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Abstract
Objectives The accurate prediction of post-hepatectomy early recurrence in patients with hepatocellular carcinoma (HCC) is 
crucial for decision-making regarding postoperative adjuvant treatment and monitoring. We aimed to explore the feasibility 
of deep learning (DL) features derived from gadoxetate disodium (Gd-EOB-DTPA) MRI, qualitative features, and clinical 
variables for predicting early recurrence.
Methods In this bicentric study, 285 patients with HCC who underwent Gd-EOB-DTPA MRI before resection were divided 
into training (n = 195) and validation (n = 90) sets. DL features were extracted from contrast-enhanced MRI images using 
VGGNet-19. Three feature selection methods and five classification methods were combined for DL signature construction. 
Subsequently, an mp-MR DL signature fused with multiphase DL signatures of contrast-enhanced images was constructed. 
Univariate and multivariate logistic regression analyses were used to identify early recurrence risk factors including mp-MR 
DL signature, microvascular invasion (MVI), and tumor number. A DL nomogram was built by incorporating deep features 
and significant clinical variables to achieve early recurrence prediction.
Results MVI (p = 0.039), tumor number (p = 0.001), and mp-MR DL signature (p < 0.001) were independent risk factors 
for early recurrence. The DL nomogram outperformed the clinical nomogram in the training set (AUC: 0.949 vs. 0.751; 
p < 0.001) and validation set (AUC: 0.909 vs. 0.715; p = 0.002). Excellent DL nomogram calibration was achieved in both 
training and validation sets. Decision curve analysis confirmed the clinical usefulness of DL nomogram.
Conclusion The proposed DL nomogram was superior to the clinical nomogram in predicting early recurrence for HCC 
patients after hepatectomy.
Key Points 
• Deep learning signature based on Gd-EOB-DTPA MRI was the predominant independent predictor of early recurrence  
   for hepatocellular carcinoma (HCC) after hepatectomy.
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• Deep learning nomogram based on clinical factors and Gd-EOB-DTPA MRI features is promising for predicting early  
   recurrence of HCC.
• Deep learning nomogram outperformed the conventional clinical nomogram in predicting early recurrence.

Keywords Hepatocellular carcinoma · Recurrence · Magnetic resonance imaging · Deep learning · Nomograms

Abbreviations
AFP  α-fetoprotein
AP  Arterial phase
AST  Aspartate aminotransferase
AUC   Area under the curve
CNN  Convolutional neural network
DL  Deep learning
ERASL  Early recurrence after surgery for liver 

tumor
Gd-EOB-DTPA  Gadoxetate disodium
GP  Gaussian process
HBP  Hepatobiliary phase
HCC  Hepatocellular carcinoma
LASSO  Least absolute shrinkage and selection 

operator logistic regression
mp-MR  Multiple sequences magnetic resonance
MVI  Microvascular invasion
PVP  Portal venous phase
RFE  Recursive feature elimination
TACE  Transarterial chemoembolization

Introduction

Hepatic resection is the first-line treatment for patients with 
early-stage HCC and well-preserved liver function [1, 2]. 
However, HCC recurrence rate reaches 70% 5 years after 
surgery [3]. More than 80% of recurrences are intrahepatic, 
including intrahepatic metastases from a primary tumor 
(considered true recurrence) and de novo multicentric 
metastasis [4]. The poor prognosis of patients is related to 
intrahepatic metastases and mainly presents as early recur-
rence (within 2 years), whereas late recurrence (> 2 years) is 
more likely associated with underlying liver diseases, such 
as cirrhosis [5, 6]. Thus, early recurrence risk assessment in 
patients with HCC is clinically relevant.

Numerous tumor factors have been identified as predic-
tors of early recurrence, such as microvascular invasion 
(MVI), surgical margin, tumor size, high lobular hepati-
tis activity, and poor Edmondson-Steiner grade [7–10]. 
However, most of the risk factors can only be obtained by 
postoperative pathology, and thus cannot be used to assess 
prognosis and develop treatment plans before hepatectomy. 
Medical imaging is a routine preoperative examination 
for patients with HCC. Previous studies have shown that 
quantitative parameters measured from medical imaging 

equipment, such as metabolic parameters, apparent dif-
fusion coefficient values, and liver stiffness values from 
positron emission tomography/computed tomography [11], 
diffusion-weighted imaging [12], and magnetic resonance 
elastography [13], respectively, showed great efficiency and 
high clinical practicability in predicting the early recurrence 
of HCC after hepatectomy. Although magnetic resonance 
elastography is accurate in detecting liver fibrosis, the wide-
spread application of this imaging modality in patients with 
HCC is limited due to its low specificity and its dependence 
on quantitative parameters; however, the cutoff of param-
eters was lack of criterion. Gadoxetate disodium (Gd-EOB-
DTPA), a hepatobiliary-specific contrast agent that is widely 
used in patients with HCC, can better capture the perfusion 
and functional alterations, and hence may be more sensitive 
and accurate in HCC detection. Previous studies [14, 15] 
have also revealed that Gd-EOB-DTPA MRI is better than 
multidetector computed tomography (CT) and MRI using 
other contrast agents.

