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ABSTRACT

Motivation: Analysis of array comparative genomic hybridization
(aCGH) data for recurrent DNA copy number alterations from a cohort
of patients can yield distinct sets of molecular signatures or profiles.
This can be due to the presence of heterogeneous cancer subtypes
within a supposedly homogeneous population.
Results: We propose a novel statistical method for automatically
detecting such subtypes or clusters. Our approach is model based:
each cluster is defined in terms of a sparse profile, which contains the
locations of unusually frequent alterations. The profile is represented
as a hidden Markov model. Samples are assigned to clusters
based on their similarity to the cluster’s profile. We simultaneously
infer the cluster assignments and the cluster profiles using an
expectation maximization-like algorithm. We show, using a realistic
simulation study, that our method is significantly more accurate
than standard clustering techniques. We then apply our method to
two clinical datasets. In particular, we examine previously reported
aCGH data from a cohort of 106 follicular lymphoma patients, and
discover clusters that are known to correspond to clinically relevant
subgroups. In addition, we examine a cohort of 92 diffuse large B-cell
lymphoma patients, and discover previously unreported clusters of
biological interest which have inspired followup clinical research on
an independent cohort.
Availability: Software and synthetic datasets are available at
http://www.cs.ubc.ca/~sshah/acgh as part of the CNA-HMMer
package.
Contact: sshah@bccrc.ca
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Copy number alterations (CNA) are structural variations expressed
in the form of DNA copy number differences at a particular region
in the genome. The search for ‘driver’ CNAs in genetic material
derived from cancerous tissues is a major goal in diagnostic and
cytogenetic cancer research (Aguirre et al., 2004; Chin and Gray,
2008; Michels et al., 2007; Tonon et al., 2005). Putative driver
CNAs are genomic amplifications or deletions ranging in size from
a few kilobases to whole chromosome arms that are recurrent in a
larger than expected proportion of patients. Their detection provides
candidate genetic markers that may play a role in tumorigenesis
and/or have clinicopathologic significance. In contrast, ‘passenger’
CNAs arise during the evolution of the tumor and may be present
due to genomic instability or other mechanisms. In the context
of defining the driver CNAs, passenger CNAs represent (often
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ubiquitous) ‘biological’ noise that might obscure driver signals.
Using high-resolution array comparative genomic hybridization
(aCGH) (Pinkel and Albertson, 2005), data consisting of tens to
hundreds of thousands of probes, putative driver CNAs can be
detected by identifying the subset of probes they span using a number
of algorithmic and statistical tools (Diskin et al., 2006; Klijn et al.,
2008; Rouveirol et al., 2006; Shah et al., 2007). These analyses
lead to a molecular profile of recurrent CNAs that help define the
molecular characteristics of the disease.

A challenging phenomenon is that, frequently, patient cohorts
exhibit heterogeneity in their molecular profiles. This has been
demonstrated in breast (Perou et al., 2000), ovarian (Khalique et al.,
2007) and prostate cancers, as well as lymphomas (Cheung et al.,
2008; Höglund et al., 2004), suggesting that the patients should
be stratified into molecular subtypes, where the patients within a
group share a common group-specific driver CNA profiles. This
concept has been successfully applied many times over using gene
expression data (Perou et al., 2000; Wright et al., 2003), however it
has been relatively under-studied in aCGH data.

Considering a cohort of patients as a composite of a fixed set
of molecular subtypes has distinct advantages when determining
recurrent CNAs. By grouping or clustering the patients, recurrent
CNAs that might otherwise go undetected can be revealed. This
approach has the potential of determining CNAs that co-occur within
a subtype and CNAs that are mutually exclusive between subtypes.
Moreover, groups of patients can be assessed for distinct clinical
outcomes. Molecular subtypes often correlate with clinical outcomes
and in fact can, once identified, be considered as distinct disease
entities (Sorlie, 2004) with different prognoses and/or response to
therapy.

Recent discovery of clinically relevant molecular subtypes by
aCGH (Chin et al., 2007; Idbaih et al., 2008) suggest that
the inventory of CNA-derived molecular subtypes in cancer is
not complete. Large-scale projects such as the Cancer Genome
Atlas Project (Collins and Barker, 2007) and the International
Cancer Genome Consortium (ICGC: http://www.icgc.org) are now
generating genomic array datasets from tumors from hundreds
of patients for specific cancer types, thereby providing excellent
potential for the discovery of new CNA-derived subtypes. In order to
take full advantage of these data, robust and accurate computational
algorithms for discovering molecular subgroups must be developed
to keep pace with the data generation.

