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Abstract
Diffusion tensor imaging (DTI) studies of human brain development have consistently

shown widespread, but nonlinear increases in white matter anisotropy through childhood,

adolescence, and into adulthood. However, despite its sensitivity to changes in tissue

microstructure, DTI lacks the specificity to disentangle distinct microstructural features of

white and gray matter. Neurite orientation dispersion and density imaging (NODDI) is a

recently proposed multi-compartment biophysical model of brain microstructure that can

estimate non-collinear properties of white matter, such as neurite orientation dispersion

index (ODI) and neurite density index (NDI). In this study, we apply NODDI to 66 healthy

controls aged 7–63 years to investigate changes of ODI and NDI with brain maturation, with

comparison to standard DTI metrics. Using both region-of-interest and voxel-wise analyses,

we find that NDI exhibits striking increases over the studied age range following a logarith-

mic growth pattern, while ODI rises following an exponential growth pattern. This novel find-

ing is consistent with well-established age-related changes of FA over the lifespan that

show growth during childhood and adolescence, plateau during early adulthood, and accel-

erating decay after the fourth decade of life. Our results suggest that the rise of FA during

the first two decades of life is dominated by increasing NDI, while the fall in FA after the

fourth decade is driven by the exponential rise of ODI that overcomes the slower increases

of NDI. Using partial least squares regression, we further demonstrate that NODDI better

predicts chronological age than DTI. Finally, we show excellent test—retest reliability of

NODDI metrics, with coefficients of variation below 5% in all measured regions of interest.

Our results support the conclusion that NODDI reveals biologically specific characteristics

of brain development that are more closely linked to the microstructural features of white

matter than are the empirical metrics provided by DTI.
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Introduction
The human brain undergoes an extended period of postnatal development that results in sen-
sory, motor, cognitive and behavioral maturation. Improvement of higher cognitive functions,
such as executive attention, cognitive control, and working memory, from childhood to adult-
hood reflects changes in structural and functional brain networks, rather than in isolated brain
regions [1]. Histologic studies have shown changes in synaptic density through adolescence [2]
[3], and progression of white matter myelination continuing into adulthood [4] [5]. Studies
using conventional MR imaging have demonstrated significant brain maturation through
childhood, with increases in white matter volume extending past adolescence [6] [7] [8]. Prog-
ress in understanding human brain development has been accelerated by the advent of diffu-
sion MR imaging techniques, which are sensitive to microstructural tissue changes. In
particular, diffusion tensor imaging (DTI) studies show widespread, nonlinearly increasing
white matter anisotropy through childhood, adolescence, and into adulthood [9] [10].

Although DTI has proven useful as a tool for studying brain development during the past
two decades, the diffusion tensor remains limited as a basic statistical description of water dif-
fusion within a voxel from images typically acquired at only a single diffusion-weighting factor
(b value), which represents a single spherical shell in q-space. The assumption of Gaussian dif-
fusion that underpins the DTI model also breaks down at b values much in excess of 1000 s/
mm2, whereas the investigation of restricted and strongly hindered diffusion such as within the
intracellular space requires higher diffusion-weighting factors. For these reasons, there is not
necessarily any direct link between DTI metrics and the underlying tissue architecture. Com-
monly used DTI measures, such as fractional anisotropy (FA), mean diffusivity (MD), axial dif-
fusivity (AD) and radial diffusivity (RD), may lack the specificity to unravel the distinct
microstructural features of gray matter and white matter [11] [12].

With continuing improvements in MR scanner field strength, gradient performance, RF
head coil arrays and pulse sequences, it has now become possible to routinely collect multi-
shell high angular resolution diffusion imaging (HARDI) including at b values much greater
than the 1000 s/mm2 that has been standard for DTI. Concurrently, there have been advances
in biophysical compartmental modeling to directly infer microstructural tissue properties from
these more granular and higher quality q-space data [13] [14] [15] [16]. Neurite orientation
dispersion and density imaging (NODDI) is a recently proposed multi-compartment biophysi-
cal model of brain microstructure [17] that can compute the non-collinear properties of neurite
orientation dispersion index (ODI) and neurite density index (NDI), corresponding to the
degree of incoherence in fiber orientations and to the intracellular volume fraction, respec-
tively, within each imaging voxel. A special advantage of NODDI over previously proposed
biophysical diffusion models is that the multi-shell HARDI imaging data required is within the
current MR scanner hardware, pulse sequence and acquisition time constraints for clinical
research studies [17]. An additional benefit of NODDI over DTI is that free water diffusion is
isolated into a separate biophysical compartment; therefore, partial volume averaging with
cerebrospinal fluid does not contaminate estimates of tissue microstructure as it often does
with DTI [18] [19].

In this study, we apply NODDI to investigate how ODI and NDI change with brain matura-
tion, with comparison to the standard DTI metrics of FA, MD, AD, and RD. We hypothesize
that, given the more direct relationship between NODDI metrics and white matter microstruc-
ture, ODI and NDI will show features of human brain development not apparent from DTI.
We also postulate that NODDI measures will be better correlated with chronological age for
individual white matter tracts than are DTI metrics and will be a better predictor of age when
used in a partial least squared regression model.

Age-Related Changes Using NODDI
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Methods

2.1 Study Subjects
This study is based on diffusion imaging data from 66 healthy human subjects ages 7–63 (30
female, 36 male). A total of 70 subjects were tested and imaged, 21 at the Children’s Hospital of
Philadelphia (CHOP) and the remainder within the University of California (UC) system. One
subject was excluded due to excessive motion and 3 subjects were excluded as outliers based on
criteria given below. Six subjects were each scanned 2–4 times for purposes of test-retest repro-
ducibility analysis; however, data from only 5 of these subjects were used due to excessive
motion in one subject.

