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Introduction: Subcortical ischemic vascular disease (SIVD) and Alzheimer’s disease (AD) related dementia can 

coexist in older subjects, leading to mixed dementia (MX). Identification of dementia sub-groups is important for 

designing proper treatment plans and clinical trials. 

Method: An Alzheimer’s disease severity (ADS) score and a vascular disease severity (VDS) score are calculated 

from CSF and MRI biomarkers, respectively. These scores, being sensitive to different Alzheimer’s and vascular 

disease processes are combined orthogonally in a double-dichotomy plot. This formed an objective basis for 

clustering the subjects into four groups, consisting of AD, SIVD, MX and leukoaraiosis (LA). The relationship of 

these four groups is examined with respect to cognitive assessments and clinical diagnosis. 

Results: Cluster analysis had at least 83% agreement with the clinical diagnosis for groups based either on 

Alzheimer’s or on vascular sensitive biomarkers, and a combined agreement of 68.8% for clustering the four 

groups. The VDS score was correlated to executive function ( r = -0.28, p < 0.01) and the ADS score to memory 

function ( r = − 0.35, p < 0.002) after adjusting for age, sex, and education. In the subset of patients for which 

the cluster scores and clinical diagnoses agreed, the correlations were stronger (VDS score-executive function: 

r = − 0.37, p < 0.006 and ADS score-memory function: r = − 0.58, p < 0.0001). 

Conclusions: The double-dichotomy clustering based on imaging and fluid biomarkers offers an unbiased method 

for identifying mixed dementia patients and selecting better defined sub-groups. Differential correlations with 

neuropsychological tests support the hypothesis that the categories of dementia represent different etiologies. 
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. Introduction 

The two most common forms of dementia, Alzheimer’s disease (AD)

nd vascular cognitive impairment and dementia (VCID) are prevalent

mong the aging population. VCID is a heterogeneous brain disorder

hat accounts for 20% of dementia cases and is second in occurrence to

D [1] . Both AD and VCID can depend on multiple factors and are broad

isease processes leading to dementia. In this paper we study subjects

ith subcortical ischemic vascular disease (SIVD), a small vessel form

f VCID characterized by vascular white matter damage and neuroin-

ammation [2] , and AD subjects characterized by amyloid deposition

A), tau pathology (T), and neurodegeneration (N) [ 3 , 4 ]. Although AD

athology is different from cerebrovascular pathology leading to VCID,

he two disease processes frequently occur together in a population over

5 years of age [5] , leading to what is called mixed dementia (MX).
Abbreviations: AD, Alzheimer’s disease; SIVD, Subcortical ischemic vascular disease

SMD, Peak width of skeletonized mean diffusivity; ADS, Alzheimer’s disease severit
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hite matter damage as characterized by white matter hyperintensities

WMHs) in FLAIR images and mean diffusivity measured by the peak

keletonized mean diffusivity (PSMD) are considered as markers of is-

hemic cerebral small vessel disease [6–9] . It is also well recognized that

n older populations white matter damage, which is a marker of SIVD

an occur together with AD markers of increased amyloid and phospho-

ylated tau (pTau) deposition [5] . There is a continuing debate on the

elationship between white matter damage markers and the AD-factors:

re they independent factors causing mixed dementia, or are they act-

ng synergistically with one influencing the other [10] . There are also

ecent studies that have found association between the regional loca-

ions of WMH and amyloid deposition [ 11 , 12 ]. In these same studies,

he relationship between WMHs and pTau was weaker. There was no

lobal or voxel-based association between pTau with WMH burden, but

ome regional association of lower pTau concentration with WMHs lo-
; LA, Leukoaraiosis; MX, Mixed Dementia; WMH, White Matter Hyperintensity; 

y; VDS, Vascular disease severity; pTau, Phosphorylated Tau. 
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Fig. 1. We think of dementia beginning as sub-clinical white 

matter alteration that can be detected by MRI and progress- 

ing through two pathways, Alzheimer’s and vascular disease, 

independently or concurrently. Some patients, with mixed de- 

mentia exhibit features of both pathways. In this paper, we do 

not measure progression over time but we do divide dementia 

into four categories. 
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ations was found. This is slightly contradictory because a higher pTau

oncentration is an AD marker. In this study we recognize that white

atter damage can occur concurrently with AD pathology and attempt

o identify these MX subjects. 

Fig. 1 describes the transition of healthy subjects to MX through a

ual-pathway model [13] . Fig. 1 also introduces a group of subjects we

all leukoaraiosis (LA), which are typically cognitively normal but have

ome radiographic white matter damage. Some of the LA subjects can

ith neurodegeneration become AD-like while others with neuroinflam-

ation be more SIVD-like. At an older age the two disease processes can

e concurrently present in subjects and they are said to have MX. We

evelop a biological biomarker-based strategy to identify MX subjects.

he LA subgroup is not a dementia subtype, it is thought to be a pre-

ursor to AD, SIVD, and MX. The disease progression model of Fig. 1 is

 conjecture and we do not address its validity because this is not a lon-

itudinal study. A longitudinal study has examined the evolution of AD

nd VCID trajectories in the Danish National Patient Registry [14] . They

ound that before dementia diagnosis both disease trajectories were sim-

lar, making early diagnosis difficult. Unlike their study, we evaluate the

ombined occurrence of AD and VCID in a cross-sectional study based

n imaging and fluid biomarkers. The takeaway points for this paper is

hat AD and SIVD pathways are two independent processes and in older

ubjects they can occur independently or concurrently. 