In this article, we propose an approach to this problem based on
a mixture of HMMs (hidden Markov models); we call our approach
HMM-Mix. This extends our previous work (Shah et al., 2006, 2007)
by defining multiple HMMs, one per cluster and automatically
assigning samples to clusters while simultaneously inferring the
profile of each cluster. Although the profiles are defined in terms of
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‘called’data (i.e. each location is classified as a loss, a gain or neutral/
no change), the model works directly with the raw aCGH data, and
can recall ambiguous data in the context of the cluster to which it is
assigned. This increases the statistical power of our method to detect
shared, but subtle, CNAs that may be lost by methods that require
discretization of the data as a preprocessing step, as shown in our
previous work (Shah et al., 2007) and by Klijn et al. (2008).

In a simulation study, with realistic data, we show how our
method is more accurate than other clustering methods, including
hierarchical clustering (van Wieringen and van de Wiel, 2008) and
K-medoids (KM) (an approach not previously applied to data of this
kind). More importantly, we show how HMM-Mix reveals clinically
relevant subgroups in data derived from a cohort of 106 follicular
lymphoma (FL) patients, originally reported in Cheung et al. (2008),
and reveals previously unreported patterns of alteration in a cohort
of 92 diffuse large B-cell lymphoma (DLBCL) patients (Johnson
et al., 2008).

2 METHODS
We first describe our probabilistic model, and then how we perform inference
in this model. We also describe three other approaches against which we
compare our method: a simple K-medoids method (WKM) a weighted
K-medoids method, and a previously described hierarchical clustering
algorithm designed for aCGH (van Wieringen and van de Wiel, 2008).

2.1 The HMM-Mix model
We represent the aCGH logratios as Yp

t ∈ IR for each probe t ∈ (1,...,T ) in
the array and for each patient p∈ (1,...,P). Each probe maps to unique
genomic coordinates and is positionally ordered along the chromosomes.
Y1:P

1:T represents the full data matrix. For each datapoint, we assume there is
a discrete mapping from Y1:P

1:T →Z1:P
1:T where Zp

t ∈k and k is a discrete copy
number state ∈{L,N,G} representing loss, neutral and gain.

The HMM-Mix model is a probabilistic generative model of Y1:P
1:T . We

illustrate our conditional independence assumptions using a graphical model
in Figure 1, and we define all the conditional distributions in Figure 2. See
also Table 1 for a summary of the notation.

The model generates the data as follows. First we sample a group or
cluster label for each patient, denoted Gp ∈{1,...,G}, from a Multinomial
with parameter πg. Here, G is the number of clusters (see below for
how we choose this), and πg is the vector of mixing weights. Next,
each group G generates a profile which is represented as a sequence
of states, Mg

t ∈{L,B,G}, t =1 :T , representing loss, background or gain
at probe t in the array. Probes which are labeled loss are expected to
contain mostly losses; probes which are labeled gain are expected to contain
mostly gains; probes which are labeled background are expected to contain
whatever the background distribution of loss, gains and neutrals is. Thus,
the non-background probes are the interesting ones.1 Since CNAs occur
in runs (span contiguous sets of probes), we model correlation between
consecutive locations using a first-order Markov chain on the Mg

t variables.
The transition matrix, Ag is a 3×3 matrix whereby Ag(i,j) represents
p(Mg

t = j|Mg
t−1 = i). We expect this matrix to have large elements on the

diagonal encouraging self-transitions [which we model with a Dirichlet
prior with parameters δA (see Fig. 1 and Table 1)], and thus runs of
repeated states. Of course the quantities of Ag are unknown at run time

1Indeed, one of the primary goals of inference is to find the probes for which
p(Mg

t �=B|D) is high; these probes represent a sparse profile defining the
signature for group g. Thus, our model is somewhat similar to approaches
that perform simultaneous feature selection and clustering (Law et al., 2004;
Raftery and Dean, 2006).

Fig. 1. Proposed HMM-Mix model for clustering aCGH data, represented
as a directed graphical model (Gilks et al., 1996). Shaded nodes are
observed/fixed, unshaded nodes are hidden (unknown). The two boxes
represent repetition over patients and groups. Yp

t ∈ IR is the observed aCGH
logratio at probe t in patient p. Zp

t ∈{L,N,G} is the discrete state, representing
whether probe t is a loss, neutral or gain. Given Zp

t =k, Yp
t is assumed to

be sampled from a class conditional Student-t distribution with parameters
µ

p
k ,λ

p
k and νk . Gp ∈{1,...,G} is the group that patient p belongs to, which

is sampled from a Multinomial with parameter πG. θ
g
t is the Multinomial

parameter over Zp
t , which is sampled from a Dirichlet with parameter αMg

t
,

where Mg
t ∈{1,...,C} represents the state of the sparse profile for probe t

in group g. Ag is the transition matrix for the profile model. Conditional
probability distributions are shown in Figure 2. Description of variables is
given in Table 1.