2.2 Image Acquisition
MR imaging at both UC and CHOP was performed on a 3T TIM Trio MR scanner (Siemens,
Erlangen, Germany) using a 32-channel phased-array radio-frequency head coil. High-resolu-
tion structural MR images of the brain were collected using an axial 3D magnetization pre-
pared rapid acquisition gradient-echo (MPRAGE) T1-weighted sequence (TE = 1.64 ms,
TR = 2530 ms, TI = 1200 ms, flip angle of 7°) with 160 1.0 mm contiguous partitions of 1x1
mm resolution on a 256x256 matrix. Whole-brain diffusion-weighted images were collected at
two different diffusion-weighted sensitivities: b = 1000 s/mm2 with 30 directions, and b = 3000
s/mm2 with 64 directions. The b = 1000 s/mm2 data were used for DTI analysis, while both the
b = 1000 s/mm2 and b = 3000 s/mm2 data were used for the NODDI analysis. Diffusion images
at both weightings were acquired using multislice 2D single-shot spin-echo echo-planar imag-
ing with monopolar gradients. Parallel imaging with the iPAT technique was used with a
reduction factor of 2, one excitation, and 2mm interleaved axial slices with no gap at an isotro-
pic resolution of 2x2 mm on a 128x128 matrix. The echo time (TE) and repetition time (TR)
were 80ms and 10000ms for the images acquired at b = 1000 s/mm2, and 119ms and 13900ms
for images acquired at b = 3000 s/mm2. Additional brain volumes were acquired with no diffu-
sion weighting (b = 0 s/mm2), one with the TE/TR values used for the b = 1000 s/mm2 data,
and two with the TE/TR values used for the b = 3000 s/mm2 data. The total acquisition time
for diffusion imaging was approximately 20 minutes.

2.3 Structural MR Imaging Analysis
The 3D T1-weighted MPRAGE images of all subjects were examined for structural abnormali-
ties by a board-certified pediatric neuroradiologist. Intracranial volumes (ICV), total grey mat-
ter volume, and cortical white matter volume were obtained from each subject's 3D T1 images
using FreeSurfer 4.5.0 [20].

2.4 Diffusion Image Processing
2.4.1 DTI pre-processing. FMRIB's Linear Image Registration Tool (FLIRT; www.fmrib.

ox.ac.uk/fsl/flirt) was used to register all diffusion-weighted volumes to their corresponding
b = 0 s/mm2 volume, and to correct for motion and eddy currents [21]. Relative displacements
between consecutive diffusion volumes were calculated for each subject, including both transla-
tion and rotation, and subjects with a>2mm average displacement were excluded for excessive
motion. One subject was excluded due to image artifacts, and five test-retest scans were
excluded due to excessive motion in the b = 3000 s/mm2 data. This led to analysis of 70 sub-
jects, including 5 subjects with 2–4 test-retest scans each, for a total of 14 test-retest scans.
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Subsequently, the Brain Extraction Tool (BET; http://www.fmrib.ox.ac.uk/analysis/
research/bet) was used to remove non-brain tissue, and FSL's DTIFIT was used to calculate
maps of FA, MD, AD and RD.

2.4.2. Multi-compartment Biophysical Modeling of Diffusion MR Imaging. The acqui-
sition of diffusion data using two different diffusion weightings (b = 1000 s/mm2 and
b = 3000s/mm2) allows for a complementary model of diffusion using NODDI. The NODDI
code was modified to account for the differing TEs/TRs between scans acquired at b = 1000 s/
mm2 and b = 3000 s/mm2 by fitting the NODDI model to the normalized diffusion-weighted
images instead of the raw images. As per the developers' recommendation, the diffusion-
weighted images at each b value were normalized by the b = 0 s/mm2 images acquired with the
same TE/TR scan parameters, generating images with TE/TR-independent signal intensity.
This modeling generated ODI and NDI maps for each subject.

2.4.3 Tract-Based Spatial Statistics. FSL's Tract-Based Spatial Statistics (TBSS) tool [22]
was used to align individual FA maps to FSL’s standard adult FA template. Following registra-
tion, the FA maps of all subjects were thinned to create white matter skeletons. Then, RD, AD,
ODI, and NDI maps were created and registered using the TBSS registrations of FA to the
adult FA template, and the skeleton mask was applied to the registered images.

2.5. Age trajectory analysis of diffusion metrics
2.5.1 Modeling trajectories of regions of interest. Analyses of age trajectory over regions

of interest (ROIs) were performed hierarchically, following the white matter divisions
described in Simmonds et al. [23]. First, global trajectories were obtained by averaging each dif-
fusion metric along the white matter skeleton of each subject. Three subjects had global ODI or
NDI values with Z-scores above 4.5, and were excluded as outliers from all analyses, leaving a
total of 66 subjects.

Next, three groups of white matter were compared; core tracts based on the JHU-DTI81
atlas [24], white matter regions adjacent to cortical grey matter regions derived from the Har-
vard-Oxford (HO) atlas in FSL, and white matter regions adjacent to subcortical grey matter
regions also derived from the HO atlas. These regions were extracted by taking the intersection
of the white matter skeleton mask from TBSS with the cortical and subcortical regions of the
probabilistic HO atlas thresholded at a probability of 50%. Following Simmonds et al.'s [23]
terminology, we call these three groups: core tracts, cortical regional termination zones (RTZs),
and subcortical RTZs. The core tracts were then further subdivided into six groups: callosal
tracts, cerebellar tracts, brainstem projection tracts, non-brainstem projection tracts, associa-
tion tracts, and limbic tracts. The cortical RTZs were also further divided into five groups; pre-
frontal, sensorimotor, parietal, occipital, and temporal.

Four different two-parameter models were fit to each white matter group trajectory: linear,
logarithmic, exponential growth, and exponential decay. Correlation coefficient (R) values for
each fit were calculated to determine the best-fitting model for each parameter and for each
white matter group. Three different three-parameter models were also fit to each white matter
group trajectory: Poisson, quadratic, and logistic. The goodness of fit of each of these models
was compared to each best-fitting two-parameter model using an F-test, which takes into
account the additional degrees of freedom of the three-parameter models [25] [26].

In order to compare regional differences in trajectories, it was first recognized that ODI was
generally best fit by an exponential growth model: ODI = b1 � exp(b2�age) [eq. 1]. Meanwhile,
NDI was best fit by a logarithmic growth model: NDI = b1 + b2 � ln(age) [eq. 2].