Several imaging features observed on Gd-EOB-DTPA 
MRI, including rim enhancement, arterial peritumoral 
enhancement, non-smooth tumor margin, satellite nod-
ule, and peritumoral hypointensity on hepatobiliary phase 
(HBP) images [16, 17], are associated with early recurrence 
in patients with HCC; nevertheless, early recurrence predic-
tion using MR features may be subjective and dependent on 
radiologist experience. Qualitative MR features are limited 
by image grayscale recognition, and therefore, much infor-
mation related to tumor heterogeneity is lost.

Radiomics, involving the high-throughput extraction and 
mining of quantitative imaging features, is thought to cap-
ture the histological heterogeneity inherent to solid tumors 
[18]. In contrast to invasive tissue biomarkers, quantitative 
features retrieved from CT or MR images have demonstrated 
improved diagnostic and prognostic precision in patients 
with HCC, such as the preoperative prediction of MVI and 
recurrence-free survival [19]. However, more recent studies 
have shifted towards the field of deep learning (DL).

DL, a subset of machine learning, is a new diagnostic 
technology for mining internal information from medical 
images. DL can be applied to tumor segmentation [20], 
prognosis prediction [21, 22], and treatment response 
evaluation [23] by automatically extracting deep-learned 
or high-order image features. Among them, convolutional 
neural network (CNN) is famous for handling image clas-
sification tasks [24]; the three major operations of CNNs are 
convolution, activation, and pooling, and the entire process 
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can be divided into two steps: the forward computation and 
the back propagation [25]. Additionally, DL has provided a 
preoperative prediction tool to guide postoperative clinical 
decision‐making regarding patients with HCC, such as HCC 
recurrence prediction after liver transplantation [26] and 
prognostic factor exploration in HCC pathological images 
[27]. Thus, the direct use of DL-based image features to 
predict prognosis would provide a promising non-invasive 
method to better individualize patient treatment.

Therefore, we aimed to investigate the feasibility of deep 
features extracted from Gd-EOB-DTPA MR images for pre-
dicting the early recurrence of HCC after curative resection. 
Furthermore, we evaluated the predictive performance of 
the DL-based nomogram incorporating deep features and 
significant clinical factors.

Materials and methods

Patients and dataset

Ethical approval was obtained for this retrospective study, 
and the requirement for informed consent was waived. 
Patients with suspected HCC who underwent Gd-EOB-
DTPA MRI between January 2012 and September 2018 
prior to curative resection were consecutively included. This 
study was performed at two centers: Sun Yat-Sen University 
Cancer Center (center 1) and Southern Medical University 
affiliated Zhujiang Hospital (center 2). The inclusion criteria 
were as follows: patients (a) with pathological confirmation 
of HCC; (b) with Barcelona Clinic Liver Cancer stage 0, A, 
or B HCC; (c) who received no previous anti-cancer treat-
ment; and (d) who underwent Gd-EOB-DTPA MRI of the 
liver within 1 month before surgery. The exclusion criteria 
were as follows: patients (a) with recurrent HCC or combined 
with hepatocyte cholangiocarcinoma or metastatic tumor in 
the liver; (b) with radiographic macrovascular invasion or 
extrahepatic metastasis; (c) with incomplete clinical, radio-
logical, pathological, or follow-up data; and (d) who died 
due to postoperative complications or liver cancer rupture 
within 2 weeks (Fig. 1). All patients including 227 patients 
in center 1 and 58 patients in center 2 were randomly divided 
into training and validation sets at in a 7:3 ratio.

Baseline clinicopathological data were collected from 
electronic medical records. Clinical data included demo-
graphics, time to early recurrence, and Barcelona Clinic 
Liver Cancer stage. Laboratory features included neutro-
phil count as well as hepatitis B virus DNA, α-fetoprotein 
(AFP), alanine aminotransferase, aspartate aminotransferase 
(AST), and γ-glutamyl transpeptidase levels. Pathologic 
data included MVI, defined as tumor emboli in a vascu-
lar space lined by endothelial cells on microscopy [28], 
tumor number, and histologic grade, which was evaluated 

as well differentiated, moderately differentiated, or poorly 
differentiated.