p(M g
t |M g

t − 1 = i, A ) = Mult (M g
t |A (i, :), 1)

p(M g
1 |pM ) = Mult (M g

1 |πM , 1)

p(q g
t |M g

t = c, α1:3 ) = Dir (q g
t |αc )

p(Z p
t |Gp = g, q 1: G

t ) = Mult (Z p
t |q g

t , 1)

p(Gp |pG ) = Mult (Gp |pG , 1)

p(Y p
t |Z p

t = k, µ p
k , lp

k ) = St (Y p
t |µ p

k , lp
k , nk )

p(µ p
k |lp

k , f ) = N (µ p
k |m k ,

ηk

lp
k

)

p(lp
k |f) = Gam (λp

k |S k , g k )

p(A (i, . )|dA ) = Dir (A (i, . )|dA )

p(pG |dp ) = Dir (pG |dG )

Fig. 2. List of conditional probability distributions of HMM-Mix.

and are estimated by fitting the model to the data (see Section 2.2).
Therefore, the off-diagonal elements of the matrix, including for example
the transitions {B→L,B→G,L→B,...}, are fully represented and estimated
accordingly.
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Table 1. Summary of variables

Symbol Meaning

Sk Set of probability vectors of length k
T Number of probes (measurements)
G Number of groups (clusters)
P Number of patients (samples)
t ∈{1,...,T} Probe location
g∈{1,...,G} Group index
p∈{1,...,P} Patient index
c∈{L,B,G} State index
k ∈{L,N,G} Call index
Mg

t ∈{L,B,G} State of profile
θ

g
t ∈S3 Distribution over calls

Zp
t ∈{L,N,G} Called aberation

Yp
t ∈ IR Raw data (log ratios)

Gp ∈{1,...,G} Group assignment
πG ∈SG Prior over groups
Ag ∈S3×3 Transition matrix
µ

p
k ∈ IR Mean of observations

λ
p
k ∈ IR+ Precision of observations

νk ∈ IR+ DOF for observations (fixed)
πM Multinomial parameters (fixed)
αc,δG,δA Dirichlet hyper-parameters (fixed)
φ= (mk,ηk,Sk,γk)3

k=1 Normal-Gamma hyper-parameters (fixed)

DOF = degrees of freedom.

Once we have generated a discrete profile for each group, we convert
it into a distribution over calls. Specifically, state Mg

t of the Markov chain
‘emits’ a probability vector θ

g
t , representing a probability distribution over

the ‘letters’ {L,N,G}, representing ‘called’ aCGH states. In other words, θ
g
t

represents the relative frequencies of calls we would expect at location t in
group g. If Mg

t =L, then θ
g
t is sampled from a Dirichlet with parameters αL =

(aL,1,1), which is biased toward the letter L (by setting aL �1). Similarly, if
Mg

t =G, then θ
g
t is sampled from a Dirichlet with parameters αG = (1,1,aG),

which is biased toward the letter G (by setting aG �1). If Mg
t =B, then

θ
g
t is set equal to θ

g
0 , representing the overall background, which is shared

across locations; θ
g
0 is itself sampled from a Dirichlet with parameters αB =

(1,aB,1), which is biased toward the letter N (by setting aN �1). Once
we have generated the continuous profile for each group, θ

g
t , we are able

to generate data for each patient. We sample a call Zp
t ∈{L,N,G} from a

Multinomial with parameter θ
g
t . Here, it would be appropriate to model

Zp
1:T as a Markov chain to capture the spatial correlation in the data at the

level of each patient. However, as shown in our previous work (Shah et al.,
2007), this makes inference expensive since all the Z chains become coupled.
Instead, we initialize each Zp

1:T using Markov chains (see below) to capture
the patient level spatial correlation and find that this is sufficient for our task
of capturing the group-specific recurrent CNAs which are explicitly modeled
as a Markov chain Mg

1:T .
Finally, we convert the discrete call into a continuous observation, Yp

t ∈ IR,
by sampling from a Student-t distribution; this is more robust to outliers than
a Gaussian. Specifically, if Zp

t =k, we use mean µ
p
k , precision λ

p
k and fixed

degrees of freedom ν =3. (We fix the degrees of freedom to simplify the
inference procedure; we have found that our results are reasonably robust
to the value of ν.) Note that the parameters of the observation density are
patient specific, but are shared across locations. The observation parameters
µ

p
k and λ

p
k are sampled from a standard conjugate prior. Details on how we

set the hyper-parameters are outlined in Shah et al. (2007).

2.2 Inference
Although the model was described in terms of Mg

t generating θ
g
t , which in

turn generates the Zp
t calls, it turns out to simplify inference if we analytically

integrate out θ
g
t . This is valid since θ

g
t is just a nuisance parameter, i.e. it

is not a variable we are interested in estimating. (Several other variables
are also nuisance parameters, but eliminating them would make inference
harder, not easier.) The modified conditional distribution is

p(Zp
t |M1:G

t ,α1:3,Gp =g)=
∫

p(Zp
t |θg

t )p(θg
t |αc)dθ

g
t

= 1∑
k αk

c

K∏
k=1


(I(Zp
t =k)+αk

c )


(αk
c )

(1)

where c=Mg
t is the state of the Markov chain, and 
() is the Gamma function

(see Brown et al., 1993, for details) and I(Zp
t =k) is an indicator function

stating that the copy number call for patient p at probe t is k. Henceforth, we
assume θ

g
t has been removed from the model in this way.

