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Abstract

Motivation: Mathematical modelling of regulatory networks allows for the discovery of knowledge

at the system level. However, existing modelling tools are often computation-heavy and do not

offer intuitive ways to explore the model, to test hypotheses or to interpret the results biologically.

Results: We have developed a computational approach to contextualize logical models of regula-

tory networks with biological measurements based on a probabilistic description of rule-based

interactions between the different molecules. Here, we propose a Matlab toolbox, FALCON, to

automatically and efficiently build and contextualize networks, which includes a pipeline for con-

ducting parameter analysis, knockouts and easy and fast model investigation. The contextualized

models could then provide qualitative and quantitative information about the network and suggest

hypotheses about biological processes.

Availability and implementation: FALCON is freely available for non-commercial users on GitHub

under the GPLv3 licence. The toolbox, installation instructions, full documentation and test datasets

are available at https://github.com/sysbiolux/FALCON. FALCON runs under Matlab (MathWorks) and

requires the Optimization Toolbox.

Contact: thomas.sauter@uni.lu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The functional characteristics of eukaryotic cells are largely

determined by the properties of their regulatory networks.

Notwithstanding the vast amount of biological data accumulated

over the past decades, a global model of the way these networks de-

termine the phenotypes of both healthy and diseased cells remains

elusive. One goal of systems biology is to understand these networks

at the highest possible functional level, for example to devise thera-

peutic strategies for treating patients affected by diseases like cancer.

Numerous mathematical approaches exist to optimize and train

regulatory network models against steady-state experimental data

(Villaverde and Banga, 2014). Of these, logical models (Le Novère,

2015) are of particular interest, as they are able to capture essential

features of the system being modelled and generate biological

insights, while requiring less prior knowledge and experimental ob-

servations than differential equation models (Morris et al., 2010).

Some successful applications include the logical models of yeast cell-

cycle protein network (Li et al., 2004), gene regulatory networks

(Mendoza et al., 1999), signalling networks (Saez-Rodriguez et al.,

2007). In addition, logical models are in general more powerful than

statistical models, as they incorporate the relational information

embedded in the network structure, while statistical models aiming

at reverse-engineering biological networks from high-throughput

data implicitly consider all possible topologies (Bansal et al., 2007).

In logical models of systems at steady-state, nodes represent the

degree of activation of the constituents of the system at equilibrium

and edges represent the logical functions between nodes. These func-

tions can be either linear or non-linear functions of the parent nodes
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and are combinations of the fundamental ‘AND’, ‘OR’ and ‘NOT’

Boolean functions.

While Binary Boolean models (Kauffman, 1969) only consider

full activation or complete absence, more quantitative approaches,

for instance, Probabilistic Boolean Networks (PBNs) (Trairatphisan

et al., 2013) and Dynamic Bayesian Networks (DBNs) (L€ahdesm€aki

et al., 2006) can account for intermediate or continuous ac-

tivation values and allow the integration of data uncertainty.

These approaches are usually analyzed by Monte Carlo approaches

(Mizera et al., 2016; Trairatphisan et al., 2014), which can be com-

putationally demanding or non-intuitive to use. Here, we propose a

tool called FALCON to efficiently contextualize logical regulatory

networks based on steady-state experimental data. Our algorithm

is based on DBNs and computes the expected value of the nodes

by including an algebraic interpretation of the logical gates. The

FALCON pipeline is shown in Figure 1.

2 Materials and methods

2.1 Modelling of logical networks
FALCON models biological regulatory systems as DBNs, which are

directed graphical models defined by the set of n nodes with

X ¼ ½0; 1�n and the probability distribution PðXtjXt�1Þ ¼
Qn

i¼1 PðX ið Þ
t j

PaðXðiÞt ÞÞ where X
ðiÞ
t denotes the i’th node at time t and PaðXðiÞt Þ rep-

resents the parents of X
ðiÞ
t . These conditional probabilities are impli-

citly formulated by the structure of the network. The different nodes

represent the different molecules of the system, with a value corres-

ponding to the degree to which these molecules exist in their active

form (for example, phosphorylated proteins). These node values can be

understood as the proportion of the molecules in the system being ac-

tive, or as the probability for a randomly chosen molecule to be active

at time t.