Follow‑up surveillance and clinical endpoint

All patients were followed up for at least 2 years after cura-
tive resection. Patients were screened for tumor recurrence 
through serum AFP level evaluation, ultrasonography, con-
trast-enhanced CT, or MRI of the chest and abdomen in the 
first month after surgery, once every 3 months thereafter 
during the first year, and every 6 months thereafter. The 
censored follow-up date was October 1, 2020.

The study endpoint was early recurrence, which was defined 
as one or more of the following events occurring within 2 years 
after curative resection: (a) presence of new hepatic lesions with 
typical imaging findings of HCC; (b) atypical imaging findings 
with biopsy or re-postoperative pathology-confirmed HCC, 
or postoperative transarterial chemoembolization (TACE) 
revealed tumor staining; and (c) extrahepatic metastases con-
firmed by typical imaging features or histological analysis.

MRI acquisition and preprocessing

MR images of the arterial phase (AP), portal venous phase 
(PVP), and HBP were collected in this study. The MRI 

Fig. 1  Flowchart of patient inclusion/exclusion for the two centers. 
Abbreviations: Gd-EOB-DTPA, gadoxetate disodium
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machines and parameters provided in sequences and param-
eters are listed in Supplementary Methods and Supplementary 
Table 1. Before the quantitative analysis, we preprocessed the 
MR images considering the influence of different MRI scan-
ning parameters, protocols, and individual differences. First, an 
offset field correction by N4 algorithm in 3D Slicer software 
was applied to correct the inhomogeneity in gray level. Then, 
we mapped the gray values to a range of 0–255, to reduce the 
influence of different gray scales on gray quantization.

Qualitative analysis of MR images

The qualitative analysis of MR image features was inde-
pendently performed by three abdominal radiologists (M.Y., 
B.Z., and Z.J.G. with 5, 10, and 16 years of abdominal 
diagnosis experience, respectively). The radiologists were 
blinded to the radiological and pathologic reports. Reader 1 
(M.Y.) observed the features twice, and the second observa-
tion was performed 2 weeks after the first observation.

The MR features included the following: (a) tumor 
size, defined as the maximum diameter on transverse HBP 
images; (b) AP enhancement type (types 1 [homogene-
ous enhancement pattern with no increased arterial blood 
flow], 2 [homogeneous enhancement with increased arte-
rial blood flow], 3 [heterogeneous enhancement contain-
ing non-enhanced areas], 4 [heterogeneous enhancement 
pattern with irregular ring-like structures] [29–31], and 5 
[heterogeneous and hypointense enhancement pattern]); (c) 
capsule appearance (peripheral rim of uniform and smooth 
hyperenhancement in the portal or delayed phase, which 
is categorized into three groups [absent, incomplete, and 
complete]) [32]; (d) hypodense halo (a rim of hypointen-
sity partially or wholly surrounding the tumor); (e) intra-
tumor necrosis (a low signal on T1-weighted imaging, a 
high signal on T2-weighted imaging, and a low signal on 
all enhanced phases); (f) satellite nodules, defined as small 
(< 2 cm) tumor nodules close (< 2 cm) to the main tumor 
[33]; (g) peritumoral hypointensity, defined as flame-like or 
wedge-shaped hypointense areas of the hepatic parenchyma 
around the tumor on HBP images [34]. Figure 2 shows the 
MR features.

Image segmentation and DL feature extraction

The regions of interest were delineated around the tumor 
boundary on the largest dimension. A state-of-the-art archi-
tecture VGGNet-19 was then applied to extract 1472 DL fea-
tures from the AP, PVP, and HBP images. The DL network 
contains five convolutional layers, four max-pooling layers, 
three fully connected layers, and a softmax layer. The DL 
workflow is shown in Fig. 3, and more details are provided 
in Supplementary Methods.