Our primary objective is to infer a clustering, p(Gp|D), and a profile for
each cluster, p(Mg

1:T |D). One approach would be to use Markov chain Monte
Carlo (MCMC) to draw samples from the full posterior, but this is too slow
for our application, which has about P∼100 patients, and about T ∼ 27 000
probes (over all the chromosomes) per patient.

An alternative would be to use the expectation maximization (EM)
algorithm (Dempster et al., 1977). A natural approach would be to treat all the
unknown discrete variables (i.e. Mg

t , Zg
t and Gp) as ‘hidden variables’, and

treat the rest (i.e. Ag,πg,µp
k ,λp

k ) as ‘parameters’. Unfortunately, this makes the
E step computationally intractable, since all the HMMs Mg

1:T become coupled
in the posterior. However, conditional on a known clustering (i.e. setting of
Gp), the HMMs become independent. Hence we can estimate the posterior
profile for group g using the data that belongs to group g using the forwards–
backwards algorithm. (This requires marginalizing out Zg

t as well, in order
to derive the observation model p(Yp

t |Mg
t ), but this is straightforward.) Note

that this requires that we treat Gp as a ‘parameter’ in the sense that we
estimate it in the M step rather than the E step. This requires that we perform
a hard clustering of the patients, rather than a soft clustering.

It turns out that even EM is too slow for our application, because of the
need to marginalize out Zg

t , and because of EM’s relatively slow convergence.
We therefore decided to use the iterative conditional modes (ICM) algorithm
(Besag, 1986). This is a simple coordinate ascent algorithm, in which we
set each variable to its most probable value given its neighbors in the
graph. This can be thought of as a deterministic version of Gibbs sampling.
Alternatively, it can be thought of as a version of Viterbi EM, in which we
compute the most probable value of Mg

1:T using the Viterbi algorithm instead
of computing posterior marginals using forwards–backwards. More details
on the algorithm can be found below. Its complexity is O(TGP) per iteration,
where T is the number of probes, G is the number of groups and P is the
number of patients. In practice, it takes about 320 s to fit the model to our
DLBCL data (92 patients, 5 groups and 30 000 probes) on a MacBook Pro
with 2.6 GHz Intel Core Duo 2 using a Matlab implementation.

We now give a full description of the algorithm.

2.2.1 HMM-mix algorithm—main loop The basic procedure iterates over
each node, and either samples from, or maximizes, each full conditional
distribution (details in Section 2.2.3).

(1) Estimate profile: p(Mg
1:T |A,πM ,Z1:P

1:T ,G1:P)

(2) Assign to cluster: p(Gp|πG,Zp
1:T ,Mg

1:T )

(3) Call data: p(Zp
t |Yp

t ,Gp,Mg
t ,µ

p
1:3,λ

p
1:3)

(4) Fit observation model: p(µp
k ,λ

p
k |Yp

1:T ,Zp
1:T ,φ)

(5) Fit transition model: p(Ag|Mg
1:T ,δA)

(6) Fit group prior: p(πG|G1:P,δG)

2.2.2 HMM-mix algorithm—initialization

1. Set the hyper-parameters φ in a data-driven way, as explained in Shah
et al. (2007).
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2. Estimate Zp
1:T for each patient separately using Shah et al. (2006).

3. Estimate Gp using WKM (see Section 2.4) on Z1:P
1:T .

4. Estimate Mg
t as follows. Given Z1:P

1:T for the patients in group g,
compute the entropy of each column. If the entropy is low and most
calls are losses, set Mg

t =L; if the entropy is low and most calls are
gains, set Mg

t =G; otherwise set Mg
t =B.

2.2.3 HMM-mix algorithm details We now explain each step in more
detail.

(1) The most expensive step is the first one, which takes O(TGP) time
using the Viterbi algorithm. To compute this, we need the observation
likelihoods for each location, which are given by

Bg(t,c) =
P∏

p=1

I(Gp =g)p(Zp
t |Mg

t =c)

where p(Zp
t |Mg

t =c) is the likelihood obtained by integrating out θ
g
t

using Dirichlet hyper-parameter αc (Equation 1). We then compute

Mg
1:T =Viterbi(Bg(:,:),Ag,πm)

(2) Posterior over cluster assignments:

p(Gp =g|·)∝π
g
G

T∏
t=1

p(Zp
t |Mg

t ,α1:3)

(3) Posterior over calls

p(Zp
t =k|·)∝p(Zp

t =k|M1:G
t ,α1:3,Gp =g)p(Yp

t |µp
k ,λ

p
k )

(4) Update observation model parameters (as specified in Archambeau,
2005), but for the 1D case for each patient p. Use a Normal Gamma
prior for p(µp

k ,λ
p
k ) (Fig. 2), with hyper-parameters (mk,ηk,Sk,γk).

