changed dynamically to extract more information to improve the classification performance
of the model. The model is mainly divided into five parts. They are EEG decomposition,
feature extraction, 2D representation, depth feature extraction, and classification, as shown
in Figure 1. The first part is EEG decomposition, which uses time windows to decompose
EEG signals into segments, called slices. In this paper, we explored the effect of different
lengths of time windows on the detection results in epilepsy detection. The second part is
feature extraction. Currently, the main EEG signals can be divided into single-channel and
multichannel based on the number of channels. For seizure detection, we used different
feature extraction methods for single-channel and multiple channel to extract the features
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in the slices. The third part is the two-dimensional representation of the obtained features,
and the representation results were used as the input data of the neural network. In this
paper, the result of the 2D representation of the features was a picture, which is a 2D
matrix with three channels. The fourth part is the deep feature extraction, which uses the
neural network to perform deep feature extraction on representations. The model scales
the neural network according to the hardware resource constraints and the characteristics
of input data. These scaling factors include the depth, width, and resolution of the network.
The fifth part is the classification, which uses the depth features to obtain the classification
results of the slices, and this result can be used as a judgment about whether a seizure has
been detected or not. The model was tested on two datasets to determine its generality
and effectiveness.

EEG signals

Time sliding window

Frequency features
Or

Other features

Graphical representation of features

Image enhancement

Time-Frequency features
Or 

Other feautures

Single channel EEG signal Multi channel EEG signal

Reshape

Normalization

Scalable neural 
networks

EEG classification

Seizure detection

Part 1: 
Data slicing

Part 2: 
Feature extraction

Part 2: 
Feature extraction

Part 3:
 Representation (2D)

Part 5:
Classification

Part 4:
 Deep Feature Extraction

Figure 1. The main parts of the proposed model.

The main contributions of this paper are as follows:

1. A deep learning-based seizure detection model is proposed with the 2D representation
of a single-channel or multichannel EEG features. Modularizing the model facilitates
the algorithm optimization or algorithm replacement for different parts of the model;

2. The EfficientNet network architecture was incorporated into the proposed model,
thus allowing the model to adjust the width, depth, and resolution of the network
according to different hardware resource limitations and types of input data;

3. Experiments were conducted on two publicly available epilepsy datasets. The settings
of some important parameters are explored in the paper, and the effect of transfer
learning on the model performance is briefly discussed.

The remainder of this paper is organized as follows. Section 2 presents the main
technical background of seizure detection involved in the proposed model. The details of
the proposed model are given in Section 3. Section 4 describes the experimental studies,
and the results are analyzed in Section 5. Finally, conclusions and future work are given in
the last section.
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2. Related Works

With the development of biosensor technology [3,4], EEG is increasingly used for
seizure detection. EEG is a recording of the electrical signals produced by the brain using
electrodes to reflect the activity of neurons in the brain. Depending on the placement of
the electrodes, EEG can be classified as intracranial EEG and scalp EEG. The former is an
EEG signal collected with electrodes inserted onto the brain and placed under the skull,
while the latter is an EEG signal collected with electrodes placed immediately on the scalp.
It is important to note that some studies have further differentiated the types of scalp
EEG based on the location of the electrodes or the complexity of how the device is worn,
for example scalp EEG or behind-the-ear EEG [5].

The EEG is different during seizure and nonseizure periods, so an automated algo-
rithm can be used to analyze the EEG signal and determine whether a seizure is present
or not. Starting from the early 20th century, some researchers began to study seizures
based on EEG. With the rapid development of computer technology, many techniques for
automatic seizure identification have emerged. Time domain features, frequency domain
features, time–frequency domain features, or nonlinear dynamic features are extracted,
and then, these features are used for seizure detection.

Time domain analysis was applied to the analysis of EEG signals early on, mainly
using waveform features and rhythm features for seizure detection. In 1982, Gotman
extracted the time domain features of the EEG signal: amplitude, peak, slope, and so on,
and compared these features with a preset threshold to ultimately determine whether
a seizure was occurring [6]. In [7], the authors used a moving window to dynamically
analyze the brain based on the analysis of the positive zero-crossing intervals in the scalp
EEG. The scheme [8] proposed by Bedeeuzzaman et al. was based on a statistical feature set,
performing mean absolute deviation and interquartile range operations, then using a linear
classifier to achieve the classification of the seizures. In the paper [9], a fusion method of
variational mode decomposition and autoregression was used to extract features, and then,
a random forest classifier was used to classify seizures. The authors of [10] combined
empirical mode decomposition and the autoregressive model to construct an EEG-based
classification model. Firstly, the EEG signal was decomposed into several intrinsic mode
functions by empirical mode decomposition, then the features were calculated by using the
sliding window technique and the autoregressive model, and the classification of the EEG
signal was achieved using these features. A seizure detection system was presented in [11],
where the system processed the data in stages, including: preprocessing, feature extraction,
classifier, and expert system. Overall, the expert system reflects the physician’s experience
in seizure detection, and the system looks for spikes in the EEG signal and submits the
relevant information to the expert system for the final classification of seizures.

EEG signals contain data of different frequencies and can be transformed from the
time domain to the frequency domain by transforming them [12]. The information of
different frequencies is analyzed, and features are extracted for the classification of the
EEG information. The scheme proposed in [13] uses the discrete wavelet transform to
extract EEG features for each frequency sub-band. Then, it relies on the SVM classifier to
complete the seizure detection. The scheme has higher sensitivity and specificity in the
α and δ bands. In the scheme proposed by [14], the EEG was diagnosed using multiscale
principal component analysis; the EEG signal was decomposed using techniques such as
wavelet packets, and after relying on statistical methods to extract the features, the seizure
detection was performed using machine learning. In [15], the wavelet transform was used
to extract wavelet coefficients from the EEG signal, and then, the peaks were obtained from
the wavelet coefficients. The peaks were mapped to 3D coordinates, and the Euclidean
distance of the 3D coordinates from the origin was characterized by statistical techniques.

Due to the nonstationary nature of EEG, especially during seizures, entropy measures
have attracted more attention in the field. The authors of [16] gave two protocols for
analyzing the entropy of the EEG, one using a single analysis window, but with each
window having different lengths, and the other using multiple windows, each of which can
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differ in statistical content. In [17], a modified distribution entropy (mDistEn) for epilepsy
detection was proposed. mDistEn corresponds to a higher area under the curve (AUC)
value compared to fuzzy entropy and distribution entropy and yields a 92% classification
accuracy. The scheme in [18] was used for seizure detection, and the scheme was also
implemented based on a combination of wavelet analysis and support vector machines.
The authors of [19] proposed a hybrid feature-based EEG signal classification scheme to
improve the accuracy of seizure detection. The hybrid features contain features commonly
used in EEG signals and also the entropy obtained based on the Hilbert–Huang transform
proposed by the authors. In [20], the EEG signal was decomposed into nine sub-bands
using a tunable-Q wavelet. Then, the entropy, statistical, and fractal features were extracted
from the sub-bands, and ensemble learning was used for the EEG classification.