There is an interest in developing biomarkers for the spectrum of

eurodegenerative diseases because of the need for early diagnosis fol-

owed by early treatment. Biomarkers also provide outcome measures

or evaluating treatment efficacy and disease progression. In addition,

iomarkers afford a more reproducible definition of the disease which

an be uniformly applied across multiple sites. The two separate dis-

ase processes suggest that the biomarkers for each pathway can also be

ound separately. Here we propose that vascular disease severity (VDS)

core and an Alzheimer’s disease severity (ADS) score cab be found

orresponding to each pathway, based on the corresponding biomark-

rs. The biomarkers for the two pathways are expected to be differ-

nt but can overlap. In this paper for illustration purposes, we just use

wo biomarkers for each score. One could use more biomarkers as ap-

ropriate. The VDS score is based on white-matter hyperintensity vol-

me calculated from a FLAIR image and the peak width of skeletonized

ean diffusivity (PSMD) [8] calculated from the mean-diffusivity im-

ge. The ADS score is calculated based on the CSF markers of A 𝛽 Ra-

io = A 𝛽42/A 𝛽40 and pTau. Fig. 2 illustrates our concept of calculating

he two severity scores. 

The dual-pathology model leads to a double-dichotomy clustering

ethod to identify the four groups (LA, AD, SIVD, and MX). The VDS

nd ADS scores are respectively plotted orthogonally on the x-axis and

he y-axis to give a two-dimensional scatter plot. The position of a sub-

ect on this plot gives information on the disease severity and the disease

ype. Fig. 3 shows an idealized scatterplot of ADS against VDS. We can

ivide each axis into two parts with a cut-off of 0.5, to define two sepa-

m  

2 
ate groups, VDS − and VDS + , as those with low and high vascular dam-

ge, and ADS − and ADS + groups with low and high AD severity. This

ields four cluster (c) groups (cMX = VDS + ADS + , cSIVD = VDS + ADS − ,

AD = VDS − ADS + , and cLA = VDS − ADS − ) analogous to those defined

n the basis of clinical diagnosis (MX, SIVD, AD, LA). An advantage of

ontinuous numerical scores is that the location of the subject on this

D-scatter plot describes disease severity. For example, subject(a) is clas-

ified as cMX, but being close to the ADS boundary, we know that its

DS factors are similar to those of SIVD subjects. 

One goal of the double-dichotomy analysis is to provide a mathemat-

cal framework for diagnosing MX subjects based on objective biomark-

rs when the subject population includes both AD and SIVD subjects. To

ccomplish this, we compare agreement between the cluster and clin-

cal diagnoses in the four groups. We also show that cluster diagnosis

an be used to select a smaller group of subjects with stronger correla-

ion with cognition. The concept of dual-dichotomy is based on the idea

f condensing the wide number of available MRI and fluid biomark-

rs into two measures, one which reflects VDS and the other ADS. In

arge autopsy series, many patients show both AD and vascular pathol-

gy, making MX the most common form of dementia [15–19] . The pro-

osed method of identifying homogenous dementia subgroups can be

urther validated against existing databases, such as Alzheimer’s disese

euroimaging initiative (ADNI), where MRI and CSF-fluid biomarkers

ave been collected. 

In this study we propose that vascular disease severity and

lzheimer’s disease severity biomarkers can be found independently and

hen plotted orthogonally to get a visual description of the presence of

ach disease process. The example chosen in this paper to illustrate this

oncept is based on accepted measures of cerebral small vessel disease

nd AD pathology. WMHs are typically associated with vascular prob-

ems and in the present study, rather than just consider WMH we have

ncluded information from mean diffusivity images to define white mat-

er damage. The VDS and ADS scores are also related to executive and

emory function to understand their biological relevance. 

. Method 

.1. Study participants 

The University of New Mexico (UNM) Cohort contains 184 subjects,

ith 94 subjects diagnosed with VCID and 55 healthy controls (HCs).

nformed consent of the UNM approved IRB protocol was obtained from

ll subjects. The patients were classified into four categories, SIVD, AD,

X, and LA, through consensus diagnosis of three neurologists based

n accepted clinical guidelines ( Table 1 ). SIVD is the small vessel form

f VCID. It is characterized by progressive growth of MRI white matter

yperintensity (WMH). SIVD patients met both the Erkinjuntti[20] cri-

eria for subcortical vascular dementia and the recent consensus state-

ent for SIVD [ 21 , 22 ]. Patients diagnosed with AD presented with a
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Fig. 2. A method to calculate a normalized 

vascular damage severity (VDS) score and 

an Alzheimer’s disease severity (ADS) score 

based on vascular and Alzheimer’s factors is 

presented. We illustrate this general concept 

based on two vascular factors, consisting of 

white matter hyperintensity (WMH) volume 

and the peak width skeletonized mean diffu- 

sivity (PSMD) measured from the diffusion im- 

age, and two Alzheimer’s factors, consisting of 

A 𝛽 Ratio and pTau. These two factors are then 

used to generate a VDS score and the ADS score 

in the range (0,1), based on the one class clus- 

tering method. 

Table 1 

Definitions used for creating patient subgroups based on clinical, MRI and CSF fluid markers. 