Compute the following quantities:

ūp
t (k)= 1+νk

(Yp
t −µ

p
k )2λ

p
k +νk)

ρ
p
t (k)=p(Zp

t =k|·)
where ρ

p
t (k) is computed in step 3. The maximum a posteriori update

equations then become:

µ
p
k =

∑T
t=1ρ

p
t (k)ūp

t (k)Yp
t +ηkmk∑T

t=1ρ
p
t (k)ūp

t (k)+ηk

λ
p
k =

{∑T
t=1ρ

p
t (k)ūp

t (k)(Yp
t −µ

p
k )2∑T

t=1ρ
p
t (k)+γk −1

+ ηk(µp
k −mk)2 +Sk∑T

t=1ρ
p
t (k)+γk −1

}−1

(5) Posterior over transition matrix. Define the sufficient statistics as

Nij =
T∑

t=2

I(Mg
t−1 = i,Mg

t = j)

Then

p(Ag|·)=
3∏

i=1

Dir(Ag(i,:)|Ni,: +δM )

(6) Posterior over group prior. Define the sufficient statistics as

Ng =
P∑

p=1

I(Gp =g)

Then
p(πG|·)=Dir(πG|N1 +δG,1,...,NG +δG,G)

2.3 K-medoids
To compare HMM-Mix to a simpler method, we decided to use the KM
algorithm applied to precalled data, i.e. the input is Zp

t rather than Yp
t . [We

used our own HMM method (Shah et al., 2006) to discretize each sample
separately, but other methods could be used.] As such, KM (as well as WKM
and WECCA, both described below) are two-step or sequential methods
where in the first step, the raw data are called as discrete copy number states
and in the second step, the patients are clustered based on the called data.
KM is just like K-means, except each cluster is represented using one of the
original samples (a discrete sequence of calls), rather than as an arithmetic
average of the samples, which does not make sense for categorical data. KM
requires a distance metric between a sample and a cluster center (prototype).
We used Hamming distance: d(i,j)=∑T

t=1 I(Zi
t =Zj

t ). Since KM is prone
to getting stuck in local minima, we used 100 restarts, and returned the
clustering with the lowest overall distortion. To choose K (the number of
clusters), we used the Silhouette coefficient (van der Laan et al., 2003) (see
Section 2.6).

2.4 Weighted KM
The KM algorithm described above treats all probes (features) equivalently
when computing the distance function. However, we assume that only a
small subset of features are important in determining the distance between
two patients. We therefore also tried a weighted distance function, d(i,j)=∑T

t=1 wtI(Zi
t =Zj

t ). We call the resulting method WKM.
The weights are chosen in the following heuristic way. We first compute

the empirical distribution over calls at each location, ft . We then compute
the entropy of this distribution, Et =−∑

k=L,N,G ft(k) logft(k). Finally, we
assign high weights to locations which are highly entropic: wt =σ (Et/α),
where σ (η)= 1

1+e−η is the sigmoid function, and α is a constant that controls
the steepness of the sigmoid. (We found α=0.25 gave good results.) The
use of the sigmoid function ensures 0≤wt ≤1.

The reason that we assign high weights to the entropic locations is as
follows: locations which are useful for distinguishing the groups must differ
across patients, and hence are likely to have a multimodal distribution,
whereas locations which are not discriminative are likely to have all possible
values (be closer to uniform), and therefore have lower entropy.

In our experimental results below, we show that WKM is much better than
KM, although not as good as our model-based approach. However, because
of its simplicity and speed, we use it as a way to initialize our model-based
approach.

2.5 Hierarchical clustering
In recent work, van Wieringen and van de Wiel (2008) introduce a system
called ‘Weighted clustering of called array CGH data’ (WECCA). This
represents the first clustering approach to be tailored specifically to the
aCGH data and is a specialized implementation of hierarchical agglomerative
clustering. The authors define a weighted form of similarity, similar in
spirit to the weighted Hamming distance described above, although the
weights are expected to be provided by the user, rather than automatically
calculated.

2.6 Choosing the number of groups
The KM and our HMM-Mix model both require that the user specify the
number of clusters G. (Hierarchical clustering does not need this information,
although one must specify some other mechanism for choosing where to cut
the dendogram.) Since KM is not a probabilistic model, one can only use
heuristics methods for picking G. We use the Silhouette coefficient (Tan et al.,
2005), which computes a measure of quality that considers both cohesion
(how similar the points in a cluster are) and separation (how different the
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clusters are). In particular, we compute S(G) for a range of values of G, and
pick the G with maximum score.