In recent years, deep learning has achieved many successes in the analysis of time se-
ries signals, so many studies have tried to use deep learning to process EEG signals [21,22].
In 2017, the authors of [23] implemented seizure detection using a 13-layer deep con-
volutional neural network. Antoniades et al. [24] performed seizure detection using a
four-layer convolutional neural network pair for discrete multichannel intracranial EEG.
Different kinds of neural networks have also been used for seizure detection, such as deep
belief networks [25], improved SincNet-based networks [26], long short-term memory
networks [27], and two-layer long short-term memory networks [28]. In the field of EEG
classification, transfer learning also has related results, such as domain-adversarial neural
networks [29] and improved EasyTL-based neural networks [30].

In summary, EEG has been widely used for seizure detection, and deep learning has
been adopted by numerous studies. However, the neural network structures in these
studies are fixed and strongly coupled to the format of the input data. Some of those
networks use 1D or 2D convolutional units, and some use 3D convolutional units, as shown
in Table 1.

Table 1. Neural networks with different convolutional dimensions used.

Work Dataset Convolutional Dimension Accuracy (%)

[31] TUH 1D network 79.34

[32] Clinical 1D network 89.73

[33] CHB-MIT 1D network 84

[34] Bonn 1D network 97.27

[35] Clinical 1D network 83.86

[36] Bonn 1D network 86.67

[37] Bonn 2D network 99.60

[38] Bonn 2D network 91.25

[39] Bonn 2D network 98.67

[40] Bonn 2D network 100

[41] CHB-MIT 2D network 90.50

[42] CHB-MIT 2D network 96.22

[43] CHB-MIT 2D network 94.37

[44] CHB-MIT 2D network 99.63

[45] Clinical 2D network 95.19

[46] Bern Barcelona 2D network 91.8

[47] UCI 2d network 85.3

[48] Clinical 3D network 99.4
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Different studies have used different network models for depth feature extraction and
EEG signal classification, and some of these networks were designed based on well-known
network models, while some were completely new network models. However, the depth,
width, and resolution of these models are difficult to dynamically adjust.

Public datasets used for image classification tests usually contain tens of thousands
or even millions of images, which allows neural networks to be adequately trained. If a
network can be well trained on these public datasets, it also has the prerequisites for
transfer learning, including the use of the trained network for EEG data classification.

3. The Proposed Model

The proposed model has five main parts, as shown in Figure 1, which are data
decomposition, feature extraction, two-dimensional representation of features, deep feature
extraction, and classification. We give the following two phrases their meanings as follows:

1. EEG segment: A data record of the original EEG signal. The time span of this record
is determined during the data acquisition;

2. EEG slice: the data slices obtained by decomposing the EEG segment with a sliding time
window. In general, a slice contains EEG data with a time span of several seconds.

Part 1 is data decomposition, where the complete EEG data are sliced using a time
window. A complete EEG signal is usually an EEG recording over a period of time,
and slicing it makes it easier for subsequent processing. Classifying slices usually requires
less hardware resources than classifying complete EEG data. In addition, a complete
segment of EEG data usually contains both seizure and nonseizure EEG signals, so it is
less meaningful to classify the whole EEG signal. Classification of slices, on the other hand,
allows for more accurate knowledge of whether a patient is having a seizure at the moment
corresponding to the slice.

Decomposing EEG data with a sliding time window, in addition to the length of
the time window, affects the slicing results, and whether the time windows overlap each
other also affects the results. Compared with no overlap between time windows, the de-
composition with an overlap can obtain more slices, which also leads to the local feature
information being extracted multiple times.

The length of the time window used in different studies is not necessarily the same,
which also correlates with the feature extraction method used. Part 2 is the extraction of
features, the main purpose of which is to reduce the dimensionality of the slices while
retaining the information used for EEG classification. The features being extracted are
generally different when faced with different problems. In the field of EEG-based seizure
detection, frequency and time–frequency domain features are often extracted, so the model
in this paper mainly extracts frequency and time–frequency domain features.

The model extracts time–frequency domain features with the wavelet transform for
slices generated from single-channel EEG data and uses them for representation. For slices
generated from multichannel EEG data, the fast Fourier transform is used to extract the
frequency domain features of each channel, and then, the features obtained from different
channels are unified in Part 3.

The representation of features in Part 3 consists of two steps, first characterizing
the features as pictures, called the 2D representation of the features. Although features
can be characterized in one or more dimensions, there are many advantages to using
2D representation:

1. When representing the slices generated from single-channel EEG signals, temporal
information can be included in the images generated by the representation. When
representing slices generated from multichannel EEG signals, the picture contains
the information of each channel. In contrast, the one-dimensional representation
contains less information, while the multidimensional representation contains more
information, but often requires more computational resources;
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2. Most neural networks use convolutional layers, and the amount of computation
required to perform convolutional operations increases rapidly as the dimensionality
of the input data increases. Because of the black-box property of neural networks,
it is more difficult for them to perform dimensionality reduction on the input data.
The use of images as input data also considers the need for computational resources;

3. Many excellent neural networks, which are tested based on publicly available image
datasets, give these networks the ability to perform transfer learning. Through transfer
learning, the neural network trained with the public dataset can be used as the base
network, and the base network can be further trained using the represented images
to obtain the neural network weights for EEG signal classification.

For the slices generated by single-channel EEG, the results obtained from the wavelet
transform can be characterized in two dimensions, with time and frequency as the horizon-
tal and vertical coordinates, respectively. The contour map drawn with the result is the
representation of the slice’s features, as shown in Figure 2a.

(a) (b)
Figure 2. Representation of the features. (a) An example (Bonn dataset): the result of a 2D representa-
tion. (b) An example (CHB-MIT dataset): the result of a 2D representation.

For the slices generated by multichannel EEG, the FFT is performed on the data of each
channel. With the frequency as the horizontal coordinate and the channel as the vertical
coordinate, the result of the FFT is the value in the coordinate. Take a 23-channel slice as an
example, with a 1 Hz sampling interval and a frequency band of 1–23 Hz. With frequency
as the horizontal coordinate and 23 channels as the vertical coordinate, a 23 × 23-pixel
picture is obtained, which is the 2D representation of the slice, as shown in Figure 2b.
If the frequency band is extended to 1–46 Hz, then the representation of the features is a
23 × 46-pixel picture.

After the 2D representation of the slice’s features to obtain the images, the second
step in Part 3 is the image enhancement, which is an optional step. This step performs
operations such as rotating or flipping the images, and it aims at increasing the training
samples or making the trained neural network more robust.

Part 4 extracts the depth features of the image. The image is scaled to the size needed
by the neural network and then normalized, and the result is used as the input data for
the network. Normalization usually allows the neural network to converge faster during
training and prevents the gradient from disappearing.

The trained network can extract depth features from the input images, which in
general are the second layer of the inverse order in the neural net. The classifier takes the
depth features as the input and gives the classification result. In Part 4, EfficientNet is used
to extract the depth features, and such a scalable neural network has many advantages,
as follows:

1. The network can be changed in terms of depth, width, and resolution when facing
different hardware resource-constrained deployment environments. This allows the
model to have a stable performance under different hardware resource constraints;

2. It combines the characteristics of different input data, increases the depth, width,
and resolution of the network to extract more information from the input data, and
improves the performance of the proposed model;

3. The difficulty of neural network scaling includes determining the scaling ratio among
the three factors of depth, width, and resolution, which, if balanced well, can obtain
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better classification accuracy than if one factor is expanded individually. Balancing the
scaling ratio of the three is difficult, and EfficientNet provides an available network
scaling scheme.