Diagnoses Description 

Subcortical ischemic 

vascular disease 

(SIVD) 

SIVD is the small vessel form of VCID. It is diagnosed by a progressive growth of the WMHs. They met both the Erkinjuntti [20] 

criteria for subcortical vascular dementia and the recent consensus statement for SIVD [ 21 , 22 ] 

Alzheimer’s disease 

(AD) 

Patients diagnosed with AD presented with insidious onset of predominant amnestic disorder associated with one additional cognitive 

domain, following NINCDS-ADRDA clinical criteria for probable AD [ 23 , 24 ]. In addition, they conformed to the recent biological 

diagnostic criteria for AD [3] , which includes the biomarkers of the AD pathophysiologic process, low CSF A 𝛽42/A 𝛽40 and elevated 

phospho-Tau. 

Mixed dementia 

(MX) 

MX is diagnosed by a combination of CSF biomarkers for AD and white matter injury markers of SIVD derived from diffusion tensor 

imaging [ 17 , 18 ]. 

Multiple infarcts 

(MI) 

MI patients have multiple strokes, generally involving large vessels, but it also includes isolated lacunar strokes confined primarily to 

thalamus or basal ganglia (single strategic strokes) [46] 

Leukoaraiosis (LA) LA is diagnosed by a combination of white matter changes on FLAIR MRI but without the evidence of dementia and minimal or no 

cognitive changes on neuropsychological testing. This use of the term follows the original intent of Hachinski [25] and has no 

connotations of pathological implications. 

Fig. 3. The double-dichotomy clustering method is a two-dimensional scatter 

plot with the x-axis being the VDS score and the y-axis being the ADS score, 

and a cut-off of 0.5 for each axis gives four quadrants, with each quadrant de- 

scribing subjects with different disease characteristics. The four cluster (c)-based 

patient groups are cLA = VDS − ADS − , cAD = VDS − ADS + , cSIVD = VDS + ADS − , 

and cMX = VDS + ADS + . The location of a subject on this plot describes disease 

severity. For example, subject(a) is classified as cMX, but being close to the ADS 

boundary, we know that its ADS factors are similar to some of the SIVD subjects. 
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redominantly amnestic disorder with at least one additional cognitive

eficit and met DSM-V criteria for dementia. Patients with AD also met

INCDS-ADRDA clinical criteria for probable AD [ 23 , 24 ]. MX was diag-

osed for patients with clinical features of AD combined with history of

ascular risk factors, neurologic exam abnormality and moderate-severe

MH (Fazekas scale > 1). LA was diagnosed in patients with white mat-

er changes on FLAIR, low PSMD, normal neurologic exam, no evidence

f dementia and only minimal cognitive changes [25] . Subjects with

ultiple infarcts were excluded from this study. 
3 
.2. MRI biomarkers 

All MRI scans are performed on a Siemens 3T TRIO scanner with a

2-channel radio frequency (RF) coil and later with a 32-channel RF coil.

he T1-weighted and the FLAIR image had 1 mm isotropic resolution

ith 192 slices for both the RF coils. The diffusion tensor image (DTI)

ad 2 mm isotropic resolution with 72 slices. On the 12-channel coil,

he diffusion protocol had a single-shell of b-value = 800 s/mm 

2 and

0 different gradient directions, while on the 32-channel coil a multi-

and sequence with three shells was used. A single b-value shell with 55

radient directions of b-value = 800 s/mm 

2 or b-value = 1000 s/mm 

2 

as extracted for this study. 

FLAIR images were segmented and WMH volumes calculated using

he IDeALab software ( https://idealab.ucdavis.edu/ ). The diffusion data

ere motion and eddy-current corrected based on FSL and the mean-

iffusivity calculated. The PSMD was calculated based on the publicly

vailable scripts [8] . 

We had a complete set of MRI and cognitive biomarkers on all sub-

ects, and a complete set of CSF values on 80 subjects. The WMH volume

as converted to a log scale before converting it to a Z-score. Conversion

o Z-scores removes bias and adjusts for variability across different mea-

urement methods. After converting to Z-scores, the PSMD biomarker in

he healthy control group showed no significant statistical difference be-

ween measurements made with different RF coils. 

.3. CSF biomarkers 

The two CSF fluid biomarkers used for this analysis were

au protein phosphorylated at serine position 181 (pTau), and

myloid 𝛽1 − 42 /amyloid 𝛽1 − 40 ratio (A 𝛽42/A 𝛽40 or A 𝛽-ratio). Amyloid

as measured by ELISA with Meso Scale Discovery kits and pTau by

ujiribio ELISA. The control CSF was obtained from spinal anesthesia

atients undergoing orthopedic surgery. The CSF controls were a dif-

erent group of subjects than the controls for MRI and cognitive assess-

ents. The control subjects are only used to get the base line values for

https://idealab.ucdavis.edu/
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Table 2 

Subject demographics and biomarker for healthy controls and the four patient groups. 

HC LA AD SIVD MX Total Patients 

Subjects with MRI data 55 20 35 23 16 94 

Subjects with CSF data 51 16 30 18 16 80 

Age 𝜇( 𝜎) Range 65.7 (9.6)[50,93] 62.8 (9)[44,82] 69.6 (8.3)[52,84] 67.4 (8.2)[46,83] 75.5 (3.8)[69,83] 68.6 (8.8)[44,84] 

Gender (M:F) 27:28 6:14 19:16 11:12 10:6 46:48 

WMH Volume 𝜇( 𝜎) 3.3xE3(4.7xE3) 1.4xE4(1.0xE4) 0.7xE4(0.7xE4) 3.8xE5(2.9xE5) 3.2xE5(2.4xE5) 2.04xE4(2.3xE4) 