In the FALCON framework, each molecular interaction is for-

mulated as a logical predicate associated with a weight quantifying

the relative importance of that specific interaction. We model dif-

ferent types of biochemical interactions with two types of edges:

positive and negative edges connect activators and inhibitors to their

downstream targets. Hyperedges corresponding to the ‘AND’ and

‘OR’ logical operations link multiple nodes to an output node, and

model the activity of protein complexes and competition, respect-

ively. Each edge and hyperedge is associated to a weight k
ðiÞ
j rep-

resenting the relative influence of the upstream node to the

downstream node. Because our modelling framework is grounded in

Bayesian theory, the weights need to obey the law of total probabil-

ity: for each node XðiÞ having a set jþof m activating functions, we

ensure the sum of activating weights
Pm

jþ¼1 k
ðiÞ
jþ
¼ 1. Similarly, as

weights of inhibiting interactions materialize the relative inhibition

of upstream nodes, for nodes having a set j� of l inhibiting func-

tions, we ensure that 0 �
Pl

j�¼1 k
ðiÞ
j�
� 1.

Given a network structure established from prior knowledge, a

set of parameters (weights) and a set of experimental conditions, the

steady-state of the network is computed for each of the conditions

and the values of the nodes corresponding to the measured species

are recorded. For each one of the conditions, the nodes of the net-

work are initialized with random values, except for the nodes con-

sidered as inputs (external to the system) for which the value is

determined by the experimental condition and kept constant. The

network is then updated repeatedly by computing synchronously for

each node the expected value of its probability distribution, given

the value of its parent nodes and the weights associated with each

interaction.

X
ið Þ

t ¼
Xm

jþ¼1
k

ið Þ
jþ

Pa X ið Þ
� � jþð Þ

t�1
� 1�

Xi

j�¼1
k

ið Þ
j�

Pa X ið Þ
� � j�ð Þ

t�1

��

Because all nodes at each update are considered as independent, the

inputs values of ‘AND’ logical gates are multiplied. The computa-

tion of ‘OR’ gates follows De Morgan’s law, i.e. the complement of

the union of two sets is the same as the intersection of their comple-

ments. Inputs pointing to the same child node that are not members

of a logical gate are summed. Table 1 summarizes the different types

of interactions explicitly formulated in our framework. The alge-

braic formulas used for the computations can be directly derived

Fig. 1. The FALCON pipeline. Prior knowledge network and experimental data are combined to generate a network optimization problem. After the optimization

process, the properties of the optimal network are then analyzed
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from the conditional probability tables of the DBN formulation of

the logical interactions.

The resulting dynamical system converges to a steady-state

where each node value corresponds to the normalized equilibrium

concentration of the activated form of the molecule in the system.

2.2 Contextualization algorithm
Objective function. To perform the contextualization of the model with

experimental data, we extract from the network at steady-state the

value of the nodes corresponding to the measurements, compare them

with the normalized values from the experimental data and compute

the mean squared error (MSE) between the estimated values and the

measurements. We minimize this measure of the error by optimizing

the value of the weights using a gradient-descent algorithm. To guaran-

tee high efficiency while allowing for arbitrary degrees of recurrence in

the networks, we use the interior-point method (Waltz et al., 2004). A

scheme of the FALCON workflow is presented in Figure 1.

Rapid optimization. Using the gradient-descent optimization algo-

rithm fmincon with interior-point method, FALCON is able to rap-

idly estimate the set of weights that minimizes the objective function.

Random initialization of the weights is done either from a uniform

distribution across the [0, 1] range, or from a truncated normal distri-

bution centred on 0.5, depending on users’ choice. Normally distrib-

uted initial values have been shown to improve learning for deep

neural networks (Glorot and Bengio, 2010) and in our hands, increase

the speed of convergence of the optimization algorithm.

2.3 Subsequent analyses on optimized logical networks
Once a set of parameters has been inferred from a given topology

and dataset, a series of additional analyses can be performed to gain

more insight into the systems-level properties of the regulatory net-

work being modelled as summarized in Figure 2.

Robustness of optimized parameter values. Depending on the

topology of the network, the uncertainty in the measurement of

some nodes can have more impact on the parameter values of the

model than others. FALCON can analyze the uncertainty on

inferred parameter values by sampling a user-defined number of

artificial datasets based on original experimental measurements and

determining the weights of the model in the light of the new data

(Fig. 2a). The artificial datasets are constructed from the average ex-

perimental measurements and their associated error, assuming nor-

mally distributed residuals.