Equation 1 can be linearized to the form: ln(ODI) = ln(b1) + b2 � age [eq. 3]. Analysis of
covariance was then performed using the linearized exponential growth model for ODI
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(natural log of ODI versus age), and linearized logarithmic model for NDI (NDI versus natural
log of age), separately for: 1) core tracts (JHU), cortical RTZs, and subcortical RTZs; 2) the six
core tract groups; and 3) the five cortical RTZ groups.

2.5.2. Whole brain ODI and NDI correlations with age. To further investigate regional
variation in age-related changes of ODI and NDI, the randomise function from FSL was used
to assess for significant fits on a voxel-wise basis along the white matter skeleton. To assess for
significant exponential growth fits of ODI, linear correlations of ln(ODI) versus age were used.
To assess for significant logarithmic growth fits of NDI, linear correlations of NDI versus ln
(age) were used. Randomise uses nonparametric permutation testing, and allows for cluster-
level inference when the threshold-free cluster enhancement (TFCE) approach is used [27].
Randomise was used with two different contrasts, 5000 permutations each, to test for correla-
tions and anti-correlations of ln(ODI) with age, and NDI with ln(age). The statistical maps for
each contrast were corrected for multiple voxel-wise comparisons with TFCE using a signifi-
cance threshold of p<0.05.

To create white matter skeleton maps of voxel-wise b2 values (from equations 1 and 2) for
NDI and ODI, respectively representing the rate of logarithmic and rate of exponential growth,
each subject's skeleton map was first smoothed using a Gaussian kernel with full-width-half-
maximum (FWHM) of 9mm. The smoothing kernel was limited to the white matter skeleton
in order to avoid partial volume effects. This methodology was adapted from Li et al. [28], in
which FA skeleton maps were smoothed to improve signal to noise ratio for independent com-
ponent analysis. ODI and NDI values from the smoothed white matter skeletons of each sub-
ject were then used for voxel-wise model fitting, and b2 maps from the exponential growth
equation (eq. 1) and logarithmic growth equation (eq. 2) were calculated respectively for ODI
and NDI. These b2 maps were then masked by the TFCE maps derived from randomise.

2.5.3. Prediction of brain maturity using NODDI metrics versus DTI metrics. In order
to further compare the correlation of age with NODDI metrics versus DTI metrics, partial least
squares regression (PLSR) was employed separately with NODDI and DTI to create and compare
models for the prediction of age. PLSR is a technique that combines features of principal compo-
nent analysis (PCA) and multiple linear regression to predict a set of response variables from a
set of predictor variables; this technique is particularly suited to variables with high collinearity
[29]. Two different PLSR models were computed. One model used predictive variables of ODI
and NDI in each of the six core tract (JHU) groups, in all JHU tracts combined, and in the global
white matter skeleton, resulting in 8 regions for each ODI and NDI. The second model used pre-
dictive variables of RD and AD in all of the same white matter regions. The two PLSR models
each had 16 predictive variables (2�(6+1+1)) and one response variable (age). Each variable was
normalized by standard deviation, and PLSR was performed varying the number of specified PLS
components from 1–10, each using 10-fold cross validation with 20Monte-Carlo repetitions.
This was considered an acceptable number of iterations since the values of the predicted root
mean square error stabilized after 10 Monte Carlo runs. The predicted root mean square error
for each model was plotted as a function of number of PLSR components for 1–10 components.

As a supplementary analysis, PLSR was performed in the same manner described above, but
with the addition of three predictor variables from FreeSurfer segmentation to each model:
intracranial volume, total grey matter volume, and cortical white matter volume.

2.6 Test-retest reproducibility analysis
Coefficients of variation of the diffusion metrics within each white matter group examined in
section 2.5.1 were calculated using the scans of the five adult subjects with two to four repeated
scans each.

Age-Related Changes Using NODDI
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Results

3.1. Subject demographics
Fig 1 displays the distribution of subject ages. The ages range from 7–63 years, and the mean
subject age is 25 years, with a standard deviation of 14 years. Since this is a study of brain devel-
opment, children and adolescents less than 21 years of age are overrepresented relative to adults.
Table 1 displays demographic breakdown by site. The 3D structural MR scans of all subjects
were noted to be free of anatomic abnormalities by a board-certified pediatric neuroradiologist.

3.2. Region of interest trajectory modeling
The results of the region of interest age trajectory modeling are displayed in Figs 2–4 and
Tables 2–4. In general, FA trajectories are best fit by an exponential decay model (and occa-
sionally a logarithmic model), while ODI trajectories are best fit by an exponential growth
model (and occasionally by a linear model), and NDI trajectories are best fit by a logarithmic
model (Tables 2–4). The higher order fits using 3 parameters did not perform better by an F-
test for any of the parameters.

Results from this analysis for the subjects scanned at UC alone are also presented in S1 Fig
and S1 Table to demonstrate that the results do not differ when considering only one site.

3.2.1 Comparison of JHU tracts, cortical RTZs, and subcortical RTZs. Fig 2 illustrates
that the core JHU tracts exhibit the highest values of FA, followed by subcortical RTZs, while
cortical RTZs have the lowest values. Reciprocally, the cortical RTZs exhibit the highest values

Fig 1. Subject age distribution.

doi:10.1371/journal.pone.0123656.g001

Table 1. Subject demographics by site.

# of subjects # females age(mean±sd) age(median, range)

UC 47 21 (45%) 26±15 22, 7–64

CHOP 19 9 (47%) 22±10 19, 7–41

Total 66 30 (45%) 25±14 21.5,7–64

doi:10.1371/journal.pone.0123656.t001
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of ODI, followed by subcortical RTZs, while the JHU tracts have the lowest values of ODI.
Finally, similar to FA, the JHU tracts demonstrate the highest values of NDI, followed by sub-
cortical RTZs, while the cortical RTZs have the lowest values of NDI (Fig 2). Cortical RTZs
have a slower rate of logarithmic growth in NDI (higher b2 in eq. 2) relative to subcortical
RTZs and JHU tracts, while subcortical RTZs show a faster rate of logarithmic growth in NDI
relative to cortical RTZs and JHU tracts (Table 5).