Log10(WMH Vol) 𝜇( 𝜎) 3.22 (0.399) 4.02(0.36) 3.58(0.73) 4.47(0.33) 4.36(0.41) 4.02(0.65) 

PSMD 𝜇( 𝜎) 0.00028(4E-05) 0.00035(6.7E-05) 0.00035(9.7E-05) 0.00050(1.3E-04) 0.00052(1.4E-04) 0.00042(1.3E-04) 

A 𝛽 Ratio 𝜇( 𝜎) 0.092 (0.021) 0.089(0.022) 0.049(0.023) 0.074(0.028) 0.041(0.02) 0.061(0.03) 

pTau 𝜇( 𝜎) 54.42(12.22) 48.7(14.34) 94.1(38.4) 53.3(30.4) 96.6(58.5) 76.2(44.2) 

Executive function 𝜇( 𝜎) 50.4(4.66) 47.3(7.4) 44.3(8.0) 39.8(7.3) 41.3(4.5) 43.3(7.7) 

Memory function 𝜇( 𝜎) 54(8.81) 48.1(10.2) 30.6(10.1) 44.8(10.3) 32.3(9.2) 38.1(12.6) 
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onverting to Z-scores and for the one-class clustering (OCC) algorithm.

he control subjects are not used in comparing the clustering diagnosis

o the clinical diagnosis or for the relationship between cognition and

he severity scores. 

.4. Cognitive assessments 

Cognitive tests were administered by a trained research psychologist

JP) or psychometrician and scored according to standard procedures.

tandardized (T) scores were calculated for each test using published

orms for each test. The exact tests for each participant varied slightly

epending on the testing situation (some missing values existed for in-

ividual participants). Tests in each domain were categorized based on

idely used definitions [ 26 , 27 ]. Tests for memory function composite

ncluded: a) Hopkins Verbal Learning (HVLT-R) [28] , b) Craft story re-

all [ 29 , 30 ], and c) Rey Complex Figure Test (Long Delay) [31] . Tests

or executive function included: a) Digit Span backwards [ 29 , 30 , 32 ],

) Phonemic fluency (FAS words) [33] , and c) Trail making test part

 [ 29 , 30 , 34 ]. Control participants for the MRI studies underwent the

ame neuropsychological test battery. Although each individual T-score

s standardized to mean = 50 and standard deviation = 10, we trans-

ormed the composite T-scores to Z-scores based on our control subject’s

alues. 

.5. Data visualization 

The number of subjects in each of the subgroups along with their

emographics and biomarker values are given in Table 2 . Fig. 4 is a

wo-dimensional scatter plot giving a qualitative visual summary of our

ata set. We just show the two biomarkers in each pathway considered

or OCC and the two main cognitive functions that were tested for cor-

elation with ADS and VDS scores. The WMH volume was normalized

o the subject’s intra-cranial volume, and then scaled back to the mean

ntra-cranial volume of the controls. A logarithm of the WMH was taken

o convert the positive-skew distribution to be more normal like. All the

our variables considered for OCC and the two outcome variables were

onverted to Z-scores based on the mean and the standatd deviation of

he control group. The expected difference in the different groups are

een in this figure and Table 2 . We observe that a) the LA group is similar

o HC controls in cognition and Alzheimer’s factors (A 𝛽 Ratio and pTau)

nd had slightly higher vascular factors (WMH volume and PSMD) than

he HC group, b) the LA and AD group have similar vascular factors and

he SIVD and MX group have similar vascular factors, c) the LA and the

IVD groups have Alzheimer’s factors closer to those of controls, while

he AD and the MX group have similar values, d) the memory is lower

n AD and MX groups relative to SIVD and the LA groups, while the ex-

cutive function does not separate well the four groups, but is lower in

he SIVD group, and e) the two factors in each group are correlated to

ach other. This confirms that VDS factors separates the subjects into

wo groups LA + AD and SIVD + MX, while the ADS factors separates the
4 
ubjects into the two LA + SIVD and AD + MX groups. Our data supports

he double-dichotomy proposed in Fig. 3 . 

.6. One-class clustering 

A simple one-class clustering (OCC) method [ 35 , 36 ], with two

iomarkers in each of the AD and the SIVD pathways is used to calculate

he VDS and the ADS scores ( Fig. 2 ). Our method belongs to the class of

CC methods [35] , used for outlier or novelty detection. There are sev-

ral OCC methods available in PyOD ( https://pypi.org/project/pyod/ ),

 Python package for outlier detection [37] . We give here results based

n the minimum covariance determinant (MCD) method [38] , with

ome minor modifications. We use two VDS biomarkers, consisting of

MH volume and PSMD and two ADS biomarkers, consisting of phos-

horylated tau (pTau), and A 𝛽42/A 𝛽40 ratio. 

We chose the minimum covariance determinant (MCD), with minor

odification, as the OCC method for outlier detection. The MCD method

orks well with elliptically symmetric unimodal distributions for the

eference class. In our case this condition is satisfied for the healthy

ontrol group, which should be true in other applications for those with

ild cognitive impairment. 

The MCD method is based on calculating the Mahalanobis distance

MD) between the sample and the one-class distribution. 