Feature selection and DL signature development

To select the features strongly related to early recurrence, the 
DL features were subjected to the following steps: feature 
value preconditioning, de-redundancy, and dimensionality 
reduction; thereafter, machine learning methods were used 
to predict the status of outcome events and establish a DL 
signature that can predict early recurrence. All features were 
first normalized to the range of [0,1] by the minimum–maxi-
mum normalization method. Moreover, Spearman correla-
tion analysis was added to retain DL features associated 
with the early recurrence of HCC (p < 0.05). Subsequently, 
the Pearson correlation coefficient (r) was used to remove 
one redundant feature with a lower r from the feature pairs 
(r > 0.9). The highly predictive features obtained were fur-
ther screened by variance analysis, recursive feature elimina-
tion (RFE), and  Relief algorithm. Five types of classifiers, 
namely random forest (RF), support vector machine, least 
absolute shrinkage and selection operator logistic regres-
sion (LASSO), AdaBoost, and Gaussian process (GP), were 
compared to identify the outcome status of early recurrence 
for every phase of the DL features.

Clinical and DL analysis

Univariate logistic regression analysis was performed in the 
training set, and significant variables (p < 0.05) were entered 
into the multivariate logistic regression using the forward 
likelihood ratio method to identify the independent risk 
factors for early recurrence. A two-sided p < 0.05 was con-
sidered statistically significant. The nomogram was plotted 
based on multivariate logistic regression analysis findings.

Collinearity analysis of conventional clinical factors and 
DL signatures was also performed. The evaluation factors 
were tolerance and variance inflation factor (VIF); a toler-
ance value < 0.1 or a VIF value > 5 was considered to indi-
cate collinearity between two variables.

We calculated the radiomics quality score (https:// www. 
radio mics. world/ rqs2) to assess the methodology, analysis, 
and reporting of our DL study [35].

Statistical analysis

Comparisons between the training and validation sets were 
conducted using the chi-square test or Fisher’s exact test 
for categorical variables, whereas the Mann–Whitney U test 
was used for continuous variables. Intra-reader agreements 
of the qualitative MR imaging features were assessed using 
Cohen’s κ coefficient, and the inter-reader agreement was 
assessed by Fleiss’ κ statistics across three readers. Kappa (κ) 
statistics were qualitatively stratified by κ = 0.00–0.20, poor 
agreement; κ = 0.21–0.40, fair agreement; κ = 0.41–0.60, 

https://www.radiomics.world/rqs2
https://www.radiomics.world/rqs2
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moderate agreement; κ = 0.61–0.80, good agreement; and 
κ = 0.81–1.00, excellent agreement [35].

The receiver operating characteristic curve analysis was 
employed to calculate the area under the curve (AUC), accu-
racy, sensitivity, and specificity. Comparisons between dif-
ferent DL signatures and models were implemented using 
the DeLong test. Model fit was assessed via calibration plots 
using 1000 bootstrap resamples. The clinical utility of the 
models was evaluated using decision curve analysis. Soft-
ware and packages for statistical analyses are provided in 

Supplementary Methods. All statistical tests were two-sided, 
and a p < 0.05 was considered statistically significant.

Results

Clinical characteristics

We included 285 patients (men, n = 254; median age, 
54.0 years; range, 13–79 years) whose data were divided into 

Fig. 2  Definitions of features 
and representative MR images. 
Abbreviations: AP, arterial 
phase; Type 1, a homogene-
ous enhancement pattern with 
no increased arterial blood 
flow; Type 2, a homogeneous 
enhancement with increased 
arterial blood flow; Type 3, 
a heterogeneous enhance-
ment included non-enhanced 
areas; Type 4, a heterogene-
ous enhancement pattern with 
irregular ring-like structures; 
Type 5, a heterogeneous and 
hypointense enhancement pat-
tern; HBP, hepatobiliary phase
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the training set (n = 195) and validation set (n = 90). Early 
recurrence occurred in 77 (27.0%) patients, and there was 
no difference in the early recurrence rate between the train-
ing set (27.7%, 54/195) and validation set (25.6%, 23/90). A 
total of 364 tumors were found in all patients, including 1, 2, 
3, and 4 tumors in 223, 47, 13, and 2 patients, respectively. 
The clinical characteristics of the two groups are shown in 
Supplementary Table 2. No statistically significant differ-
ence was observed in baseline clinicopathological variables, 
pathologic variables, and qualitative MR features between 
the two sets (p = 0.113–1.000) except for the factor of etiol-
ogy (p = 0.012).

Among all HCC patients in the early recurrence group, 
there were 52 (67.5%) patients with intrahepatic recurrence, 
including 48 (62.3%), 3 (3.9%), and 1 (1.3%) patients with 
typical CT/MR finding, re-postoperatively confirmed HCC, 
and TACE-revealed tumor staining, respectively; and 30 
(39%) patients with extrahepatic recurrence, including 
25 (32.5%) and 4 (5.2%) with typical CT/MR finding and 
histological analysis, respectively. Additionally, 5 (6.5%) 
patients had concurrent intra- and extrahepatic recurrences. 
The median time to early recurrence was 8 months (range, 
1–24 months). The recurrence details are provided in Sup-
plementary Table 6.