The scalability of a neural network refers to the scalability on three factors: depth,
width, and resolution. Taking the baseline network shown in Figure 3a as an example [2],
the scaling of the width, which refers to the change in the number of channels, is shown in
Figure 3b. Increasing the width of the network alone will obtain more features, but it is often
difficult to learn deeper features because of the limitation of the network depth. The change
in depth refers to the change in the number of layers, as shown in Figure 3c. Expanding the
depth of the network alone can obtain more complex features, but excessively increasing
the depth without changing the other dimensions tends to cause the gradient to disappear,
which makes the training of the network difficult. The size of the resolution is related to the
input data, in other words, as shown in Figure 3d. Increasing the resolution of the input
image alone can result in a greater resolution, but this increases the amount of operations.
Not increasing the depth and width of the network can easily lead to a decrease in the gain
of increasing the resolution. To better improve the network classification accuracy, scaling
in EfficientNet is performed on all three factors simultaneously, as shown in Figure 3e.

Layer_i resolusion
 H × W

channel

Layer_i + 1

Layer_i + 2

(a) baseline

deeper

(b) width scaling (c) depth scaling

higher
resolusion

(d) resolution scaling (e) compound scaling

wider

wider

deeper

higher
resolusion

Figure 3. Neural network scaling.

The baseline network of EfficientNet is called EfficientNet-B0, and then, different scal-
ing ratios generate EfficientNet-B1, B2, B3, B4, B5, B6, and B7. The structure of EfficientNet-
B0 is shown in Table 2; while B1-B7 require different resolutions of input data, as shown
in Table 3, when the resolution of the input data is different from the network required
resolution, it is necessary to use the first step in Part 4 to convert the input data to the
required resolution.

Table 2. Baseline network: EfficientNet-B0.

Stage i Operator Resolution Channel Layers

1 Conv3×3 224 × 224 32 1

2 MBConv1, k3×3 112 × 112 16 1

3 MBConv6, k3×3 112 × 112 24 2

4 MBConv6, k5×5 56 × 56 40 2

5 MBConv6, k3×3 28 × 28 80 3

6 MBConv6, k5×5 14 × 14 112 3

7 MBConv6, k5×5 14 × 14 192 4

8 MBConv6, k3×3 7 × 7 320 1

9 Conv1×1 and pooling and FC 7 × 7 1280 1
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Table 3. EfficientNet compound scaling settings.

Network Input_Resolution Width_Coefficient Depth_Coefficient

EfficientNet-B0 224 × 224 1.0 1.0

EfficientNet-B1 240 × 240 1.0 1.1

EfficientNet-B2 260 × 260 1.1 1.2

EfficientNet-B3 300 × 300 1.2 1.4

EfficientNet-B4 380 × 380 1.4 1.8

EfficientNet-B5 456 × 456 1.6 2.2

EfficientNet-B6 528 × 528 1.8 2.6

EfficientNet-B7 600 × 600 2.0 3.1

In Part 5, the classification of depth features is performed by the classifiers, which
include softmax, KNN, SVM, etc. The softmax classifier is used in EfficientNet. The classifi-
cation results of the depth features are obtained, which can also be used as the classification
results of the slices to determine whether a seizure is detected or not.

4. Experiments

In this section, we first present two popular datasets that are commonly used in seizure
studies. Then, the details of the experiments are presented, and finally, the models are
compared with some popular methods for classification accuracy. Because of the limitation
of the hardware resources of the experimental platform, only EfficientNet-B0, B1, B2, B3,
and B4 were tested in the experiments.

4.1. Dataset and Performance Indices

The Bonn database was published in 2001 [49]. Bonn contains five subsets, Set A,
Set B, Set C, Set D, and Set E. Each subset contains 100 single-channel EEG clips of 23.6 s in
duration, which were manually selected from long-range multichannel EEGs and removed
from interference such as muscle and eye movement artifacts. Set A and Set B are scalp
EEGs from 5 healthy individuals with eyes open and closed, the international 10–20 system,
sampled at 173.61 Hz. Set C, Set D, and Set E are intracranial EEGs from five patients with
epilepsy whose lesions were in the hippocampal structures. Their seizures were controlled
after partial removal of the hippocampal structures. The electrodes of Set D were located at
the lesion, and the electrodes of Set C were located on the opposite side of the lesion. Set E
included electrodes of Set C and Set D, in addition to some electrodes located in the lateral
and basal regions of the neocortex. Set C and Set D were taken from the interictal period,
and Set E was taken from the seizure period, both with a sampling frequency of 173.61 Hz.

Another dataset is the CHB-MIT [50,51] provided by Boston Children’s Hospital,
and this dataset has also been widely used in studies of seizure detection. The dataset
contains 24 sets of scalp EEG data, as shown in Section 4.2. These data were acquired from
23 patients; chb01 and chb21 were acquired from the same patient, with a time interval of
1.5 years between acquisitions. The international 10–20 system acquires signals at 256 Hz,
16 bit. Each set has 9–42 consecutive multichannel EEG clips, some of which recorded
seizures. The duration of the EEG clips was mostly 1 h, with a small number of clips of
2–4 h, and some clips were relatively short because the acquisition process was artificially
interfered with. In order to evaluate the effect of the surgical intervention, no antiseizure
drugs were used during the data collection.

Three common evaluation indices were used to analyze the results of the model
experiments, namely accuracy, sensitivity, and specificity, which are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (1)
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Sensitivity =
TP

TP + FN
× 100% (2)

Specificity =
TN

TN + FP
× 100% (3)

The operation of classifying an input image is called a case in this paper. TP, FP,
TN, and FN are defined as follows: TP: the number of cases where the predictions are
seizure state and correct; FP: the number of cases where the predictions are seizure state
and incorrect; TN: the number of cases where the predictions are normal state and correct;
FN: the number of cases where the predictions are normal state and incorrect.

Accuracy is the proportion of correctly classified seizure and nonseizure images. Sen-
sitivity is the proportion of correctly classified seizure images. Specificity is the proportion
of correctly classified nonseizure images.

4.2. Model Performance

The experiments were divided into intrapatient and interpatient mode and were
carried out on the Bonn and CHB-MIT datasets, as shown in Figure 4. The experiments con-
sisted of four types of tests, with a total of six experiments. The proportion of seizure versus
nonseizure was 1:1, and the size of the time window changed in different experiments.
In intrapatient mode, the seizure data and nonseizure data of all patients were pooled,
and a portion of the data were randomly selected for training the neural network, while the
rest were used as the test dataset; the experiment was repeated to find the average value.
In interpatient mode, the data of some patients were used to train the neural network,
and the data of other patients were used as the test set; the experiment is repeated was find
the average value.

Experiments

Intra-patient Inter-patient

Bonn: intra-patient Bonn: intra-patient CHBMIT: inter-patient CHBMIT: inter-patient

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

Figure 4. Experiments for model performance testing.