𝐷( 𝑥 ) = 

√ 

( 𝑥 − 𝑚 ) 𝑇 𝑅 

−1 ( 𝑥 − 𝑚 ) 

here the 𝑚 and 𝑅 are robust estimates of the mean and covariance of the

ne class distribution [38] . The MD(x) is like a generalized Z-score in the

ultivariate space. It calculates the distance of the sample to the mean

ocation of the reference class cluster, after accounting for the variance,

nd the correlation between the different features. The MCD method

ntroduced the concept of robust mean and covariance estimates. This

as done because the one-class data can also have outliers, and if they

re included in calculation of the mean and the covariance then the

ensitivity of the MD(x) is reduced. The MCD method uses a subset h of

 observations to calculate m and R. A subset is chosen which gives the

inimum determinant of R. After the subset has been selected MD can be

alculated for all the data points. In order to detect outliers a threshold is

till needed to decide if a sample is an outlier. A contamination factor in

he MCD algorithm, which is the percentage of outliers in the reference

lass, determines the threshold. The default contamination factor of 0.1

as used. 

We modified the MCD method for our application. An outlier, as de-

ected by the MCD method can be different from the reference set as

aving disease severity much higher than the reference set or much

ower than the reference set. We are only interested in high disease

everity outliers. In other words, we need a one-sided statistical test

nd the MD(x), being a magnitude, does not give us directional in-

ormation. We define a signed MD(x), with positive outlier distance

ndicating greater disease severity. We transform the observed corre-

ated biomarkers to being uncorrelated, and calculate the mean sever-

ty index after correcting individually the sign of each biomarker. In

https://pypi.org/project/pyod/
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Fig. 4. This figure qualitatively compares the vascular factors (WMH volume and PSMD), the Alzheimer’s factors (A 𝛽 Ratio and pTau), and the cognition outcome 

measures (executive and the memory function) for the HC and the LA group in the top row and the four patient groups (LA, AD, SIVD, and MX) in the bottom row. 

The top row shows the similarity of LA and the healthy control group. The bottom row shows that the MRI biomarkers group AD and LA together, while the CSF 

biomarkers groups AD and MX together. Memory is lower in AD and MX subjects, while the executive function is lower in SIVD subjects. In the patient groups, each 

pair of variables is significantly correlated to the other variable. Spearman correlations and their significance is indicated. 
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ther words, if 𝑥 = 𝑐𝑜𝑙( 𝑥 1 , 𝑥 2 , ..., 𝑥 𝑛 ) is an observation with 𝑛 biomark-

rs, 𝑦 = 𝑅 

−1∕2 𝑥 gives the uncorrelated biomarkers, and we calculate

= 𝑢 𝑇 𝑦 = 𝑢 𝑇 𝑅 

−1∕2 ( 𝑥 − 𝑚 ) , where 𝑢 = 𝑐𝑜𝑙( 𝑢 1 , 𝑢 2 , ..., 𝑢 𝑛 ) , with 𝑢 𝑖 = 1 , if a
igher biomarker value indicates greater disease severity, and 𝑢 𝑖 = −1 ,
f higher biomarker value indicates lower disease severity. 𝛽 is the

um of the individual biomarkers with corrected sign. The corrected

 𝐷 𝑐 ( 𝑥 ) = 𝑀𝐷( 𝑥 ) sgn ( 𝛽) . 
Next to make the distance easier to interpret, we normalize 𝑀 𝐷 𝑐 ( 𝑥 )

o a variable in the range (0,1), with the additional constraint that rank-

ng of the observations based on 𝑀 𝐷 𝑐 ( 𝑥 ) are maintained after converting

o a normalized score, and the threshold of the clustering algorithm is

apped to 0.5. After normalization, an observation with a normalized

core greater than 0.5 is an outlier and a score less than 0.5 is similar to

he reference class. This exact choice of the mapping function is flexible.

 simple choice would be a linear mapping. We have chosen a S-shaped

apping with the constraint that 10% of the patients have a score less

han 0.1, and 10% have scores greater than 0.9. The mathematical form

f the function was, 

 ( 𝑥 ) = 

{ 

0 . 5 + 0 . 5 erf 
((
𝑥 − th 

)
∕ 𝜎1 

)
, for 𝑥 < th 

0 . 5 + 0 . 5 erf 
((
𝑥 − th 

)
∕ 𝜎2 

)
, for 𝑥 ≥ th 

, 

here 𝜎1 is defined by the condition that 10% of the patients are less

han 0.1, and 𝜎2 by the condition that 10% of the patients are above 0.9.

his specification can be changed to give a uniform distribution of the

ubjects in the range (0,1). The S-shapes curve is not symmetric around

 = 𝑡ℎ , because 𝜎1 ≠ 𝜎2 . This is intentional because the range of OCC

cores for patients has a greater variability above the MCD threshold,

hen below it. 

Fig. 5 shows the different steps of the OCC algorithm based on

he AD-pathway data. The tolerance ellipse ( 
√ 

𝜒2 
2 , 0 . 95 contour) is larger
5 
or the sample estimator than the robust estimator ( Fig. 5 A). The ro-

ust estimator removes outliers and gives a tighter covariance estimate.

ig. 5 B shows the contour plots for the normalized ADS scores, and

he ADS = 0.5 black boundary distinguishing the low and high ADS re-

ions for the standard MCD algorithm in the Python PyOD package. The

hange in the contour plots and the decision boundary because of the

odification of having a signed distance measure is shown in Fig. 5 C.

ubject(a) is close to the boundary of low and high ADS score in Fig. 5 B.

ut it is clearly a healthy subject because pTau is negative and A 𝛽 Ratio

s positive. The OCC distance measure ( 𝑀𝐷( 𝑥 ) ) is inverted in sign and

hen normalized, which changes its ADS score to a low value close to

ero. 