Identifiability analysis. In order to assess the identifiability of the

model parameters, an approach similar to Raue et al. is applied

(Raue et al., 2009). For each parameter, the algorithm samples the

range of possible parameter values [0, 1], and re-optimizes the

model under the additional constraint of this parameter being fixed

to each one of the sampled values. In order to obtain the most mean-

ingful results we sample the same number of points on both sides of

the optimal value. We include the option to skip the most extreme

values based on a threshold determined by the resampling analysis

(red line, Fig. 2b), thereby accelerating computations. The resulting

MSE profiles allow to determine which parameters are well con-

strained by the experimental measurements.

Interactions knockouts. FALCON allows the systematic removal

of each edge in the network and provides a graphical output show-

ing the effect on the global fitness of the model. The models are

compared using the Akaike Information Criterion (Burnham and

Anderson, 2004), which balances goodness-of-fit with model com-

plexity (Fig. 2c). By using this additional analysis, it is possible to

differentiate the crucial edges of the system from the ones that are

dispensable, which can be pruned out.

Nodes knockouts. A frequent goal of systems biology analyses is

to identify the crucial molecules of a regulatory network. Often per-

formed via network topological properties (centrality measures),

this identification is of particular interest in the case of target discov-

ery efforts. FALCON allows the systematic evaluation of models in

which each node is removed from the network. The comparison of

these models using the Akaike Information Criterion allows to iden-

tify these crucial nodes not only from topological properties but

from the effect their removal has on the behaviour of the entire sys-

tem (Fig. 2d).

Differential regulation. In many real-life modelling applications,

a system is studied in different contexts. For example, during a drug

screen, the same signalling pathways are studied for different cell

lines, or over time. One goal of systems biology is to identify differ-

ences between the contexts in the way the system is regulated.

FALCON automates such analyses by optimizing identical models

in parallel for multiple series of experimental conditions. Users can

discover which parts of the network are activated or shut down be-

tween cell lines/time points, and this may lead to the identification

of specific interventions strategies for each context (Fig. 3).

3 Pipeline and performance

FALCON is a highly efficient optimization tool that is capable of con-

textualizing small-to-large biological networks. For an easy input of

model structure and experimental data, FALCON accepts different

file formats (.txt, .xls, .xlsx, .csv) which are subsequently used to build

logical models. Inference of network structure, interaction matrices

and parameter constraints are fully automated, and the toolbox out-

puts a user-friendly summary comprising the optimized weights for

the different interactions, both in text and graphical forms. To facili-

tate the use of our toolbox, we included a graphical user interface

(GUI) to guide users through the different steps of the workflow.

Users who are more comfortable with the MATLAB language can in-

stead choose to use the provided driver script for full flexibility.

To showcase the performance of our toolbox, we provide four

examples, including the replication of several studies, each present-

ing a particular challenge for the toolbox. The results of our tests

are shown in Table 2. All computations were performed on a

Table 1. Different types of biological interactions modelled by different Boolean functions and their algebraic representations

Biological equivalent Graphical form Algebraic computation

Activation A! Z (k) Ztþ1 ¼ At * k

Inhibition A -j Z (k) Ztþ1 ¼ 1 – (At * k)

Complex formation A AND B! Z (k) Ztþ1 ¼ At * Bt * k

Competitive interaction A OR B! Z (k) Ztþ1 ¼ 1 – [(1-At) * (1-Bt) * k]

Non-competitive interaction A! Z (k1)B! Z (k2) Ztþ1 ¼ At * k1 þ Bt * k2 (with k1 þ k2 ¼ 1)
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desktop PC with 16 GB RAM and an IntelV
R

XeonVR CPU E3-1246

v3, 3.5 GHz with Matlab 2016b.

Toy model: we demonstrate the basic functionality of FALCON

on a 6-node toy model, comprising both positive and negative inter-

actions, as well as a Boolean AND gate. The structure of this

network, associated synthetic data and trained model are illustrated

in Supplementary Figure S1.

PDGF: we used FALCON to optimize a platelet-derived growth

factor signalling model (Trairatphisan et al., 2016), comprising 30

nodes and 37 interactions (19 free parameters). The dataset was

Fig. 3. Differential analyses in FALCON. The same prior knowledge model is contextualized in parallel with different datasets corresponding to different contexts.