Intra‑ and inter‑reader agreement for qualitative 
MR images

Supplementary Table  5 presents the percentages of all 
features identified by the three readers as well as their 
intra- and inter-reader agreements and κ statistics for 
each imaging. Each MR feature showed an almost per-
fect intra-reader agreement (κ = 0.81–1.00). Regarding 

the inter-reader agreement among the three readers, the 
hypodense halo, peritumoral hypointensity, satellite nod-
ules, capsule appearance, and intratumor necrosis showed 
good agreement (κ = 0.72–0.79); AP enhancement type and 
tumor size showed excellent agreement (κ = 0.84 and 0.97, 
respectively).

DL signature development and validation

For identifying the outcome status of early recurrence in 
every phase of AP, PVP, and HBP features, the performance 
comparisons among five classifiers are shown in Fig. 4. It 
manifested that the GP classifier achieved the best perfor-
mance for all the sequences with the AUCs of 0.826 (AP), 
0.854 (PVP), and 0.888 (HBP), while the AdaBoost classi-
fier showed almost no discrimination ability with the AUCs 
of 0.519 (AP), 0.503 (PVP), and 0.485 (HBP). In total, 99 
DL features were selected from AP images using RFE, 93 
DL features were screened from PVP images using Relief, 
and 99 DL features were identified from HBP images using 
Relief. All the optimal single-layered DL signatures were 
constructed using GP classifiers. All DL signatures showed 
significant differences between the two groups (all p < 0.05) 
in the training set (Table 1). Collinearity analysis was per-
formed for variables with p < 0.05 after univariate analysis. 
The tolerance range of each variable was 0.750–0.970, and 
the VIF range was 1.031–1.333, indicating no collinearity 
between the variables (Supplementary Table 3).

The AP DL signature achieved an AUC of 0.882 (95% 
confidence interval [CI]: 0.823–0.941) in the training set 
and 0.826 (95% CI: 0.755–0.897) in the validation set 
(Table 2); the PVP DL signature yielded an AUC of 0.822 
(95% CI: 0.753–0.891) in the training set and 0.854 (95% 

Fig. 3  The workflow of deep learning analysis. Abbreviations: RFE, recursive feature elimination; DL, deep learning
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CI: 0.780–0.928) in the validation set (Table 2), whereas 
the HBP-DL signature demonstrated an AUC of 0.909 
(95% CI: 0.860–0.958) in the training set and 0.888 (95% 
CI: 0.833–0.943) in the validation set (Table 2). The multi-
sequence MR (mp-MR) DL signature performance improved 
in both training and validation sets, with AUCs of 0.929 
(95% CI: 0.829–0.966) and 0.894 (95% CI: 0.811–0.977) in 
the training and validation sets, respectively (Table 2). The 
DeLong test demonstrated that the mp-MR DL signature 
performance was better than that of the AP DL signature in 
both training and validation sets (p < 0.05) (Table 2).

Establishment of clinical and DL nomograms

After univariate analysis, six clinical factors, namely neutro-
phil count, AST level, γ-glutamyl transpeptidase level, MVI, 
tumor number, and histologic grade (p < 0.05), were candidate 
factors for multivariate analysis (Supplementary Table 4); 
however, only neutrophil count, AST level, and MVI were 

identified as independent risk factors for early recurrence of 
HCC. The clinical nomogram was constructed based on the 
three factors (Table 3; Fig. 5A) which achieved an AUC of 
0.751 (95% CI: 0.674–0.827) in the training set and 0.715 (95% 
CI: 0.586–0.843) in the validation set (Table 4; Fig. 6A, B).

Thereafter, the above-mentioned five clinical factors and the 
mp-MR DL signature were included in the multivariate analysis, 
and tumor number, MVI, and mp-MR DL signature were identi-
fied as independent risk factors for early recurrence (p < 0.05). 
We developed a DL nomogram incorporating the tumor number, 
MVI, and mp-MR DL signature (Table 3; Fig. 5B), which signif-
icantly outperformed the clinical nomogram, yielding an AUC 
of 0.949 (95% CI: 0.919–0.980) in the training set and 0.909 
(95% CI: 0.842–0.976) in the validation set (Table 4; Fig. 6A, 
B). The DeLong test showed a significant difference between 
the clinical and DL nomograms in the training set (p < 0.001) 
and validation set (p = 0.002) (Table 4). Figure 6C and D dem-
onstrate good DL nomogram calibration. The decision curve 
showed that the DL nomogram had a higher net benefit than the 