.7. Statistical methods 

A linear regression model was used to test the association between

he cognitive domains of memory and the executive function with the

DS and VDS scores after adjusting for age, sex, and education. The

ognitive scores were the dependent variable and the severity scores,

ge, sex, and education were the independent variables. The effect of

ge, sex, and education was removed from the cognitive scores to cal-

ulate the residual. Pearson and Spearman correlations were calculated

etween the severity scores and the residual. 

. Results 

.1. Two group occ for SIVD and AD pathways 

The first step of our method is the independent clustering of the VDS

nd ADS biomarkers into two groups each. Cluster plots for individual



A. Caprihan, R. Raja, L.J. Hillmer et al. Cerebral Circulation - Cognition and Behavior 2 (2021) 100011 

Fig. 5. The first step of minimum covariance determinant OCC algorithm is to calculate a robust mean and a covariance estimate. The tolerance ellipses (black for 

sample estimates and the red for the robust estimate) at 
√ 

𝜒2 
2 , 0 . 95 are shown in Fig. 5 A. The robust estimator gives a tighter tolerance ellipse. Fig. 5 B depicts the 

results of the minimum covariance determinant OCC algorithm with scores mapped to the range (0,1). The score values for any specific pTau and A 𝛽 Ratio (Z-Scores) 

can be calculated from the underlying contour graph. The black contour is the 0.5 boundary between low and high scores. Fig. 5 C is the modified method with OCC 

scores being given a positive or a negative sign before normalization. Subject(a) is close to the boundary, but it is a normal subject, and after modification it has a 

low normalized score. 

Fig. 6. The individual one-class clustering re- 

sults for the two pathways are shown in terms 

of the measured variables. Although the clus- 

tering was done in terms of Z-scores, these fig- 

ures are plotted in terms of measured variables. 

The dark black line is the decision boundary 

(score = 0.5) between the low and high sever- 

ity regions. The high severity region is marked 

by five contours in red ranging from 0.5 to 1.0 

and similarly the low severity regions has blue 

contours ranging from 0.0 to 0.5. Thus, know- 

ing the values of the two variables, it is possible 

to evaluate the corresponding severity score. 

Table 3 

OCC clustering results for the AD and the SIVD pathways. 

VDS variables Two Group Agreement rate ADS variables Two Group Agreement rate 

WMH volume PSMD 84.0 A 𝜷-Ratio pTau 83.8 

WMH volume None 80.8 A 𝜷-Ratio None 77.5 

PSMD None 77.7 pTau None 71.25 

o  

T  

S  

p  

b  

(  

a

 

8  

g  

V  

o  

w  

a  

i  

i  

a  

a  

a

 

r  

w  

t  

n  

m

3

 

a  

a  

c  

l  

m  

6  

t  
ne-class clustering results for the two pathways are shown in Fig. 6 .

hese are similar to Fig. 5 C, but while Fig. 5 C was in terms of the Z-

cores these plots are in terms of the original measured values. It is

ossible to calculate the normalized scores from these plots from the

iomarker values without converting them to Z-Scores. The black line

score = 0.5) is the decision boundary between the low severity (blue)

nd high severity regions (red). 

The agreement between the cluster and the clinical groups was

4% for the SIVD-pathway groups and 83.8% for the AD-pathway

roups. The cluster groups for each pathway are VDS − = cLA + cAD,

DS + = cSIVD + cMX, ADS − = cLA + cSIVD, and ADS + = cAD + cMX. If

nly one biomarker is used instead of the two used here, the agreement

ith the clinical diagnosis reduces, as expected. Table 3 shows that the

greement rates for the AD and SIVD pathways when two or only one

ndividual biomarker is used. The agreement between cluster and clin-

cal diagnosis for the VCID-pathway is 80.8% with only WMH volume

nd 77.7% with only PSMD. Similarly, the agreement between cluster

nd clinical diagnosis for the AD-pathway is 77.5% with only A 𝛽 ratio

nd 77.7% with only pTau. 
c

6 
The clinical diagnosis of the misclassified subjects was informally

eexamined to consider which factors contributed to incongruence

ith the cluster designation. The disagreements occurred when the

wo biomarkers in each category did not indicate the same diag-

osis, and clinical exam and/or cognition was a factor in decision

aking. 

.2. Double-dichotomy clustering for four patient groups 

The normalized individual pathway clusters scores are displayed

s scatter plots in Fig. 7 . A cut-off = 0.5 separates the four groups

long each pathway. Each cluster group lies in a separate quadrant. A

ontinuous measure of disease severity is obtained from the subject’s

ocation in the 2D-scattter plot. Table 4 gives the four group agree-

ent between mismatch confusion matrix with an overall accuracy of

8.8%. The poorest agreement was in classifying AD subjects. Six of

he clinically diagnosed AD subjects were classified as cLA and five as

MX. 
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Fig. 7. The results of the two individual pathway analysis are combined into 

a two-dimensional scatter plot and the cluster diagnoses is compared to the 

clinical diagnoses. There are 80 subjects in this analysis and the cluster diagnosis 

agreement to the clinical diagnosis is 68.8%, or in 55 subjects out of 80 subjects. 

The heterogeneity of the disease process is transparent by looking at how the 

subjects are spread across the scatter plot. 