Bonn: intrapatient mode. Set D was used as the data during seizures, and Set E was
used as the data during nonseizures. Data from all 5 patients were pooled and randomly
assigned to the training set, validation set, and test set.

Objective of Experiment 1: To observe the model classification performance when
changing the length of the time windows.

The main parameter configuration: The model uses EfficientNet-B0 as the neural
network and 50% overlap between time windows. The time window had eight different
values: 1, 2, 3, 4, 5, 10, 15, 23.6 s. The resolution of the image obtained by feature rep-
resentation was 224 × 224 pixels; the fundamental wave was cgau8; and the total scale
was 10.

The experiment results: The experiment results are shown in Table 4, showing the
statistics of the classification results of the model at different time window lengths.
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Table 4. The results of Experiment 1.

Time Window Length (s) Accuracy (%) Sensitivity (%) Specificity (%)
1 94.13 93.04 95.22

2 95.91 92.73 99.09

3 97.14 98.57 95.71

4 95.00 93.33 96.67

5 98.75 100 97.50

10 97.50 95.00 100

15 96.67 93.33 100

23.6 100 100 100

Bonn: interpatient mode. Set D was used as the data during seizures and Set E as the
data during nonseizures. The data of one patient were used as the test set, and the data of
the other four patients were used as the training and validation sets.

Objective of Experiment 2: To observe the model classification performance when
scaling the EfficientNet network and the impact of using transfer learning or not.

The main parameter configuration: Considering the results of Experiment 1, the time
window was chosen to be 3 s; the image resolution was consistent with the requirements of
the neural network; the fundamental wave was cgau8; and the total scale was 10. Table 5
shows the classification results of the model with different network scalings when transfer
learning was used.

The experiment results: Table 6 shows the classification results when transfer learning
was not used.

Table 5. The results of Experiment 2 when transfer learning was used. Acc, Sen and Spe are the abbreviations for accuracy,
sensitivity, and specificity, respectively.

Network
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

B0 95.00 96.43 93.57 97.50 97.86 97.14 93.93 92.86 95.00 95.00 95.71 94.29 95.36 92.14 98.57

B1 95.71 95.71 95.71 96.79 97.86 95.71 94.64 93.57 95.71 95.36 96.43 94.29 96.07 96.43 95.71

B2 96.43 96.43 96.43 97.86 99.29 96.43 93.57 95.71 91.43 96.43 95.71 97.14 95.71 96.43 95.00

B3 96.79 95.71 97.86 96.07 98.57 93.57 94.29 93.57 95.00 94.29 95.00 93.57 96.79 97.14 96.43

B4 95.71 95.00 96.43 94.29 99.65 96.97 93.93 92.14 95.71 95.71 97.14 94.29 95.36 97.14 93.57

Table 6. The results of Experiment 2 when transfer learning was not used. Acc, Sen and Spe are the abbreviations for
accuracy, sensitivity, and specificity, respectively.

Network
Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

B0 94.64 95.71 93.57 95.36 96.43 94.29 93.93 95.71 92.14 94.29 97.14 91.43 93.21 91.43 95.00

B1 95.00 96.43 93.57 94.64 97.86 91.43 93.93 92.86 95.00 93.57 96.43 90.71 95.36 96.43 94.29

B2 94.29 96.43 92.14 95.00 97.86 92.14 96.07 94.29 97.86 92.50 95.71 89.29 94.64 98.57 90.71

B3 95.71 96.43 95.00 89.29 90.00 88.57 92.86 94.29 91.43 95.71 96.43 95.00 93.57 91.43 95.71

B4 94.29 95.71 92.86 93.21 96.43 90.00 90.00 92.86 87.14 92.50 97.86 87.14 88.93 91.43 86.43

CHB-MIT: intrapatient mode. The information of the patients is shown in Table 7.
Male (M) patients whose age interval was no less than 5 years with respect to other male
patients were selected, and there were four patients: chb02, chb04, chb10, and chb15.
Because chb08 and chb10 were close in age, only chb10 was selected. We constructed four
groups as shown in Table 8. In each group, there were EEG data from one M and one
female (F), and the two patients were as close in age as possible. Equal-duration seizure
period and nonseizure period data were used for the experiment.
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Table 7. Gender and age of the data utilized.

Patient Index Gender Age Patient Index Gender Age

chb01 F 11 chb13 F 3

chb02 M 11 chb14 F 9

chb03 F 14 chb15 M 16

chb04 M 22 chb16 F 7

chb05 F 7 chb17 F 12

chb06 F 1.5 chb18 F 18

chb07 F 14.5 chb19 F 19

chb08 M 3.5 chb20 F 6

chb09 F 10 chb21 F 13

chb10 M 3 chb22 F 9

chb11 F 12 chb23 F 6

chb12 F 2 chb24 / /

Table 8. Eight patients were selected from CHB-MIT and divided into four groups.

Group Index Patient Index Gender Age

Group 1 chb02 M 11

chb01 F 11

Group 2 chb04 M 22

chb19 F 19

Group 3 chb10 M 3

chb13 F 3

Group 4 chb15 M 16

chb07 F 14.5

Objective of Experiment 3: The performance of the model classification was observed
by varying the length of the time window and selecting different frequency bands.

The main parameter configuration: The data from all patients in the 4 groups were
pooled and randomly assigned to the training set, validation set, and test set. The time
window had five different values: 1, 2, 3, 4, 5 s. The model used EfficientNet-B0 as the neural
network and 50% overlap between time windows. Three frequency bands were selected,
1–23, 12–34, and 23–45 Hz. The original resolution of the images was 23 × 23 pixels, which
was reshaped to the resolution needed by the network.

The experiment results: The classification results of the model with different time
window lengths and different frequency bands were counted, and the results are shown in
Table 9.
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Table 9. The results of Experiment 3. Acc, Sen and Spe are the abbreviations for accuracy, sensitivity, and specificity, respectively.

Time Window Length (s)
Frequency Band: 1–23 Hz Frequency Band: 12–34 Hz Frequency Band: 23–45 Hz

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

1 95.44 92.58 98.25 93.09 90.80 95.34 86.32 83.38 89.21

2 96.76 95.83 97.66 94.10 91.07 97.08 87.91 91.07 84.80

3 92.86 95.58 90.09 94.64 93.69 95.58 93.30 90.99 95.58

4 86.83 78.31 95.24 95.21 92.77 97.62 94.01 92.77 95.24

5 75.94 71.21 80.60 81.95 74.24 89.55 92.48 90.91 94.03

Objective of Experiment 4: The performance of the model classification was observed
by varying the length of the time window.

The main parameter configuration: The data from all patients in the 4 groups were
pooled and randomly assigned to the training set, validation set, and test set. The time
window had five different values: 1, 2, 3, 4, 5 s. The model used EfficientNet-B0 as the
neural network and 50% overlap between time windows, in addition to a frequency band
of 1–46 Hz. The original resolution of the image was 23 × 46 pixels, which was reshaped to
the resolution needed by the network.

The experiment results: The classification performance of the model at different time
window lengths was statistically measured, and the experimental results are shown in Table 10.

Table 10. The results of Experiment 4.