Fig. 4  Performance comparisons among the five classifiers for the 
validation set: A AP images; B PVP images; C HBP images. Abbre-
viations: AP, arterial phase; PVP, portal venous phase; HBP, hepato-

biliary phase; GP, Gaussian process; LASSO, least absolute shrink-
age and selection operator logistic regression; RF, random forest; 
SVM, support vector machine

Table 1  Difference analysis and univariate analysis of DL signature between groups with and without the early recurrence in the training set

OR, odds ratio; CI, confidence interval; DL, deep learning; AP, arterial phase; PVP, portal venous phase; HBP, hepatobiliary phase; mp-MR, 
multiple sequences magnetic resonance. p* < 0.05 indicates a significant difference

Phase Early recurrence (n = 54) Without early  
recurrence (n = 141)

Difference analysis Univariate analysis

p value OR (95%CI) p value

DL signature AP 0.450 (0.379, 0.545) 0.297 (0.266, 0.356)  < 0.001* 6.08 ×  109

   (1.389 ×  107–9.627 ×  1012)
 < 0.001*

PVP 0.390 (0.294, 0.507) 0.270 (0.245, 0.321)  < 0.001* 4.68 ×  107

   (3.036 ×  105–1.781 ×  1010)
 < 0.001*

HBP 0.434 (0.371, 0.515) 0.304 (0.272, 0.339)  < 0.001* 1.791 ×  1012

   (9.725 ×  108–1.753 ×  1016)
 < 0.001*

mp-MR 0.425 (0.374, 0.498) 0.291 (0.273, 0.322)  < 0.001* 1.605 ×  10143

   (3.544 ×  1010–4.259 ×  1018)
 < 0.001*
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Table 3  Multivariate regression 
analysis of the groups with and 
without early recurrence in the 
training set

DL, deep learning; NE, neutrophil count; NA, not applicable; AST, aspartate aminotransferase; MVI, micro-
vascular invasion; mp-MR, multiple sequences magnetic resonance. p* < 0.05 indicates a significant difference

Variables Clinical nomogram DL nomogram

Odd ratios (95%CI) p value Odd ratios (95%CI) p value

NE 0.70 (0.52–0.93)     0.014* NA NA
AST 3.07 (1.52–6.22)     0.002* NA NA
MVI 3.82 (1.87–7.80)  < 0.001* 3.06 (1.06–8.82)     0.039*

Tumor number NA NA 3.61 (1.64–7.92)     0.001*

mp-MR DL signature NA NA 1.61 ×  1015 
(5.63 ×  1010–4.63 ×  1019)

 < 0.001*

Table 2  Predictive performance of different DL signatures in training and validation sets

AUC , area under the curve; CI, confidence interval; AP, arterial phase; DL, deep learning; PVP, portal venous phase; HBP, hepatobiliary phase; 
mp-MR, multiple sequences magnetic resonance. p* < 0.05 indicates a significant difference

Datasets Phase Sensitivity (%) Specificity (%) Accuracy (%) AUC (95%CI) p value

DL signature Training set AP 76.4 84.3 82.1 0.882 (0.823–0.941) 0.048*

PVP 67.3 85.0 80.0 0.822 (0.753–0.891) 0.001*

HBP 78.2 90.7 87.2 0.909 (0.860–0.958) 0.115
mp-MR 76.4 93.6 88.7 0.929 (0.829–0.966) Ref

Validation set AP 73.9 79.1 77.8 0.826 (0.755–0.897) 0.019*

PVP 73.9 86.6 83.3 0.854 (0.780–0.928) 0.259
HBP 78.3 77.6 77.8 0.888 (0.833–0.943) 0.743
mp-MR 78.3 89.6 86.7 0.894 (0.811–0.977) Ref

clinical nomogram (Fig. 6E, F). This DL study scored 40 points 
(60.6%) (Supplementary Material_RQS).

Discussion

We used the DL approach to explore the informative features 
from Gd-EOB-DTPA MRI images that were associated with 
early recurrence of HCC and established three single-layered 
DL signatures and an mp-MR DL signature fused with three-
phase MR sequences. The results showed that the mp-MR 
DL signature was better than the three single-layered DL sig-
natures. Subsequently, the DL nomogram was constructed 
by integrating tumor number, MVI, and the mp-MR DL 
signature, which achieved higher predictive accuracy and 
better net benefit than the clinical nomogram. This study 
demonstrated the incremental value of the DL nomogram 
compared with the conventional clinical nomogram.