Table 4 

Fig. 4 gives the confusion matrix with a breakdown on how 

the subjects were classified into the different groups. The over- 

all agreement for ckuster and the clinical diagnosis for the four 

groups is 68.8%. 

cLA cAD cSIVD cMX Total % Agreement 

LA 11 0 4 1 16 68.8 

AD 6 19 0 5 30 63.3 

SIVD 2 0 13 3 18 72.2 

MX 0 1 3 12 16 75 

Total 19 21 20 20 80 68.8 
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.3. Relationship with cognition 

Executive function has significant negative spearman correlation

ith the VDS score ( Fig. 8 A) and the memory function has significant

egative Spearman correlation with the ADS score ( Fig. 8 B) after cor-

ecting for age, sex, and education. The Pearson correlation (not indi-

ated in the figure) had slightly stronger significance than the Spearman

orrelation. This correlation is based on including all the 80 patients and

oes not depend on the double-dichtomy clustering results. It should be

oted that the revese association is not true. In other words the VDS

core is not correlated with the memory function and the ADS score is

ot correlated with the executive function. A subset of subjects ( n = 55)

as chosen where the clinical diagnosis and the cluster diagnosis were in

greement. In this group of subjects the executive functon had a stronger

egative correlation with the VDS score ( Fig. 8 C) and the memory func-

ion a stronger negative correlation with the ADS score ( Fig. 8 D). 

. Discussion 

.1. Calculation of normalized severity scores 

We have shown that normalized severity scores not only provide ob-

ectivity in defining disease severity on a continuous basis, but also show

he expected correlation with cognitive function. An OCC method was

sed to calculate these scores. Clustering of the reference/control class

as used to define robust estimates of the mean and the covariance

unction. Although the severity scores were calculated based on only
7 
wo biomarkers each for the vascular and the AD pathways, the method

an easily incorporate additional neuroinflammation and neurodegen-

ration biomarkers of the respective pathways. The present analysis was

one based on whole brain MRI biomarkers, but it is equally possible

o include regional measures such as hippocampal volume, functional

onnectivity [39] , and blood-brain barrier permeability [ 21 , 40 ]. 

.2. Dichotomy plot 

The VDS and the ADS scores being based on biomarkers sensitive

o two different processes were plotted orthogonally to get a two-

imensional scatter plot ( Fig. 7 ). This plot showed the disease hetereo-

eneity, a subject’s position on the plot was an indication of disease type

nd severity, and by dividing the patients into four groups we were able

o identify those with MX. 

The ADS and the VDS score are summary biomarkers for the AD and

he SIVD disease processes. Their calculation requires a well defined ref-

rence class, but does not require information of diagnostic groups and

he method can be applied to other data sets. ADS and the VDS scores

an themselves be treated as biomarkers, and in the future, classification

an be done in terms of these variables. In other words, rather than us-

ng simple quadrants in Fig. 7 for separating groups, more complicated

ecision boundaries can be drawn. 

.3. Corrleation with cognition 

The VDS and ADS scores were only calculated based on physiolog-

cal variable (MRI and CSF) and neuropsychological variables were in-

entionally not used. The fact that he VDS score was correlated to ex-

cutive and the ADS score was correlated to the memory function, with

he reverse not being true, gives additional credence to the fact these

DS and ADS scores depend on specific disease processes. 

.4. Selecting a subgroup of subjects 

A subset of subjects with matching clinical and cluster diagnosis was

elected. In this subset of subjects the correlation of the VDS score to

he executive function and of the ADS score to the memory function

as stronger than in the whole group. A biological biomarker based

lassification combined with clinical diagnosis identifies a smaller group

f subjects with more consistent relationship with cognitive function.

he objective classification complements the clinical diagnosis. 

.5. Advantages and limitations of the OCC method 

The OCC method for clustering was selected based on its simplicity

nd minimal assumptions. The specific OCC method we chose, the MCD

ethod, requires that the control class be unimodal and be defined by

lliptical distributions. It does not place restrictions on the statistical

istribution of outliers or subjects with different forms and severity of

isease damage. We do not imply with our choice of the MCD method

nd the specific four biomarkers selected, that other more sophisticated

lassifications methods (such as random-forest) or alternate biomarkers,

ill not give better classification results. It should be noted, that if com-

lex classification methods or a large number of biomarkers are used,

hen because of the limited number of subjects/groups in our pool, over-

tting, even with cross-validation is a real possibility. Our goal was to

how that double-dichotomy concept is useful, giving interpretable re-

ults with previously proven biomarkers. 

One distinct advantage of the OCC method is that it can be applied

o other data sets where AD-sensitive biomarkers are available for a

ontrol group, without the requirement of a clinical diagnosis similar

o ours. The method requires a well-defined reference class, which can

e subjects with mild cognitive impairment from other databases. A 2D-

catter plot with each axis representing disease severity can be obtained

f we have data from one well-defined class, without the knowledge
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Fig. 8. The spearman correlation between the 

executive function and the VDS score and be- 

tween the memory function and the ADS score 

for the full patient group (80 subjects) is shown 

in Figs. 8 A and 8 B, and for a subset of the sub- 

jects (55 subjects) in Figs. 8 C and 8 D. The se- 

lected subset of subjects for Figs. 8 C and 8 D are 

those with matching clinical and biomarker- 

based cluster diagnosis. In this subset of sub- 

jects there is stronger correlation with cogni- 

tive function. This is an example of how clus- 

ter diagnosis can be used to identify a more ho- 

mogenous group of subjects with well charac- 

terized properties. 
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f disease groups. Any subsequent classification can be based on these

lots. 