3.2.2 Comparison of JHU tracts by tract type. Fig 3 reveals that, of the JHU tracts, the
callosal tracts demonstrate the highest values of FA and the lowest values of ODI. The brain-
stem projection tracts have the highest values of NDI, with callosal and non-brainstem projec-
tion tracts also showing high values of NDI. The association and limbic tracts have the lowest
values of FA, highest values of ODI, and lowest values of NDI (Fig 3). Table 6 shows that the
brainstem projection tracts demonstrate a higher rate of exponential growth in ODI (higher b2
in eq. 1) relative to the other JHU tract groups: non-brainstem projection, association, limbic,
callosal, and cerebellar. The brainstem projection tracts and limbic tracts show a higher rate of
logarithmic growth in NDI relative to the other JHU tract groups, while the callosal and associ-
ation tracts show a lower rate of logarithmic growth in NDI relative to the other JHU tract
groups.

3.2.3 Comparison of cortical RTZs by region. Fig 4 shows that, of the cortical RTZ
regions, the sensorimotor white matter exhibits the highest values of FA, the lowest values of
ODI, and the highest values of NDI. The prefrontal white matter demonstrates the lowest val-
ues of FA and NDI. The prefrontal and parietal white matter have the highest values of ODI.
ODI in the sensorimotor, occipital, and parietal white matter are not fit significantly by an
exponential growth model (or any other two-parameter model), as ODI in these areas remains

Fig 2. Subject FA, ODI, and NDI age trajectories in all core tracts (JHU) averaged (blue), all cortical RTZs averaged (green), and all subcortical
RTZs (red). Shaded regions represent 95% confidence intervals.

doi:10.1371/journal.pone.0123656.g002
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Fig 3. Subject FA, ODI, and NDI age trajectories in each group of JHU tracts (excepting cerebellar tracts): projection (non-brainstem, blue),
association (red), callosal (green), limbic (magenta), projection (brainstem, cyan). Shaded regions represent 95% confidence intervals.

doi:10.1371/journal.pone.0123656.g003
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Fig 4. Subject FA, ODI, and NDI age trajectories in each group of cortical RTZ tracts: prefrontal (blue),
sensorimotor (magenta), parietal (cyan), temporal (red), occipital (green). Shaded regions represent
95% confidence intervals.

doi:10.1371/journal.pone.0123656.g004

Age-Related Changes Using NODDI

PLOS ONE | DOI:10.1371/journal.pone.0123656 June 26, 2015 9 / 23



Table 2. Fitting results for FA, ODI, and NDI in global white matter (WM), core tracts averaged, cortical RTZs averaged, and subcortical RTZs
averaged.

R (lin) p (lin) R (log) p (log) R (exp decay) p (exp decay) R (exp grow) p (exp grow)

FA

Global WM 0.327 0.0073 0.397 9.8E-04 0.456 1.2E-04 0.326 0.0076

JHU Tracts 0.253 0.040 0.314 0.010 0.379 0.0017 0.252 0.041

Cortical RTZs 0.547 2.0E-06 0.618 3.1E-08 0.638 8.3E-09 0.542 2.7E-06

Subcortical RTZs 0.560 1.0E-06 0.620 2.8E-08 0.571 5.4E-07 0.556 1.3E-06

ODI

Global WM 0.566 7.3E-07 0.525 6.2E-06 0.232 0.060 0.567 7.0E-07

JHU Tracts 0.505 1.5E-05 0.468 7.5E-05 0.157 0.21 0.505 1.5E-05

Cortical RTZs 0.418 4.7E-04 0.379 0.0017 0.193 0.12 0.419 4.6E-04

Subcortical RTZs 0.490 3.0E-05 0.501 1.8E-05 0.312 0.011 0.488 3.3E-05

NDI

Global WM 0.782 8.7E-15 0.837 0.0E+00 0.785 5.8E-15 0.774 2.6E-14

JHU Tracts 0.711 2.3E-11 0.770 4.3E-14 0.736 1.9E-12 0.704 4.3E-11

Cortical RTZs 0.823 0.0E+00 0.855 0.0E+00 0.766 7.1E-14 0.815 1.1E-16

Subcortical RTZs 0.770 4.2E-14 0.829 0.0E+00 0.787 4.6E-15 0.759 1.5E-13

Four different two-parameter models were used: linear, logarithmic, exponential decay, exponential growth. Models with the highest significant R values

are bolded.

doi:10.1371/journal.pone.0123656.t002

Table 3. Fitting results for FA, ODI, and NDI in each set of JHU tracts using four different two-parameter models: linear, logarithmic, exponential
decay, exponential growth.

R (lin) p (lin) R (log) p (log) R (exp decay) p (exp decay) R (exp grow) p (exp grow)

FA

All JHU 0.253 0.040 0.314 0.010 0.379 0.0017 0.252 0.041

Projection (non-brainstem) 0.152 0.22 0.195 0.12 0.289 0.018 0.152 0.22

Association 0.233 0.059 0.289 0.018 0.376 0.0018 0.232 0.060

Limbic 0.511 1.2E-05 0.552 1.6E-06 0.489 3.1E-05 0.508 1.3E-05

Projection (brainstem) 0.501 1.8E-05 0.577 4.0E-07 0.548 1.9E-06 0.498 2.1E-05

Callosal 0.012 9.3E-01 0.053 0.67 0.224 0.071 0.012 0.93

Cerebellar 0.343 0.0048 0.399 9.1E-04 0.357 0.0033 0.341 0.0050

ODI

All JHU 0.505 1.5E-05 0.468 7.5E-05 0.157 0.21 0.505 1.5E-05

Projection (non-brainstem) 0.470 7.0E-05 0.462 9.6E-05 0.212 0.087 0.469 7.3E-05

Association 0.286 0.020 0.223 0.073 0.000 1.0E+00 0.287 0.019

Limbic 0.286 0.020 0.260 0.035 0.095 0.45 0.287 0.020

Projection (brainstem) 0.613 4.5E-08 0.614 4.2E-08 0.464 8.7E-05 0.610 5.5E-08

Callosal 0.409 6.6E-04 0.345 0.0045 0.000 1.0E+00 0.412 5.8E-04

Cerebellar 0.370 0.0022 0.352 0.0038 0.196 0.12 0.370 0.0022

NDI

All JHU 0.711 2.3E-11 0.770 4.3E-14 0.736 1.9E-12 0.704 4.3E-11

Projection (non-brainstem) 0.659 1.8E-09 0.722 8.0E-12 0.704 4.2E-11 0.652 3.1E-09