Previous studies also revealed that Gd-EOB-DTPA MRI 
had a significantly higher sensitivity and overall accuracy for 
HCC diagnosis, especially small lesions, than multiphasic 
CT without substantial loss of specificity [36, 37]. Hence, we 
chose Gd-EOB-DTPA MRI instead of CT images to predict 
the early recurrence in patients with HCC. As recent studies 

reported [38, 39], obtaining high stability of features from 
different MR scanners becomes an increasingly common 
challenge in radiomics or DL field. As the data in our study 
were obtained from different MR scanners, we did offset field 
correction and gray normalization to reduce the potential 
affect. The preprocessing procedure is usually conducted in 
other studies [10, 40, 41]. The challenge of eliminating fea-
ture variability may be addressed through optimization tools 
developed for DL, via standardization of imaging protocols 
[42], and through prospective studies. In addition, we demon-
strated that the HBP signature yielded a higher AUC and sen-
sitivity than AP signature and PVP signature. Well-defined 
tumor margins on HBP images allow for a more accurate 
tumor delineation than those on AP and PVP images, in 
which the tumor margins could be affected by peritumoral 
enhancement, capsule appearance, and a hypodense halo.

Some previous studies have explored the feasibility of 
predicting early postoperative HCC recurrence. An et al. 
[17] and Zhang et al. [44] developed nomograms containing 
clinic-radiological variables to predict the early recurrence 
in patients with HCC, achieving AUCs of 0.783–0.846 in the 
validation cohorts. Chan et al. [45] constructed a preopera-
tive model (early recurrence after surgery for liver tumor 
[ERASL]-pre) and a postoperative model (ERASL-post) 
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Fig. 5  Clinical and deep 
learning nomograms. Clinical 
nomogram (A) was developed 
with NE, AST level, and MVI. 
Deep learning nomogram (B) 
was developed with MVI, 
tumor number, and mp-MR DL 
signature. Abbreviations: NE, 
neutrophil count. AST, aspartate 
aminotransferase. MVI, micro-
vascular invasion; mp-MR, 
multiple sequences magnetic 
resonance; DL, deep learning

Table 4  Predictive performances of nomograms on the training and validation sets

AUC , area under the curve; CI, confidence interval; mp-MR, multiple sequences magnetic resonance; DL, deep learning. p* < 0.05 indicates a 
significant difference

Model Training set Validation set

AUC (95%CI) Sensitivity (%) Specificity (%) p value AUC (95%CI) Sensitivity (%) Specificity (%) p value

Clinical nomogram 0.751
   (0.674–0.827)

63.0 80.9  < 0.001* 0.715
   (0.586–0.843)

56.5 85.1 0.002*

mp-MR DL signature 0.929
   (0.829–0.966)

76.4 93.6     0.099 0.894
   (0.811–0.977)

78.3 89.6 0.378

DL nomogram 0.949
   (0.919–0.980)

90.7 85.5 Ref 0.909
   (0.842–0.976)

82.6 85.1 Ref
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Fig. 6  Discrimination, calibra-
tion, and clinical usefulness of 
the nomograms. The receiver 
operating characteristic curves 
for clinical nomogram and 
deep learning nomogram in 
the training (A) and validation 
(B) sets. Calibration curves for 
the clinical and deep learning 
nomograms in the training (C) 
and validation (D) sets. The 
y-axis represents the actual 
early recurrence rate, the x-axis 
represents the predicted early 
recurrence, and the diagonal 
dashed line represents the ideal 
prediction by a perfect model. 
Decision curve analysis for the 
clinical and deep learning nom-
ograms in the training (E) and 
validation (F) sets. The y-axis 
represents the net benefits, 
and the x-axis represents the 
threshold probability. The deep 
learning nomogram (red line) 
had a good net benefit compared 
with the clinical nomogram 
(blue line), simple strategies 
such as follow-up of all patients 
(gray line), or no patients 
(horizontal black line) across 
the majority range of threshold 
probabilities. Abbreviation: DL, 
deep learning
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based on gender, AFP level, MVI, tumor size, and tumor 
number, with AUCs ranging from 0.614 to 0.736 for the 
ERASL-pre and 0.653 to 0.763 for the ERASL-post in the 
derivation cohorts from different countries or districts. In 
our study, we also built a clinical nomogram and the diag-
nostic efficacy was similar to those in previous studies, with 
AUCs of 0.751 and 0.715 in the training and validation sets, 
respectively. Although these data are commonly and eas-
ily available in clinical practice, the two major problems 
encountered were non-uniformity in the standardization of 
clinical factors and the inability to handle high-dimension 
features using traditional statistical methods [46].