3 DATA

3.1 Simulated data
To test and compare performance of the various algorithms where
the true clustering was known, we generated data and embedded
group-specific patterns of recurrent CNAs. To avoid circularity
that can arise from generating data from the model directly, we
created datasets based on real aCGH data derived from mantle
cell lymphoma cell lines reported in de Leeuw et al. (2004) and
used similarly in Shah et al. (2007). We first extracted the data
from chromosome 21 (chosen because it was reported to have
relatively few alterations), resulting in a dataset of 8 samples each
with 672 probes. For each simulated dataset, we performed 100
random draws (simulating patients) from the eight cell lines. For
each of the 100 patients, we shuffled the 672 probes and randomly
assigned the patient to one of G groups. For each group, we
preset coordinates of one recurrent gain and one recurrent loss.
These group-specific coordinates defined the profile for the group.
The alterations were embedded into each patient’s data at their
group-specific coordinates, plus a random offset number of probes
(sampled from a Gamma distribution with a mean of 10 probes).
This offset was meant to simulate the fact that recurrent CNAs often
have different patient-specific start and end coordinates, but have
segments that intersect across patients. Losses were generated by
shifting 1 SD down from the neutral state, and gains were shifts of
1 SD up. Finally, for each patient, we randomly embedded alterations
of length L at locations different than the group-specific alterations
in order to simulate patient-specific ‘passenger’ alterations expected
to be unrelated to the group profile. We created 10 replications with
G=3,5,10 and L=50,75 yielding 60 datasets. These data and the
ground truth cluster assignments are included in the Supplemental
Material.

With these ground truth datasets in hand, we evaluated clustering
accuracy using the Jaccard coefficient as described by Tan et al.
(2005). (This is a number between 0 and 1, where 1 is the best
possible score, corresponding to perfect correspondence to the true
clustering.)

3.2 Clinical data
We use two clinical datasets: FL (Fig. 4) and DLBCL (Fig. 5).

The FL data were derived from 106 samples taken at time
of diagnosis from patients with FL. These data were previously
reported in Cheung et al. (2008) and were expected to fall into at least
four genetic subtypes (Höglund et al., 2004).Acharacteristic of FL is
that in a subset of patients, the tumor undergoes a transformation to
a more aggressive subtype that consistently correlates with inferior
survival outcome. Developing a prognostic CNA profile predictive
of transformation is therefore of great clinical interest.

The DLBCL data (Johnson et al., 2008), contains aCGH data for
92 patients with de novo DLBCL, all treated uniformly with multi-
agent chemotherapy (CHOP) and anti-CD20 monoclonal antibody
rituximab.

All clinical data were produced using the SMRT array platform
(Ishkanian et al., 2004) and contain approximately 27 000 probes
per sample.

4 RESULTS

4.1 Simulated data
Figure 3 shows the distribution of the Jaccard coefficient resulting
from using WECCA, KM, WKM and HMM-Mix on the 10 replicates
for each setting of G, the number of groups and L, the length
of the distracting patient-specific passenger alterations. Table 2
contains the mean and standard error for each of the six datasets for
the four methods. HMM-Mix showed the highest accuracy for all
six settings. When G = 3,L = 50 (Fig. 3A), HMM-Mix and WKM
were more accurate than WECCA at recovering the ground truth
classes, and statistically more accurate than KM (one-way ANOVA,
P<0.01). For G = 3, L = 75 (Fig. 3D) and G = 5, L = 50 (Fig. 3B),
HMM-Mix was more accurate than WKM and statistically more
accurate than both KM and WECCA (P<0.01). For G = 5,L = 75
(Fig. 3E), G = 10,L = 50 (Fig. 3C) and G = 10,L = 75 (Fig. 3F),
HMM-Mix was statistically more accurate than all other methods
(P<0.01). However, for G = 10,L = 75 all methods performed
poorly, since this problem is much harder than the others: there
are only 10 samples per group, and each sample is ‘corrupted’
with a fairly long (L = 75) random CNAs. We repeated these
experiments using P = 500 patients, and all methods improved in
their accuracy, although the overall relative rankings are the same
(data not shown).

HMM-Mix was generally more robust to the size L of the
randomly placed passenger alterations than the other methods,
suggesting that the model is able to maintain its ability to detect
group-specific alterations in the presence of additional structured
noise.

We also tested the robustness of HMM-Mix to initialization. In
particular, we initialized with both KM and WKM, and found that
the final results were nearly identical, despite the fact that WKM
was significantly more accurate than KM.