Association 0.680 3.3E-10 0.729 3.8E-12 0.695 9.8E-11 0.675 5.0E-10

Limbic 0.827 0.0E+00 0.866 0.0E+00 0.793 2.1E-15 0.817 1.1E-16

Projection (brainstem) 0.791 2.7E-15 0.856 0.0E+00 0.839 0.0E+00 0.780 1.2E-14

Callosal 0.428 3.3E-04 0.480 4.5E-05 0.485 3.7E-05 0.425 3.7E-04

Cerebellar 0.751 3.6E-13 0.783 8.1E-15 0.671 6.8E-10 0.746 6.5E-13

doi:10.1371/journal.pone.0123656.t003
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relatively constant over the age range examined. The sensorimotor white matter shows a higher
rate of logarithmic growth in NDI relative to the other RTZ regions, while the prefrontal tracts
demonstrate a lower rate of logarithmic growth in NDI (Table 7).

3.3. Voxel-wise rate-of-change of NODDI metrics
The ODI and NDI b2 maps (from eq.1 and eq.2, respectively) are displayed in Figs 5 and 6,
respectively. The ODI map confirms some of the results seen from the region of interest ODI
exponential growth trajectory results: the brainstem and genu of the corpus callosum (GCC)

Table 4. Fitting results for FA, ODI, and NDI in each set of cortical RTZs using four different two-parameter models: linear, logarithmic, exponential
decay, exponential growth.

R (lin) p (lin) R (log) p (log) R (exp decay) p (exp decay) R (exp grow) p (exp grow)

FA

All Cortical RTZs 0.547 2.0E-06 0.618 3.1E-08 0.638 8.3E-09 0.542 2.7E-06

Prefrontal 0.537 3.4E-06 0.593 1.5E-07 0.590 1.8E-07 0.530 4.7E-06

Sensorimotor 0.582 3.0E-07 0.634 1.1E-08 0.608 6.3E-08 0.576 4.3E-07

Temporal 0.471 6.5E-05 0.528 5.1E-06 0.550 1.7E-06 0.467 7.8E-05

Occipital 0.315 0.010 0.399 9.2E-04 0.502 1.8E-05 0.311 0.011

Parietal 0.308 0.012 0.379 0.0017 0.415 5.3E-04 0.304 0.013

ODI

All Cortical RTZs 0.418 4.7E-04 0.379 0.0017 0.193 0.12 0.419 4.6E-04

Prefrontal 0.493 2.6E-05 0.476 5.3E-05 0.294 0.017 0.493 2.6E-05

Sensorimotor 0.105 0.40 0.040 0.75 0.000 1.0E+00 0.106 0.40

Temporal 0.402 8.3E-04 0.391 0.0012 0.270 0.028 0.402 8.3E-04

Occipital 0.164 0.19 0.061 0.63 0.000 1.0E+00 0.165 0.18

Parietal 0.093 0.46 0.064 0.61 0.075 0.55 0.094 0.45

NDI

All Cortical RTZs 0.823 0.0E+00 0.855 0.0E+00 0.766 7.1E-14 0.815 1.1E-16

Prefrontal 0.827 0.0E+00 0.859 0.0E+00 0.766 6.5E-14 0.820 0.0E+00

Sensorimotor 0.832 0.0E+00 0.853 0.0E+00 0.766 6.9E-14 0.825 0.0E+00

Temporal 0.732 2.9E-12 0.758 1.8E-13 0.680 3.5E-10 0.724 6.2E-12

Occipital 0.793 2.1E-15 0.831 0.0E+00 0.749 4.6E-13 0.785 5.9E-15

Parietal 0.738 1.5E-12 0.786 5.3E-15 0.732 3.0E-12 0.731 3.3E-12

doi:10.1371/journal.pone.0123656.t004

Table 5. Fitting results and regional difference analysis of JHU tracts, cortical RTZs, and subcortical RTZs using exponential growth fit for ODI,
and logarithmic growth fit for NDI.

R p (reg) b2 p (slope diff)

ODI (exp growth fit)

Global WM 0.57 6.2E-07 0.00178 -

JHU Tracts 0.50 1.4E-05 0.00196 0.55

Cortical RTZs 0.42 4.7E-04 0.00132 0.18

Subcortical RTZs 0.49 2.2E-05 0.00200 0.45

NDI (log fit)

Global WM 0.84 1.2E-18 0.0607 -

JHU Tracts 0.77 2.7E-14 0.0569 0.65

Cortical RTZs 0.85 3.4E-20 0.0500 0.039

Subcortical RTZs 0.83 4.7E-18 0.0697 0.012

doi:10.1371/journal.pone.0123656.t005
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demonstrate higher rates of exponential ODI growth, reflecting the results from the ROI analy-
ses of heightened rates of exponential ODI growth in the brainstem projection tracts and the
trend towards heightened rates of exponential ODI growth in the callosal tracts. The ODI b2
maps additionally exhibit more extensive exponential growth in the posterior limbs of the
internal capsules as compared with the anterior limbs.

As expected from the goodness of fit results of the logarithmic model for NDI in the regions
of interest, the NDI b2 map exhibits a much higher number of voxels with TFCE-corrected sig-
nificant fits as compared with the ODI b2 map. The NDI map confirms results from the region
of interest NDI logarithmic growth trajectory results: the brainstem and sensorimotor regions

Table 6. Fitting results and regional difference analysis of JHU tract groups using exponential growth fit for ODI, and logarithmic growth fit for
NDI.