Time Window Length (s) Accuracy (%) Sensitivity (%) Specificity (%)

1 97.06 97.03 97.08

2 96.76 95.24 98.25

3 97.77 97.30 98.23

4 95.81 93.98 97.62

5 96.24 96.97 95.52

Objective of Experiment 5: The data from a single group were used as all experimental
data to observe the classification results in the intrapatient model.

The main parameter configuration: In Experiments 3 and 4, the data from Groups 1–4
were aggregated to form the entire experimental data, while in Experiment 5, classification
experiments were conducted using the data from each group separately. In other words,
the data of each group were divided into three parts: training set, validation set, and test
set. Overall, the accuracy in Experiment 4 was higher than for the data in Experiment 3, so
the frequency band of 1–46 was used in Experiment 5. The time window was 1 s in this
experiment, and the reason was that the two largest values of the accuracy in Experiment
4 occurred at the time window of 1 s and 3 s, with the former being 97.06 and the latter
being 97.77. More images were obtained with a time window length of 1 s than 3 s, so a
time window of 1 s with 50% overlap was set in Experiment 5.

The experiment results: The model used EfficientNet-B0 as the neural network, and the
classification results are shown in Table 11.
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Table 11. The results of Experiment 5.

Group Index Accuracy (%) Sensitivity (%) Specificity (%)

Group 1 100 100 100

Group 2 98.02 96 100

Group 3 94.12 88.89 98.63

Group 4 98.16 97.88 98.44

CHB-MIT: interpatient mode. Chb6, chb12, chb21, and chb24 were excluded from the
CHB-MIT dataset, and the remainder constituted the full data of the experiment. chb6 and
chb12 were excluded because these two patients were no older than 2 y, and it is generally
believed that EEG data for seizures in young infants are different from those in adults,
so seizures in infants are best studied separately from those in adults. chb01 and chb21
were collected from the same patient, and only chb01 was retained. chb24 was excluded
because the patient information was unclear.

Objective of Experiment 6: When using transfer learning, the model classification
performance was observed when the EfficientNet network was scaled.

The main parameter configuration: A group was used as the test set, and the en-
tire experimental data excluding this group was used as the training and validation set.
The length of the time window was 3 s, with 50% overlap between time windows and a
frequency band of 1–46 Hz.

The experiment results: The original resolution of the images was 23 × 46 pixels, re-
shaped to the resolution needed by the network, and the experimental results are shown in
Table 12.

Table 12. The results of Experiment 6. Acc, Sen and Spe are the abbreviations for accuracy, sensitivity, and specificity,
respectively.

Network
Test Group: Group 1 Test Group: Group 2 Test Group: Group 3 Test Group: Group 4

Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

B0 97.35 95.70 98.96 87.77 83.33 92.12 77.88 92.86 63.26 83.71 76.09 91.20

B1 97.62 96.24 98.96 87.77 80.86 94.55 81.41 84.76 78.14 79.19 64.60 93.54

B2 98.41 97.31 99.48 88.69 82.72 94.55 80.94 84.29 77.67 85.43 81.39 89.41

B3 98.41 98.39 98.44 85.93 84.85 87.04 76.71 92.38 61.40 83.71 89.23 78.28

B4 96.03 95.16 96.88 89.30 91.36 87.27 82.12 81.43 89.79 79.91 75.55 84.20

4.3. Comparison with Other Schemes

Many of the schemes for seizure detection only provide results in intrapatient mode,
and a comparison of the proposed model with these schemes is shown in Tables 13 and 14,
Table 13 is based on Bonn and Table 14 on CHB-MIT. It should be noted that the methods
of EEG decomposition and feature representation were not necessarily the same in different
schemes, so these experiments, although based on the same dataset, did not necessarily have
the same input data for the neural network.
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Table 13. Accuracy of some seizure detection methods on the Bonn dataset.

Work Dataset Tools Convolutional Dimension Accuracy (%)

[37] Bonn MATLAB 2D network 99.60

[38] Bonn Keras 2D network 91.25

[39] Bonn MATLAB 2D network 98.67

[40] Bonn Keras 2D network 100

Proposed Model Bonn PyTorch 2D network 100

Table 14. Accuracy of some seizure detection methods on the CHB-MIT dataset.

Work Dataset Tools Convolutional Dimension Accuracy (%)

[41] CHB-MIT NA 2D network 90.50

[42] CHB-MIT PyTorch 2D network 96.22

[43] CHB-MIT PyTorch 2D network 94.37

[44] CHB-MIT PyTorch 2D network 99.63

Proposed Model CHB-MIT PyTorch 2D network 97.77

5. Discussion

The model was tested on the Bonn dataset and the CHB-MIT dataset, and the clas-
sification accuracy was compared with some popular neural networks employing two-
dimensional convolution. When using the Bonn dataset, the best intragroup classification
accuracy of the proposed scheme reached 100, which was consistent with the best result
in the comparison algorithm, as shown in Figure 5a. When using the CHB-MIT dataset,
the proposed solution did not have the highest classification accuracy, but it also achieved
a good value, as shown in Figure 5b. Overall, most of the seizure detection algorithms were
tested based on a single dataset, while the proposed model was tested on two datasets and
performed well, which also indicated the effectiveness and cross-dataset generality of the
proposed scheme.
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(a) On the Bonn dataset. Accuracy of the compared algo-
rithms and the proposed model for seizure detection on the
Bonn dataset.
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(b) On the CHB-MIT dataset. Accuracy of the compared
algorithms and the proposed model for seizure detection on
the Bonn dataset.

Figure 5. Algorithm comparison. The accuracy of the compared algorithms and the proposed model for seizure detection on the two
datasets. The x-axis is for each algorithm and the y-axis for accuracy.

Here, we analyze the effect of transfer learning on the model performance. In Exper-
iment 2-1, the model used transfer learning, based on a network trained by EfficientNet
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on the ImageNet dataset, and then trained the network using the seizure dataset to obtain
the final network weights. In Experiment 2-2, no transfer learning was used, and only the
seizure dataset was used to train the network to obtain the final network weights. The data
used in both experiments were the same, and the experiments yielded 25 accuracy values.
Twenty-two accuracy values in Experiment 2-1 were greater than the values in Experiment
2-1, and one accuracy value was the same. The accuracy of using EfficientNet-B0, B1, B2,
B3, and B4 for each patient is shown in Figure 6a–e, and the average accuracy of each
network for five patients is shown in Figure 6f. Overall, transfer learning improved the
accuracy and allowed the model to obtain better performance.

The EEG signal can be regarded as a superposition of different frequency signals,
and here, we analyze the effect of choosing different frequency bands on the classification
results. In Experiment 3, the width of the frequency band was set to 23 Hz, and the two
largest accuracy values appeared in the frequency band of 1–23 Hz. It is also noteworthy
that the classification accuracy of all three bands had a tendency to increase and then
decrease when the time window was gradually increased, as shown in Figure 7. Therefore,
the frequency bands needed to be considered simultaneously when determining the length
of the time window. In Experiment 4, the overall result of the accuracy was higher than that
of Experiment 3, which shows that using wider frequency bands can effectively improve
the performance of the accuracy.
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Figure 6. Cont.
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B 0 B 1 B 2 B 3 B 4

9 2

9 3

9 4

9 5

9 6

Ac
cu

rac
y (

%)

A v e r a g e

 T r a n s f e r  l e a r n i n g  i s  u s e d
 T r a n s f e r  l e a r n i n g  i s  n o t  u s e d

(f) Average

Figure 6. Transfer learning. The EfficientNet trained on the ImageNet dataset. The network was then trained using the
seizure dataset to obtain the final network weights.
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Figure 7. The selection of the frequency bands. Accuracy obtained by combining different frequency
bands with different time window lengths.