This suggests that in these settings, HMM-Mix is able to overcome
a poor initialization, most likely due to its ability to re-estimate the
calls and adapt the feature selection during inference. We suspect
that these characteristics allow it to escape from local optima more
readily than WKM, which cannot re-estimate the calls and requires
the feature selection to be fixed ahead of time. Thus, these results
suggest that the joint inference of group assignments and copy
number calls used by HMM-Mix is more robust than the sequential
methods of WECCA, KM and WKM, all of which perform a
two-step method of first calling the data, then clustering.

4.2 FL data
We applied HMM-Mix to the FL cohort of 106 patients (Cheung
et al., 2008). We initialized the model using WKM with 100 multiple
restarts and we determined the number of groups to be 6 using the
maximum Silhouette coefficient over G = (2,...,8). Figure 4 shows
the WKM initializations, and the final results of HMM-Mix. In
particular, Figure 4A shows the initial Z1:P

1:T matrix where rows are
patients and columns are probes. The rows are ordered according to
their WKM cluster assignments. The green, red and black probes
are predicted losses, gains and neutrals, respectively. Figure 4B
shows the converged estimates of HMM-Mix where the rows have
been ordered according to the HMM-Mix cluster assignments, and
the data displayed are the re-estimated calls in the presence of the
profiles. Figure 4B (top) shows the profiles of each group and it
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Fig. 3. Distribution of accuracy of WECCA, KM, WKM and HMM-Mix for synthetic data generated with six different parameter settings. HMM-Mix was
the most accurate for all six settings (see Table 2 for details). Each dataset was composed of P=100 patients with 672 probes each. From left to right there
were G=3,5,10 embedded groups in the data. The top row had randomly placed CNAs of L=50 and the bottom row with L=75. Distributions of Jaccard
coefficient over 10 replicates of the G,L settings are shown as notched box plots where non-overlapping notches indicate statistical difference of the medians
(red horizontal lines) with 95% CI.

Table 2. Results for simulation study showing means and standard errors of the Jaccard coefficient

Dataset WECCA KM WKM HMM-Mix ANOVA P-value

G = 3 L = 50 0.959±0.018 0.916±0.027 0.996±0.004 0.996±0.004 4.2 × 10−3

G = 5 L = 50 0.692±0.048 0.734±0.034 0.932±0.018 0.976±0.007 5.7 × 10−8

G = 10 L = 50 0.296±0.022 0.375±0.033 0.317±0.031 0.580±0.065 6.7 × 10−5

G = 3 L = 75 0.611±0.030 0.828±0.029 0.923±0.022 0.965±0.009 4.3 × 10−12

G = 5 L = 75 0.460±0.019 0.548±0.057 0.730±0.043 0.964±0.011 6.2 × 10−11

G = 10 L = 75 0.131±0.010 0.202±0.010 0.138±0.010 0.223±0.032 1.3 × 10−3

is clear that the re-estimated calls are heavily influenced by their
corresponding profiles.

The resulting groups can be summarized as follows: (1) +7
(meaning gain of chromosome 7) (7 patients); (2): a ‘null’ group
with no recurrent alterations (67 patients); (3): a group with +18
(19 patients); (4): a group with +1q and a small loss at 1p36
(7 patients); (5): a singleton outlier (1 patient); and (6): +6p/6q-

(5 patients). Notably, +1p, +6p/6q−, +7, and +18 have previously
been established as cytogenetic pathways to the initiation and
development of FL using principal component analysis applied to
data generated by a difference laboratory technique called G-banded
karyotyping (Höglund et al., 2004).

The clusters produced by HMM-Mix set mirror those reported
in Cheung et al. (2008). In that paper, the WKM method was used
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Fig. 4. Clustering of FL data showing the initial calls and WKM clusters (A), the converged estimates of the calls (B), clusters and profiles by HMM-Mix and
the associated time to transformation Kaplan-Meier plots for each group (C). (A) The calls and clusters depicted as a heat map for WKM with G = 6. The rows
of the data indicate the patients and the columns indicate the probes. Red indicates gain, green loss and black neutral. The rows are ordered according to their
assigned groups as predicted by WKM. (B) The posterior probability of the calls (where red represents p(Zp

t = red), blue represents p(Zp
t = neutral)) and green

represents p(Zp
t = loss), the clusters and the profiles (top) for the G = 6 groups. In comparison to (A) the clusters are readily apparent from the data, they appear

to be tighter and the re-estimated calls are clearly influenced by the profiles, resulting in far less noisy, and far more interpretable output. Importantly, 4 of the
6 groups (labeled on right) recapitulate the previously reported subtypes for FL. Group numbers that correspond to the time to transformation curves (C) are
annotated on the right of (B). Groups 1 and 6 both had statistically significantly shorter time to transformation. (C) Time to transformation Kaplan-Meier curves
for each group of patients as predicted by HMM-Mix for the FL cohort. Groups 1 and 6 (black and yellow) had significantly reduced time to transformation
by log-rank test with 5 degrees of freedom. [The green curve corresponds to the singleton group shown in (B)]. These correspond, respectively, to the groups
characterized by +7 and 6p-/6q+ and suggests that these recurrent CNAs confer inferior prognoses to the patients in these groups.

to perform the clustering, but the method used significant human
expertise both in determining the initial called data, Z1:P

1:T , and in
defining the weighting terms, w1:T . In addition, the number of
groups (5) was chosen using supporting evidence from the literature.
In contrast, HMM-Mix is fully automated, with no user-settable
parameters, yet it managed to recover essentially the same results
of this previous method.