R p (reg) b2 p (slope diff)

ODI (exp growth fit)

All JHU 0.50 1.4E-05 0.00196 -

Projection (non-brainstem) 0.47 6.4E-05 0.00174 0.42

Association 0.28 0.021 0.00126 0.082

Limbic 0.29 0.017 0.00164 0.31

Projection (brainstem) 0.61 3.5E-08 0.00380 0.0056

Callosal 0.40 8.5E-04 0.00321 0.16

Cerebellar 0.37 0.0021 0.00188 0.51

NDI (log fit)

All JHU 0.77 2.7E-14 0.0569 -

Projection (non-brainstem) 0.72 5.5E-12 0.0577 0.37

Association 0.73 2.6E-12 0.0493 0.024

Limbic 0.87 3.0E-21 0.0785 0.014

Projection (brainstem) 0.86 2.8E-20 0.0937 1.2E-06

Callosal 0.48 3.9E-05 0.0386 8.1E-05

Cerebellar 0.78 5.0E-15 0.0616 0.79

doi:10.1371/journal.pone.0123656.t006

Table 7. Fitting results and regional difference analysis of cortical RTZs using exponential growth fit for ODI, and logarithmic growth fit for NDI.

R p (reg) b2 p (slope diff)

ODI (exp growth fit)

All Cortical RTZs 0.42 4.7E-04 0.00132 -

Prefrontal 0.49 2.8E-05 0.00169 0.14

Sensorimotor 0.11 0.39 3.83E-04 0.18

Temporal 0.40 8.0E-04 0.00174 0.11

Occipital 0.16 0.19 7.18E-04 0.52

Parietal 0.09 0.46 5.14E-04 0.28

NDI (log fit)

All Cortical RTZs 0.85 3.4E-20 0.0500 -

Prefrontal 0.86 1.3E-20 0.0425 0.0091

Sensorimotor 0.85 4.6E-20 0.0695 2.4E-04

Temporal 0.76 1.2E-13 0.0550 0.75

Occipital 0.83 3.3E-18 0.0520 0.70

Parietal 0.79 3.3E-15 0.0493 0.31

doi:10.1371/journal.pone.0123656.t007
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Fig 5. ODI exponential growth b2map (eq. 1) plotted on a red-yellow color scale, where colored voxels are significantly fit by an exponential model
(with TFCE-correction) and yellow represents higher b2.

doi:10.1371/journal.pone.0123656.g005
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Fig 6. NDI logarithmic growth b2 map (eq. 2) plotted on a red-yellow color scale, where colored voxels are significantly fit by a logarithmic model
(with TFCE-correction) and yellow represents higher b2.

doi:10.1371/journal.pone.0123656.g006
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show higher rates of logarithmic growth of NDI, while the GCC and prefrontal regions show
lower rates of growth.

3.4. Prediction of brain maturity using NODDI metrics versus DTI metrics
The predicted RMSE (PRMSE) as a function of number of PLS components is displayed in Fig 7
for both the ODI and NDI model as well as the RD and ADmodel. For the ODI and NDI model,
PRMSE is effectively minimized at a value of 8.1 years using the first PLS component. For the RD
and ADmodel, PRMSE is minimized at a value of 9.9 years using the first four PLS components.

The PRMSE results from the supplementary analysis, which included additional predictor
variables of intracranial volume, total grey matter volume, and white matter volume, are dis-
played in S2 Fig. At one PLS component, the PRMSE of the ODI and NDI model decreases
from 8.1 years to 8.0 years, indicating that these additional variables contribute little predictive
value to the NODDI model. At four PLS components, the PRMSE of the RD and AD model
decreases from 9.9 to 9.1, indicative of a stronger contribution of the additional variables to the
predictive value of the DTI model. However, the error in the DTI model remains larger than in
the NODDI model.

3.5 Test-retest reproducibility
The means and coefficients of variation of ODI and NDI within each examined white matter
group are displayed in Fig 8. The coefficients of variation (CoVs) of the ODI and NDI values
within white matter groups are comparable to those of the FA values, with all CoVs below 5%,
indicating little variation in any of the three metrics.

Discussion

4.1. Developmental trajectories of Neurite Density Index and Fiber
Orientation Dispersion Index
This is the first study to characterize maturational changes of neurite density (NDI) and fiber
orientation dispersion (ODI) in human white matter from childhood to middle age. We find

Fig 7. Predicted root mean square error of the estimation of age using a partial least squares (PLS)
model constructed using ODI and NDI compared to the PLSmodel constructed using RD and AD.

doi:10.1371/journal.pone.0123656.g007
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Fig 8. Test-retest reliability results for FA, ODI, and NDI.

doi:10.1371/journal.pone.0123656.g008
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that NDI exhibits striking increases over this age range following a logarithmic growth pattern,
while ODI also rises but follows an exponential growth pattern. These results reveal that, while
neurite density index increases rapidly in childhood and more slowly in adulthood, fiber orien-
tation dispersion index increases more slowly in childhood, and accelerates in adulthood. This
is a novel finding that suggests a more biologically specific interpretation of the well-established
age-related changes of FA over the lifespan that show decelerating growth during childhood
and adolescence, a plateau during early adulthood, followed by accelerating decay after the
fourth decade of life [30]. Our data demonstrate that the rise of FA during the first two decades
of life is dominated by increasing NDI, with little change in ODI to counteract it. Although the
oldest ages of the human lifespan are not represented in our sample, extrapolation of our
results suggests that the fall in FA during later adulthood is due to an exponential rise of ODI
that overcomes the slowing increase of NDI. This is supported by the fact that ODI is a stronger
determinant of FA than is NDI [17], as also shown in S3 Fig.

To our knowledge, the only other study to investigate NODDI metrics in the typically devel-
oping human brain explores these metrics in newborns [31]. Kunz et al. [31] compared
NODDI values in white matter regions of interest in 13 infants at term. As expected, the gen-
eral relationships between FA, ODI, and NDI demonstrated in our results match those in Kunz
et al., showing that white matter regions with relatively higher FA demonstrate relatively higher
NDI and relatively lower ODI (Section 3.2). Kunz et al. [31] also show clear differentiation
between the anterior and posterior limbs of the internal capsules, which they attribute to the
respectively absent myelin and partial myelination in these regions (at term); our results sug-
gest that these regions continue to exhibit different developmental trajectories into adulthood
(Figs 5 and 6).