In recent years, artificial intelligence has emerged as an 
effective tool to demonstrate multi-modal patient data [47]. 
Radiomics is a recently emerged technology that extracts a 
large number of quantitative image features from standard-of-
care medical imaging using data-characterization algorithms. 
Zhang et al. [48] and Zhao et al. [40] constructed a nomogram 
by integrating radiomic score and clinic-radiological factors, 
with AUCs of 0.844 and 0.873, respectively. Kim et al. [49] 
developed a combined clinicopathologic-radiomic model via 
random survival forest algorithm, which acquired a C-index 
of 0.716. In the latest research, the DL methods have outper-
formed the radiomics features in many tasks including lesion 
detection [50], prognosis prediction [51], and multimodal 
image registration [52]. The image-based DL technology has 
been widely applied in the HCC field of mass differentiation, 
treatment response, and prognosis [10, 53–55]. Song et al. [56] 
established a DL model using CNN in eight MRI sequences 
to predict the presence of MVI, which acquired an AUC of 
0.931. Zhang et al. [57] constructed an integrated nomogram 
combining clinical features and DL signatures based on con-
trast CT to improve overall survival prediction in HCC patients 
treated with TACE plus sorafenib, with a C-index of 0.730 
in the validation set. Based on the successful applications of 
DL in patients with HCC, we explored the VGGnet-19, which 
generally performs a more robust and automatic image analysis 
without export’s intervention [58], to extend the associations 
between DL and prognosis of HCC. Additionally, we employed 
2D regions of interest to establish the DL signatures, which 
showed great performance; this finding corroborates with pre-
vious studies [57, 59, 60], wherein AUCs of 0.826–0.894 were 
achieved in the validation set. It is probably because the DL 
signatures could make predictions by capturing both global 
and local features of tumors, and it comprehensively reflected 
on the tumor size and heterogeneity, which were established 
prognostic factors [61, 62]. Thus, it may also explain the lack 
of tumor size as an independent risk factor because the DL 
signatures have already contained the information of tumor 
size which belongs to the tumor global feature. Nevertheless, 
this is subject to our future research.

In the field of feature engineering, different machine learn-
ing–based dimensionality reduction techniques have distinct 

mathematical senses and inherent limitations; thus, multiple 
algorithms should be combined to select robust features [42, 63]. 
Previous studies also proved that the combination of different 
dimensional reduction methods with several machine learning 
methods could maximize model diagnostic performance. Dai 
et al. [64] reported that feature selection and modeling meth-
ods could potentially affect prediction models. The optimal 
radiomic model for MVI evaluation was constructed using a 
gradient boosting decision tree classifier, which outperformed 
logistic regression, support vector machine, and random forest. 
Using 21 combination methods (including three feature selec-
tion methods and seven classification methods), Ni et al. [65] 
identified LASSO plus gradient boosting decision tree as the 
optimal combination for predicting MVI in patient with HCC. In 
the present study, we compared three feature selection methods 
with five classification methods to determine the best combina-
tion and found that RFE or Relief combined with GP classifier 
achieved the optimal performance in building DL signatures. 
Consequently, it is necessary to implement performance com-
parisons of different machine learning methods, which was 
absent in previous deep learning studies for HCC [43, 56, 57].

Our study has several limitations. First, the retrospective 
nature of the study may induce inevitable selection bias. Sec-
ond, although we collected patient data from two centers, we 
were unable to perform an external validation because the 
sample size of center 2 was small; thus, multicenter studies are 
needed to validate the generalization ability of the proposed 
DL nomogram. Third, our study did not explore the role of 
DL features extracted from non-contrast MR sequences such 
as T1-weighted imaging, T2-weighted imaging, and diffusion-
weighted imaging for predicting prognosis. Finally, the value 
of the DL model for improving long-term survival in patients 
with HCC remains unclear, and the differences between DL 
model–assisted and non-assisted practices warrant further 
study to prove the clinical applicability of the DL model.

In conclusion, we developed a DL nomogram that incor-
porates clinical factors and Gd-EOB-DTPA MRI biomark-
ers; furthermore, the DL nomogram was more effective in 
early recurrence prediction and postoperative surveillance 
than the traditional clinical nomogram in patients with HCC 
following surgical resection.
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