The effect of network scaling on model performance was obvious. In Experiment 2
and Experiment 6, the maximum value of the accuracy for each patient or group was
obtained by different networks, as shown in Figure 8. The maximum value of the accuracy
obtained by EfficientNet-B0 was 1, by EfficientNet-B1 2, by EfficientNet-B2 5, and by
EfficientNet-B3 5, and the maximum value obtained by EfficientNet-B4 was 2. It can be
seen that the maximum values of the accuracy were mainly obtained by EfficientNet-B2
and EfficientNet-B3. This shows that the network scaling can improve the performance
of the model compared with EfficientNet-B0, while the maximum values obtained by
EfficientNet-B4 were not the most, probably because there were not enough training data
and the network was not sufficiently trained.

Based on the Bonn dataset, the results of the intrapatient and interpatient mode
were obtained from Experiment 1 and Experiment 2. When the time window was set
to 3 s, the accuracy in Experiment 1 was 97.14 and the maximum accuracy for the five
patients in Experiment 2 was 96.79, 97.86, 94.64, 96.43, and 96.79 with a mean value of 96.502.
The accuracy of the interpatient mode was lower than the accuracy of the interpatient mode.
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Figure 8. Accuracy when scaling the network. Scaling of the depth, width, and resolution of the network. (a) Data from
Table 5, the result of Experiment 2 when transfer learning was used. (b) Data from Table 12, the result of Experiment 6.

Based on the CHB-MIT dataset, the results of the intrapatient and interpatient mode
were obtained by Experiment 5 and Experiment 6. The mean accuracy of all groups in
Experiment 5 was 97.575, and the maximum accuracy of each patient in Experiment 6 was
98.41, 89.30, 82.12, and 85.43 with a mean value of 88.815. The accuracy of the interpatient
model was lower than the accuracy of the intrapatient model.

In Experiment 6, the maximum value of the accuracy for Group 3 was 82.12, which was
smaller than the other groups, as shown in Figure 9a. This may be because the patients in
Group 3 were all three years old and very young children have different EEG characteristics
during seizures than adults. Group 3 performed better on the sensitivity and worse on the
specificity compared to the other groups, as shown in Figure 9b,c. This suggests that the
reliability of the data from adult seizures to predict infant seizures was stronger than using
data from adult nonseizures to predict nonseizures in infants.

The advantages of the proposed model: The proposed model consists of five parts
that are weakly coupled to each other. For example, when the model determines the
resolution of the 2D representation image, if the feature extraction algorithm is replaced,
there is no need to modify the other parts as long as the image with the same resolution
is finally generated. The weak coupling of the parts allows the different parts of the
proposed model to be quickly upgraded or even quickly replaced with new algorithms.
The disadvantages of the proposed model: The parameter settings for different parts
of the model rely on experience, which makes the classification performance unstable
when the model is targeted at different datasets and classification purposes. In addition,
feature extraction is currently limited to the time domain and the time–frequency domain,
which reduces the number of ways to extract different features for better classification
performance, and further research is needed on how to extract more kinds of features.
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Figure 9. When the network is scaled, comparing the classification performance of Group 3 and other
groups in the interpatient mode.

6. Conclusions and Future Work

In this study, a classification model based on 2D representation of EEGs and a scalable
neural network was proposed to improve the adaptability of the seizure detection model to
different hardware resource constraints and to improve the convenience of adopting new
algorithms for different parts in the model. The model was tested on two different seizure
datasets, and the results showed the generality and good classification accuracy of the
model in seizure detection. Although the proposed model is effective at seizure detection,
it still has some shortcomings. The model can be used for single-channel and multichannel
EEG, but it is difficult to classify EEG signals with dynamic changes in the number of
channels. Although the problem can be transformed into the classification of multiple
single-channel EEG signals, the final classification results can be obtained with techniques
such as fuzzy systems, but the model needs more work to deal with these problems, which
is one of our future research directions.

Author Contributions: Conceptualization, H.W. and Z.X.; methodology, Y.Z. and Z.X.; software, L.Z.
and Z.X.; validation, J.S. and Y.L.; formal analysis, T.F. and Q.W.; investigation, H.W.; resources, H.W.;
data curation, Z.X.; original draft preparation, Z.X.; review and editing, Z.X.; visualization, L.Z. and
Z.X. All authors read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
(62076083, 61671201, 61903124, 62073120).

Institutional Review Board Statement: All patients involved in this study gave their informed
consent. Institutional review board approval of our hospital was obtained for this study.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.



Sensors 2021, 21, 5145 20 of 22

Data Availability Statement: All data used during the study appear in the submitted article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, H.; Han, G.; Zhou, L.; Ansere, J.A.; Zhang, W. A Source Location privacy protection scheme based on ring-loop routing for

the IoT. Comput. Netw. 2019, 148, 142–150. [CrossRef]
2. Tan, M.; Le, Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th

International Conference on Machine Learning (ICML 2019), Long Beach, CA, USA, 10–15 June 2019; pp. 10691–10700.
3. Tiwari, S.; Sharma, V.; Mujawar, M.; Mishra, Y.K.; Kaushik, A.; Ghosal, A. Biosensors for epilepsy management: State-of-art and

future aspects. Sensors 2019, 19, 1525. [CrossRef]
4. Güntner, A.T.; Kompalla, J.F.; Landis, H.; Theodore, S.J.; Geidl, B.; Sievi, N.A.; Kohler, M.; Pratsinis, S.E.; Gerber, P.A. Guiding

ketogenic diet with breath acetone sensors. Sensors 2018, 18, 3655. [CrossRef]
5. Gu, C.; Bradbury, M.; Kirton, J.; Jhumka, A. A Decision Theoretic Framework for Selecting Source Location Privacy Aware

Routing Protocols in Wireless Sensor Networks. Future Gener. Comput. Syst. 2018, 87, 514–526. [CrossRef]
6. Gotman, J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 530–540.