The trend of increasing FA during development has previously been attributed to axonal
density, myelination, and/or increases of fiber diameter [9] [32] [33] [34]. Meanwhile, histolog-
ical studies have suggested a diversity of processes in aging that could cause decreasing FA;
these include accumulation of water-containing balloons in myelin sheaths [35] [36], accumu-
lation of redundant myelin, thickening and/or splitting of myelin lamella, loss of small nerve
fibers [37] [38], shortening of internodes, and/or alterations of fiber diameter [39]. In fact,
there has been evidence of continued remodeling of myelin into the sixth decade of life [40]
[41]. Our results could explain the white matter changes over age as observed with DTI metrics,
where increases of FA (and decreases of MD and RD) during development are dominated by
increases of NDI, and decreases of FA with senescence are driven by the accelerating increases
of ODI. Thus, our results point to increases in fiber diameter and myelination in development,
two processes which are difficult to distinguish using diffusion MR imaging, but both of which
would lead to increased NDI, which represents the intracellular volume fraction, as well as the
physiological effect of increased axonal conduction speed [42]. Due to the underrepresentation
of subjects over the age of 40 in our study cohort, we do not aim to characterize the effects of
aging. However, the previously proposed factors of redundant myelin, ballooning of myelin
sheaths, and splitting/thickening of the myelin lamella are consistent with our observation of
exponentially rising ODI with age during adulthood, as well as continuing increases in NDI.
Furthermore, Westlye et al. [43] found peak global FA at approximately 29 years of age, while
total white matter volume did not peak until around 50 years. This and the evidence of myelin
remodeling in late adulthood is concordant with our result of prolonged increases of NDI. It is
alternatively possible that the observed increases of NDI with age are caused not by changes of
axonal density, but by glial proliferation in aging brain [44]. Still, we cannot exclude the possi-
bility of an eventual fall of NDI with senescence.

In addition to characterizing ODI and NDI developmental trajectories, our results demon-
strate the superiority of NODDI over DTI in explaining variance of chronological age. The R
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values for models of NDI over age are consistently significantly higher for NDI than for models
of FA over age (Tables 2–4). Additionally, our PLSR results show higher predictive power of
the NODDI metrics compared to DTI metrics for age estimation (Fig 7), indicating better
quantification of the effect of age on white matter. The supplementary PLSR analysis (S2 Fig)
further demonstrates that NODDI explains variance of chronological age independently of the
covariates, and potential confounds, of intracranial volume, total grey matter volume, and
white matter volume. In contrast, the DTI metrics, for which predictive power improves signif-
icantly in conjunction with these covariates, may be confounded in part by partial volume
effects from differences in head size.

4.2. Regional variations
The regional variations that we observe, both in the region-of-interest and voxel-wise analyses,
reflect anatomic differences in NDI and ODI trajectories over age. Using our present best-fit
models—logarithmic growth for NDI and exponential growth for ODI—it is complicated to
exactly specify the timing of development or aging. While a larger dataset with an extended age
range of subjects might provide the power necessary to implicate higher-order models, the
models in use are highly compelling, especially for NDI, for which fits give rise to correlation
coefficient values consistently in the range of 0.72–0.87 (Tables 2–4). Furthermore, while it is
difficult to describe timing using these models, we nonetheless find results that are concordant
with studies investigating region-specific changes to white matter over the lifespan using DTI.

In our b2 maps (Figs 5 and 6), we see high rates of exponential growth of ODI in the genu of
the corpus callosum (GCC) compared to sparse and small growth in the splenium of the corpus
callosum (SCC); in contrast, NDI shows sparse logarithmic growth in the GCC, compared to
more extensive and larger logarithmic growth in the SCC. These observations are consistent
with findings in literature that show larger increases of FA in the SCC than the GCC during
development, and earlier and more significant decline of FA in the GCC than in the SCC [33]
[45] [46]. In the SCC, the significant growth of NDI coupled with limited increase of ODI
would result in more prolonged and significant increases of FA, compared to the GCC, whereas
limited growth of NDI coupled with significant growth of ODI would lead to smaller and less
prolonged increases of FA.

Our b2 maps reveal extensive exponential growth of ODI in the posterior limbs of the inter-
nal capsules, but not the anterior limbs, while NDI exhibits comparable logarithmic growth in
both the anterior and posterior limbs. Imperati et al. [45] used k-means clustering of DTI to
separate white matter voxels based upon age trajectories, and found that the anterior and pos-
terior limbs differentiated from one another across all cluster solutions, i.e., solutions with dif-
ferent numbers of specified clusters. They further found that the anterior limbs of the internal
capsules and the cerebral peduncles exhibited the greatest increases of FA during development,
and the highest preservation of FA in adulthood. This finding is consistent with our observa-
tions in the anterior limbs of internal capsules, where the insignificant exponential growth of
ODI coupled with prolonged growth of NDI would result in the preservation of FA in adult-
hood. While the cerebral peduncles in our ODI b2 maps demonstrate high rates of exponential
growth, they also show the highest rates of logarithmic growth in NDI, which is consistent with
the significant increases of FA that Imperati et al. [45] report during development. Using
group difference analysis of different age groups, Qiu et al. [46] found decreases of MD in both
the anterior and posterior limbs of the internal capsules for young adults compared to adoles-
cents, but found increases of FA of young adults compared to adolescents only in the anterior
portions of the internal capsule. These results lend further credence to our observations in the
internal capsules, where the similar growth of NDI in the anterior and posterior limbs would
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cause similar decreases of MD in these two regions, but accelerating growth of ODI in the pos-
terior limbs would have a primary effect of slowing, stopping, and then reversing increases of
FA.