.6. Dependence on csf biomarkers 

One limitation of the current example is the need for CSF-biomarkers

or characterizing ADS. A number of laboratories are developing plasma

ased biomarkers for measurement of A 𝛽 ratio and pTau [ 41 , 42 ]. These

iomarkers may supplant the CSF biomarkers we used and will make AD

iagnosis practical for patients who cannot or will not undergo lumbar

uncture. We also explored whether MRI markers such as hippocampal

olume and brain atrophy could be used as surrogates for CSF markers,

ut results were considerably poorer. 

.7. Other comments 

Harmonization of this method for datasets collected across multiple-

ites with different types of subject populations, different methods of

ata collection, and different nomenclature for diagnosis requires more

ork. The proposed OCC method may be useful in this context because

t only requires that we have a harmonized control or a reference group

f subjects across sites. 

We expect imperfect agreement with the cluster analysis and clinical

iagnoses. The clinicians used some of the data included in the cluster

easures. The cluster measure purposely left out subjective information

sed by the diagnosticians. Mismatches between the clinical and the

luster diagnoses were mainly of two types. The WMH from FLAIR was
8 
sed by the clinicians to determine white matter injury of presumed

schemic origin. Mismatches occurred when the PSMD was low and the

MH volume was high, leading to a lower white matter injury score

or the cluster but higher salience to the clinician. Another mismatch

ccurred when clinicians used memory scores to identify AD patients.

he most common discrepancy, with clinical AD sorting into cluster LA,

ay have resulted from older patients with memory deficits and CSF

bnormality in only one of the two AD biomarkers contributing to ADS.

he clinicians used cognitive function during their diagnosis and we

ave intentionally not treated cognition as biomarker, but as an outcome

ariable. However, current results are also notable for clinical-cluster

onsistency between AD and SIVD; no clinically diagnosed AD patient

lustered in SIVD and vice versa ( Table 4 ). Clustering, a relatively simple

ethod for distinguishing groups, is successful only when the diagnostic

ategories are distinct, and the relatively high success when using only

 few biomarkers illustrates that AD and the SIVD diagnostic categories

re quite distinct, with categories having higher overlap (or "confusion",

able 4 and Fig. 7 ) indicating greater similarity in their presentation. 

The age distribution of subjects in the different dementia subgroups

as similar for the cluster and the clinical diagnosis. Subjects with MX,

hose having dual-pathology were identified at an older age (above 62

ears) by both the clustering and the clinical diagnosis. This observation

s also in agreement with the recent paper, that age related stratifica-

ion AD and SIVD subjects becomes difficult at an older age because

oth AD and vascular dementia factors can co-exist [14] . Pathological

hanges begin at different ages with the accumulation of amyoid pro-

ein into plaques in mid-life, particularly in the genetic early onset forms
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f the disease [43] . A parallel, but separate process is occurring in the

lood vessels of hypertensive individuals; in mid-life there is a gradual

ncrease in blood pressure, which, if untreated, continues to progress

eaching a stage where the integrity of the white matter is compromised

9] . While these two processes are separate, they converge with aging

nd compound the injury to the brains of those with MX through a pro-

ess of accelerated inflammation, leading to more severe cognitive loss .

he ability with biomarkers to separate patients into AD, SIVD, and MX

roups provides a means to begin to understand the timing of the onset

f each process, which would allow selection of treatments at an ear-

ier time point based on biomarker classification. Dementia studies have

eached an impass with the failure of a number of large clinical trials

ased on only the amyloid hypothesis. As novel mechanisms leading to

ementia are discovered, new classes of treatments are being proposed;

maller more homogeneous cohorts would greatly facilitate these more

omplicated, multiagent trials [44] . 

Studies based on a neuropsychological endpoint will require 3 to 5

ears for statistical validation, while other biomarkers, primarily de-

ived from MRI, could show results in 1 to 2 years: the numbers of

ubjects would be greatly reduced with a more precise grouping of pa-

ients based on biological characteristics as shown by biomarkers, al-

owing studies with combination therapies [45] . Our results show that a

achine-learning based biomarker-driven system could aid in selection

f the smaller groups of homogeneous patients needed to assure success

f studies in a reasonable time frame with combinations of drugs. 

.8. Limitation 

The results of cluster diagnosis presented in this paper are limited,

ecause they are based only on two biomarkers for each pathway. The

ethod can easily incorporate other biomarkers, and if patients groups

re well defined, and there are larger number of subjects, then more ad-

anced classification methods, which include cross-validation to define

ppropriate decision boundaries can be used. Another similar limitation

s that the severity scores depend on our control data sets. The harmo-

ization of the severity scores and the decision boundaries for multi-site

ata sets requires further work. The MRI markers for the present work

ere global whole brain measures. It is possible that regional and fiber-

ract dependent MRI measures have better prediction of cognition and

ay also serve as surrogate for CSF biomarkers. This also requires fur-

her work 

. Conclusions 

We have proposed a method of constructing objective numerical in-

ices of disease severity that can eventually be used to communicate re-

ults between different research and/or treatment centers. The method

ives a continuous measure of disease severity instead of “mild ”, “mod-

rate ”, and “severe ” we get from clinicians. The orthogonal double-

ischtomy plot replaces the discrete four group classification used at

ur site with a continuous two-dimensional scatter plot. The continuous

easures of severity were correlated to other continuous measures such

s cognitive function scores to show that our scores are meaningful. The

roposed method of calculating numeric severity scores based on bio-

ogical biomarker can be used by clinicians to monitor the consistency

f their diagnosis and for disease progression. This method can be fur-

her developed with applications to larger data sets, and also used to

dentify an optimal set of biomarkers, that are easier to measure, and

obust with respect to clinical outcomes and diagnosis. 
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