[CrossRef]
7. Zandi, A.S.; Tafreshi, R.; Javidan, M.; Dumont, G.A. Predicting temporal lobe epileptic seizures based on zero-crossing interval

analysis in scalp EEG. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 5537–5540. [CrossRef]

8. Bedeeuzzaman, M.; Fathima, T.; Khan, Y.U.; Farooq, O. Seizure prediction using statistical dispersion measures of intracranial
EEG. Biomed. Signal Process. Control 2014, 10, 338–341. [CrossRef]

9. Zhang, T.; Chen, W.; Li, M. AR based quadratic feature extraction in the VMD domain for the automated seizure detection of
EEG using random forest classifier. Biomed. Signal Process. Control 2017, 31, 550–559. [CrossRef]

10. Zhang, Y.; Zhang, S.; Ji, X. EEG-based classification of emotions using empirical mode decomposition and autoregressive model.
Multimed. Tools Appl. 2018, 77, 26697–26710. [CrossRef]

11. Nguyen, A.D.T.; Nguyen, L.T.; Nguyen, L.V.; Tran, D.T.; Nguyen, H.A.T.; Boashash, B. A Multistage System for Automatic
Detection of Epileptic Spikes. REV J. Electron. Commun. 2018. [CrossRef]

12. Yang, Y.; Zhou, M.; Niu, Y.; Li, C.; Cao, R.; Wang, B.; Yan, P.; Ma, Y.; Xiang, J. Epileptic seizure prediction based on permutation
entropy. Front. Comput. Neurosci. 2018, 12, 55. [CrossRef] [PubMed]

13. Jacob, J.E.; Nair, G.K.; Iype, T.; Cherian, A. Diagnosis of Encephalopathy Based on Energies of EEG Subbands Using Discrete
Wavelet Transform and Support Vector Machine. Neurol. Res. Int. 2018, 2018. [CrossRef] [PubMed]

14. Hussein, R.; Palangi, H.; Ward, R.; Wang, Z.J. Epileptic seizure detection: A deep learning approach. arXiv 2018, arXiv:1803.09848.
15. Jang, S.W.; Lee, S.H. Detection of epileptic seizures using wavelet transform, peak extraction and PSR from EEG signals. Symmetry

2020, 12, 1239. [CrossRef]
16. Li, P.; Karmakar, C.; Yearwood, J.; Venkatesh, S.; Palaniswami, M.; Liu, C. Detection of epileptic seizure based on entropy analysis

of short-term EEG. PLoS ONE 2018, 13, e0193691. [CrossRef] [PubMed]
17. Aung, S.T.; Wongsawat, Y. Modified-Distribution Entropy as the Features for the Detection of Epileptic Seizures. Front. Physiol.

2020, 11. [CrossRef]
18. Wang, Y. Classification of Epileptic Electroencephalograms Signals Using Combining Wavelet Analysis and Support Vector

Machine. J. Med. Imaging Health Inform. 2018, 8, 62–65. [CrossRef]
19. Lu, Y.; Ma, Y.; Chen, C.; Wang, Y. Classification of single-channel EEG signals for epileptic seizures detection based on hybrid

features. Technol. Health Care 2018, 26, S337–S346. [CrossRef]
20. Ghassemi, N.; Shoeibi, A.; Rouhani, M.; Hosseini-Nejad, H. Epileptic seizures detection in EEG signals using TQWT and ensemble

learning. In Proceedings of the 9th International Conference on Computer and Knowledge Engineering (ICCKE 2019), Mashhad,
Iran, 24–25 October 2019; pp. 403–408. [CrossRef]

21. Shoeibi, A.; Khodatars, M.; Ghassemi, N.; Jafari, M.; Moridian, P.; Alizadehsani, R.; Panahiazar, M.; Khozeimeh, F.; Zare, A.;
Hosseini-Nejad, H.; et al. Epileptic seizures detection using deep learning techniques: A review. Int. J. Environ. Res. Public Health
2021, 18. [CrossRef]

22. Zeng, H.; Yang, C.; Dai, G.; Qin, F.; Zhang, J.; Kong, W. EEG classification of driver mental states by deep learning. Cogn.
Neurodyn. 2018, 12, 597–606. [CrossRef] [PubMed]

23. Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Tan, R.S. Deep convolutional neural network for the
automated diagnosis of congestive heart failure using ECG signals. Appl. Intell. 2019, 49, 16–27. [CrossRef]

24. Antoniades, A.; Spyrou, L.; Martin-Lopez, D.; Valentin, A.; Alarcon, G.; Sanei, S.; Took, C.C. Detection of interictal discharges
with convolutional neural networks using discrete ordered multichannel intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng.
2017, 25, 2285–2294. [CrossRef] [PubMed]

25. Turner, J.T.; Page, A.; Mohsenin, T.; Oates, T. Deep belief networks used on high resolution multichannel electroencephalography
data for seizure detection. arXiv 2017, arXiv:1708.08430.

26. Zeng, H.; Wu, Z.; Zhang, J.; Yang, C.; Zhang, H.; Dai, G.; Kong, W. EEG emotion classification using an improved sincnet-based
deep learning model. Brain Sci. 2019, 9, 326. [CrossRef] [PubMed]

http://doi.org/10.1016/j.comnet.2018.11.005
http://dx.doi.org/10.3390/s19071525
http://dx.doi.org/10.3390/s18113655
http://dx.doi.org/10.1016/j.future.2018.01.046
http://dx.doi.org/10.1016/0013-4694(82)90038-4
http://dx.doi.org/10.1109/IEMBS.2010.5626764
http://dx.doi.org/10.1016/j.bspc.2012.12.001
http://dx.doi.org/10.1016/j.bspc.2016.10.001
http://dx.doi.org/10.1007/s11042-018-5885-9
http://dx.doi.org/10.21553/rev-jec.166
http://dx.doi.org/10.3389/fncom.2018.00055
http://www.ncbi.nlm.nih.gov/pubmed/30072886
http://dx.doi.org/10.1155/2018/1613456
http://www.ncbi.nlm.nih.gov/pubmed/30057813
http://dx.doi.org/10.3390/sym12081239
http://dx.doi.org/10.1371/journal.pone.0193691
http://www.ncbi.nlm.nih.gov/pubmed/29543825
http://dx.doi.org/10.3389/fphys.2020.00607
http://dx.doi.org/10.1166/jmihi.2018.2233
http://dx.doi.org/10.3233/THC-174679
http://dx.doi.org/10.1109/ICCKE48569.2019.8964826
http://dx.doi.org/10.3390/ijerph18115780
http://dx.doi.org/10.1007/s11571-018-9496-y
http://www.ncbi.nlm.nih.gov/pubmed/30483367
http://dx.doi.org/10.1007/s10489-018-1179-1
http://dx.doi.org/10.1109/TNSRE.2017.2755770
http://www.ncbi.nlm.nih.gov/pubmed/28952945
http://dx.doi.org/10.3390/brainsci9110326
http://www.ncbi.nlm.nih.gov/pubmed/31739605


Sensors 2021, 21, 5145 21 of 22

27. Alhagry, S.; Aly, A.; A., R. Emotion Recognition based on EEG using LSTM Recurrent Neural Network. Int. J. Adv. Comput. Sci.
Appl. 2017, 8, 355–358. [CrossRef]

28. Tsiouris, K.M.; Pezoulas, V.C.; Zervakis, M.; Konitsiotis, S.; Koutsouris, D.D.; Fotiadis, D.I. A Long Short-Term Memory deep
learning network for the prediction of epileptic seizures using EEG signals. Comput. Biol. Med. 2018, 99, 24–37. [CrossRef]

29. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial
training of neural networks. J. Mach. Learn. Res. 2016, 17, 2030–2096.