In our regional difference analyses of the JHU core tracts, we find higher rates of logarithmic
growth of NDI in the limbic tracts and the brainstem projection tracts (Fig 3, Table 3). While
the brainstem projection tracts also demonstrate higher rates of growth of ODI, the limbic
tracts do not. Our findings in the limbic tracts are well-corroborated by other studies that find
prolonged development in the hippocampus and temporal regions [30]. Westlye et al. [43] find
the steepest developmental curves in the dorsal cingulum bundle, and protracted development
in the parahippocampal cingulum bundles. In fact, with 430 subjects aged 8–85 years of age,
they do not find age-related decreases of FA at all in the parahippocampal cingulum bundles.
While we do not find that the temporal RTZs exhibit significantly different NDI or ODI growth
trajectories from other cortical RTZs, our RTZ results should be interpreted with more caution,
as these regions comprise very peripheral white matter and are more sensitive to errors in the
registration required to perform TBSS. Finally, prior studies find that projection fibers tend to
mature earlier than association fibers [47]. Lebel et al. [30] find that commissural and projec-
tion fibers mature earliest, while association fibers continue to mature at later ages, and fron-
tal-temporal connections demonstrate the most prolonged development. While our finding of
higher rates of logarithmic growth of NDI in the brainstem projection tracts may initially seem
to run counter to existing literature, these results could be reconciled by our observation that
ODI also exhibits higher rates of growth than in other tracts. It is therefore feasible that the
behavior of FA in the brainstem projection tracts becomes driven more strongly by the
increases of ODI than those of NDI earlier in life due to the high acceleration of ODI growth in
these tracts relative to other tracts.

4.3. Test-retest reproducibility
The ODI and NDI values within different white matter groups show excellent test-retest repro-
ducibility, with all tracts and parameters having coefficients of variation (CoVs) below 5%, and
the majority with CoVs below 3%. This reproducibility is consistent with a previous report
which shows comparable CoVs between DTI and NODDI in global white matter [48]. A caveat
to our reproducibility results is that all of our repeat scans are in adults in their 20s; these
results are therefore not representative of the full age range of our subjects.

4.4 Study limitations
Amain limitation of this study is the smaller number of subjects in the older range, resulting in
a bias of age-related trajectories towards development. The effect of this bias is evident in our
modeled trajectories for FA, where higher order quadratic and Poisson fits did not perform bet-
ter by an F-test than the exponential decay fit. The trajectories of NDI and particularly ODI in
aging therefore require replication as well as better characterization over the entire lifespan.

Another limitation is the differing acquisition TEs/TRs of the diffusion images acquired at
the two different b values. Caution might therefore be needed in comparing the absolute mag-
nitudes of our NODDI parameters to values obtained using different acquisition parameters.
Nonetheless, our acquisition parameters are consistent within our study cohort, and deviations
from ideal acquisition parameters would be expected to blur age-related relationships, as
opposed to producing false ones.
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4.5. Future directions
There are numerous directions for future research of white matter development and aging
using NODDI, with starting points provided by the wealth of DTI studies of white matter
changes over the human lifespan. For example, Mishra et al. [49] have used the DTI micro-
structural correlation method [50] to examine the inter-tract dependencies of FA during child-
hood brain maturation. Furthermore, multivariate data-driven approaches such as
independent component analysis [28] or k-means clustering [45] can be employed to identify
developmentally correlated white matter at the voxel level. Used in conjunction with NODDI,
these methods could potentially yield even more valuable information than with DTI, since the
NODDI metrics are more directly related to the underlying white matter microstructure. Addi-
tionally, tractographic approaches to studying white matter maturation can be applied in each
subject’s native space, as atlas-based voxel-wise techniques suffer from errors in registration
that may be exacerbated when studying subjects over broad age ranges. Alternatively, registra-
tion in TBSS can be improved using techniques such as groupwise atlas with tensor-based reg-
istration [51]; this would be particularly important in a study including an older age range of
subjects in which atrophy would be a much greater effect.

It could be of further use to relate structural brain changes using NODDI to functional
changes during development. There are concordant patterns of brain development elucidated
using structural and functional MRI; as local functional connectivity weakens within the cor-
tex, cortical grey matter thins, and as long-range white matter tracts increase in FA, long-range
functional connectivity increases [1]. Nonetheless, a study which investigates both structural
and functional connectivity in childhood brain development found that only some changes of
functional connectivity had structural correlates [52]. It is possible that NODDI could provide
greater insight into the structural-functional relationship, both within or outside the context of
development.

It would also be valuable to investigate grey matter development using the NODDI metrics
of isotropic (CSF) volume fraction, NDI, and ODI, which translate naturally to grey matter,
unlike DTI metrics. In grey matter, ODI provides a marker of grey matter complexity, quanti-
fying the pattern of sprawling dendritic processes [17].

Also of great value would be a longitudinal study to identify more individually specific mat-
urational trajectories of NDI and ODI, with correlation to neuropsychological assessments to
link these age-related changes to the development of higher cognitive functions. Ultimately,
these efforts would contribute to the goals of characterizing how changes in brain networks
during development give rise to high-level human cognition, as a prerequisite to understanding
the neural underpinnings of atypical cognitive development in neuropsychiatric disorders.

Supporting Information
S1 Fig. UC-only analysis: Subject FA, ODI, and NDI age trajectories in all core tracts (JHU)
averaged (blue), all cortical RTZs averaged (green), and all subcortical RTZs (red). Shaded
regions represent 95% confidence intervals.
(TIF)

S2 Fig. Predicted root mean square error of the estimation of age using a partial least
squares (PLS) model constructed using ODI and NDI compared to the PLS model con-
structed using RD and AD, with the additional variables (to each model) of intracranial
volume, total grey matter volume, and cortical white matter volume.
(TIF)
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S3 Fig. Scatter plot of NDI versus ODI, colored by FA, for every voxel along the mean
white matter skeleton across all study subjects.
(TIF)

S1 Table. UC-only fitting results for FA, ODI, and NDI in global white matter (WM), core
tracts averaged, cortical RTZs averaged, and subcortical RTZs averaged. Four different two-
parameter models were used: linear, logarithmic, exponential decay, exponential growth.
(DOCX)
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