As further validation of the biological significance of the clusters
found by our method, we computed Kaplan-Meier curves for each
group of the time to transformation (TTT) (defined as the time from
diagnosis to clinical or pathological endpoint: transformation to the
more aggressive subtype). We show the results in Figure 4C. We see
that groups 1 and 6 (black and yellow curves) display a significantly
shortened TTT to the others (log-rank test, P <0.01), indicating the
profiles characterized by +7 and +6p/6q- are potential unfavorable

prognostic indicators for FL. Note that by WKM, group 1 (shown
as the top group in Fig. 4) which results in the HMM-Mix group
characterized by +7 only contains two patients which is inconsistent
with both Cheung et al. (2008) and Höglund et al. (2004) and might
therefore be considered less plausible than the HMM-Mix results.
The resulting clusters for the 106 patients predicted by WKM and
HMM-Mix are included in the Supplemental Material.

4.3 DLBCL data
Figure 5 shows the results of applying WKM and HMM-Mix to
the 92 patients in the DLBCL cohort. We see that HMM-Mix is
achieving the desired effect of focusing on putative driver or highly
recurrent within-group alterations, while ignoring non-recurrent
passenger alterations, thus clearly separating signal from noise.
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Fig. 5. Clustering of 92 DLBCL profiles into five groups. Comparison
between WKM initialization (A) and HMM-Mix (B) clearly shows HMM-
Mix ability to reduce noise and report only highly conserved within-group
patterns. The bottom cluster for HMM-Mix (B) shows a potentially novel
subtype with gain of chromosome +3/+18. The colors for both (A) and (B)
are as described in Figure 4.

The data fell into five distinct groups characterized by a ‘null’
group with no discernible pattern, and four groups characterized
by 1p-/+1q/+2p/+11q/15-, +7, 6q− and +3/+18. The last group is
a previously unreported pattern of alteration in DLBCL. Previous
work had identified that both changes show increased frequency
in the so-called activated B cell (ABC) subtype of DLBCL (Bea
et al., 2005), but had not recognized that these two alterations travel
together and may indeed define a unique molecular subgroup.

5 DISCUSSION AND FUTURE WORK
The HMM-Mix model presented in this article is effectively able
to discover subgroups and their defining profiles given a set of
aCGH data derived from a patient cohort. We showed the model’s
capability of finding clinically relevant subtypes in an FL cohort
and a previously undescribed subtype in the DLBCL cohort.
We demonstrated how the joint inference procedure of inferring
copy number calls, cluster assignments and profiles, coupled with
adaptive feature selection, makes HMM-Mix significantly more
accurate than partitioning and hierarchical clustering methods.
Future work will entail experimental validation and further
exploration of the +7 and 6p-/6q+ subgroups detected in the FL
cohort for prognostic significance for TTT, and determining clinical
relevance of the DLBCL subgroups we reported.

Extension of HMM-Mix to high density SNP arrays (e.g.
Affymetrix 6.0) will be of interest, as patterns of both genotype
and copy number can be elucidated. HMM-based models for
SNP arrays introduced in Colella et al. (2007) and Scharpf et al.

(2008) will be investigated for extension to the clustering setting
using the HMM-Mix framework introduced here. Compared to the
BAC arrays used in this study, genotyping array probes are much
less uniformly distributed across the chromosome. Thus, location-
specific transition matrices with distance-based priors as suggested
by Colella et al. (2007) will be a necessary feature of this work. (Note
that most likely owing to the fact that the platform used to generate
the data in this study has relatively uniformly distributed probes, we
found that non-stationary transition matrices made no difference to
our results.) In addition, we will be applying the model to a large
cohort of breast tumors for which we have generated Affymetrix
SNP 6.0 data with the goal of uncovering novel molecular subtypes.
Note that the CNAs in lymphoma entities we studied as part of this
article can be dominated by chromosome arm or whole chromosome
events. Application to breast cancer will allow us to assess how well
the model generalizes to cancers that have much more complex
genomes.

Finally, we are investigating the use of variational methods Bishop
(2006) for inference that will at once obviate the need to hard assign
each patient to a group and preserve the computational efficiency
of the inference algorithm. We expect this extension to provide
full posterior distributions over the quantities of interest thus better
modeling the uncertainty of these estimates. In addition, we are
investigating approaches to model selection to avoid having to
choose the number of groups at run time.
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