30. Zeng, H.; Zhang, J.; Zakaria, W.; Babiloni, F.; Kong, W. InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based
Cross-Subject Fatigue Detection. Sensors 2020, 20, 7251. [CrossRef]

31. Yildirim, Ö.; Baloglu, U.B.; Acharya, U.R. A deep convolutional neural network model for automated identification of abnormal
EEG signals. Neural Comput. Appl. 2020, 32, 15857–15868. [CrossRef]

32. RaviPrakash, H.; Korostenskaja, M.; Castillo, E.M.; Lee, K.H.; Salinas, C.M.; Baumgartner, J.; Anwar, S.M.; Spampinato, C.; Bagci,
U. Deep Learning Provides Exceptional Accuracy to ECoG-Based Functional Language Mapping for Epilepsy Surgery. Front.
Neurosci. 2020, 14, 409. [CrossRef]

33. Wei, Z.; Zou, J.; Zhang, J.; Xu, J. Automatic epileptic EEG detection using convolutional neural network with improvements in
time-domain. Biomed. Signal Process. Control 2019, 53, 101551. [CrossRef]

34. Chen, X.; Ji, J.; Ji, T.; Li, P. Cost-Sensitive Deep Active Learning for Epileptic Seizure Detection. In Proceedings of the 2018
ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA,
29 August–1 September 2018; Volume 18.

35. Thomas, J.; Comoretto, L.; Jin, J.; Dauwels, J.; Cash, S.S.; Westover, M.B. EEG CLassification Via Convolutional Neural Network-
Based Interictal Epileptiform Event Detection. In Proceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBS), Honolulu, HI, USA, 17–21 July 2018; pp. 3148–3151. [CrossRef]

36. Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and
diagnosis of seizure using EEG signals. Comput. Biol. Med. 2018, 100, 270–278. [CrossRef]

37. Liu, J.; Woodson, B. Deep Learning Classification for Epilepsy Detection Using a Single Channel Electroencephalography (EEG).
In Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, Xiamen, China, 5–7 July 2019; pp. 23–26.
[CrossRef]

38. Ahmedt-Aristizabal, D.; Fookes, C.; Nguyen, K.; Sridharan, S. Deep Classification of Epileptic Signals. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Honolulu, HI, USA, 17–21 July
2018; pp. 332–335. [CrossRef]

39. Sharathappriyaa, V.; Gautham, S.; Lavanya, R. Auto-encoder Based Automated Epilepsy Diagnosis. In Proceedings of the
International Conference on Advances in Computing, Communications and Informatics (ICACCI 2018), Bangalore, India,
19–22 September 2018; pp. 976–982. [CrossRef]

40. Türk, Ö.; Özerdem, M.S. Epilepsy detection by using scalogram based convolutional neural network from eeg signals. Brain Sci.
2019, 9, 115. [CrossRef] [PubMed]

41. Park, C.; Choi, G.; Kim, J.; Kim, S.; Kim, T.J.; Min, K.; Jung, K.Y.; Chong, J. Epileptic seizure detection for multichannel EEG
with deep convolutional neural network. In Proceedings of the International Conference on Electronics, Information and
Communication (ICEIC 2018), Honolulu, HI, USA, 24–27 January 2018; pp. 1–5. [CrossRef]

42. Yuan, Y.; Jia, K. Fusionatt: Deep fusional attention networks for multichannel biomedical signals. Sensors 2019, 19, 2429.
[CrossRef] [PubMed]

43. Yuan, Y.; Xun, G.; Jia, K.; Zhang, A. A multi-view deep learning framework for EEG seizure detection. IEEE J. Biomed. Health
Inform. 2019, 23, 83–94. [CrossRef]

44. Ozdemir, M.A.; Cura, O.K.; Akan, A. Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning. Int. J.
Neural Syst. 2021, 2150026. [CrossRef] [PubMed]

45. Ahmedt-Aristizabal, D.; Fookes, C.; Nguyen, K.; Denman, S.; Sridharan, S.; Dionisio, S. Deep facial analysis: A new phase I
epilepsy evaluation using computer vision. Epilepsy Behav. 2018, 82, 17–24. [CrossRef] [PubMed]

46. Sui, L.; Zhao, X.; Zhao, Q.; Tanaka, T.; Cao, J. Localization of Epileptic Foci by Using Convolutional Neural Network Based on
iEEG. In IFIP Advances in Information and Communication Technology; Springer: New York, NY, USA, 2019; Volume 559, pp. 331–339.
[CrossRef]

47. Bizopoulos, P.; Lambrou, G.I.; Koutsouris, D. Signal2Image Modules in Deep Neural Networks for EEG Classification. In Pro-
ceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany, 23–27 July 2019; pp. 702–705. [CrossRef]

48. Choi, G.; Park, C.; Kim, J.; Cho, K.; Kim, T.J.; Bae, H.; Min, K.; Jung, K.Y.; Chong, J. A Novel Multi-scale 3D CNN with Deep
Neural Network for Epileptic Seizure Detection. In Proceedings of the IEEE International Conference on Consumer Electronics
(ICCE 2019), Kenting, Taiwan, 2–6 December 2019. [CrossRef]

49. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2001, 64, 8. [CrossRef]

http://dx.doi.org/10.14569/IJACSA.2017.081046
http://dx.doi.org/10.1016/j.compbiomed.2018.05.019
http://dx.doi.org/10.3390/s20247251
http://dx.doi.org/10.1007/s00521-018-3889-z
http://dx.doi.org/10.3389/fnins.2020.00409
http://dx.doi.org/10.1016/j.bspc.2019.04.028
http://dx.doi.org/10.1109/EMBC.2018.8512930
http://dx.doi.org/10.1016/j.compbiomed.2017.09.017
http://dx.doi.org/10.1145/3342999.3343008
http://dx.doi.org/10.1109/EMBC.2018.8512249
http://dx.doi.org/10.1109/ICACCI.2018.8554697
http://dx.doi.org/10.3390/brainsci9050115
http://www.ncbi.nlm.nih.gov/pubmed/31109020
http://dx.doi.org/10.23919/ELINFOCOM.2018.8330671
http://dx.doi.org/10.3390/s19112429
http://www.ncbi.nlm.nih.gov/pubmed/31141898
http://dx.doi.org/10.1109/JBHI.2018.2871678
http://dx.doi.org/10.1142/S012906572150026X
http://www.ncbi.nlm.nih.gov/pubmed/34039254
http://dx.doi.org/10.1016/j.yebeh.2018.02.010
http://www.ncbi.nlm.nih.gov/pubmed/29574299
http://dx.doi.org/10.1007/978-3-030-19823-7_27
http://dx.doi.org/10.1109/EMBC.2019.8856620
http://dx.doi.org/10.1109/ICCE.2019.8661969
http://dx.doi.org/10.1103/PhysRevE.64.061907


Sensors 2021, 21, 5145 22 of 22

50. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley,
H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101. [CrossRef] [PubMed]

51. Shoeb, A.H. Application of Machine Learning to Epileptic Seizure OnSet Detection and Treatment. Ph.D. Thesis, Harvard
University–MIT Division of Health Sciences and Technology, Cambridge, MA, USA, 2009.

http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218

	Introduction
	Related Works
	The Proposed Model
	Experiments
	Dataset and Performance Indices
	Model Performance 
	Comparison with Other Schemes

	Discussion
	Conclusions and Future Work
	References