Subsequent analysis can identify context-specific parametrizations and topologies

Fig. 2. Analyses of optimized model in FALCON (PDGF model). (a) Parameter robustness analysis; red stars: optimal parameter values, blue bars: standard devi-

ations of parameter values fitting to 10 resampling datasets. (b) Parameter identifiability analysis of parameter ‘km3’ from panel a; Red line: threshold used to

speed up computations in the ‘fast’ mode. (c) Interaction knock-out analysis. (d) Node knock-out analysis. In panels c and d, the color of the bars indicates the

sign of the difference with the base model (blue). Green indicate better models (AICmodel < AICbase), black indicates worse ones. Abbreviations: MSE¼mean

squared error, AIC¼Akaike Information Criterion
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assembled from the quantification of 6 proteins by western blot ana-

lysis in HEK293 cells expressing a constitutively active form of the

PDGF receptor, in the presence or absence of two types of perturb-

ations: single-point mutations of tyrosine residues on the PDGF

receptor associated with the recruitment sites of downstream signal-

ling molecules, and kinase inhibitors. We obtained a fitting cost

(MSE¼0.0041) and parameter values very similar to the original

study, where the tool optPBN (Trairatphisan et al., 2014) was used

to perform the optimization, and in accordance with it, we are able

to train the network with single perturbations and accurately predict

the signalling profiles of combined perturbations experiments (see

Supplementary Material).

Apoptosis: we replicated a modified model of a previous study in

which a large Boolean model of apoptosis was used to investigate

non-linear dose-effects of UV radiation on cultured hepatocytes

(Schlatter et al., 2009; Trairatphisan et al., 2014). The model com-

prises 138 nodes and 160 interactions (41 free parameters). We

correctly estimated apoptosis levels and the other associated experi-

mental measures, and could draw the same conclusions as the original

study concerning the importance of cross-talks, especially between

Caspase 8 and NFKB (see Supplementary Material). While the ori-

ginal study used the software CellNetAnalyzer (Klamt et al., 2007),

which uses a multi-value Boolean formalism and concentrates on net-

work properties, a previous replication with the optPBN toolbox

(Trairatphisan et al., 2014) could infer more quantitative properties,

but at the expense of long computation times. Analysis of this net-

work and data with FALCON is comparatively very fast with up to

170-fold improvement (FALCON: 76 seconds; optPBN: 4 hours

40minutes) and we obtained a fitting cost (FALCON: MSE¼0.017)

comparable with the previous studies (optPBN: MSE¼0.011;

Schlatter et al.: MSE¼0.013). In comparison, CellNetAnalyzer, using

discrete Boolean modelling and only able to consider either full activa-

tion of complete inactivity of the molecules, achieves a worse fit

(MSE: 0.056). The comparison of the inferred molecular states of

optPBN and FALCON can be found in Supplementary Figure S6.

MAPK: we compared the performance of our tool with the software

CellNOptR (MacNamara et al., 2012; Terfve et al., 2012) in the fuzzy

logic mode (CNORfuzzy) for quantitative optimization of model states.

Using the toy example provided, which is the optimized network of the

DREAM4 challenge and contains 22 nodes, 36 interactions and 25

experimental conditions (Prill et al., 2011), we obtained a similar

fitting cost with FALCON (MSE¼0.036) and with CellNOptR

(MSE¼0.032) but with a gain of speed of about 44 times (see Table 2).

4 Discussion

We present FALCON as an alternative tool for the efficient opti-

mization and comprehensive analysis of logical models of regulatory

networks. Our modelling framework, based on DBNs, is able to de-

termine qualitative and quantitative features of the systems being

modelled. Node values, being comprised in the interval [0, 1], repre-

sent the probabilities for molecules to be in their active state at equi-

librium. They can also be understood as the normalized average

activities of the nodes. The computed parameters, or weights, also

comprised in the interval [0, 1] and subject to the law of total prob-

ability, represent the probabilities for the designated interactions to

influence downstream nodes. They can also be interpreted as the

relative influences of the parent nodes on their children nodes and

are useful in assessing the flow of the signal transduction.

FALCON, through its GUI, is easy to use for scientists without

extensive modelling experience. FALCON is also very fast compared

to similar tools based on PBNs, and surpassed CellNOptR in our

test. The low computation costs make it possible to analyze the

models at the systems level through a series of bundled additional

analyses which allow to answer a number of biologically important

questions: whether the parameter values are well constrained by the

available data, how the experimental error influences the confidence

in the parameter values, and which are the nodes and interactions

most crucial to the behaviour of the system versus the ones that can

be pruned out. Together, our results suggest that FALCON is a very

useful software for rapid model exploration, especially for large net-

works and large datasets.

Compared to the popular package CellNOptR, the FALCON

pipeline is faster in contextualizing a small graphical model with

quantitative data. The inferred parameters are also more intuitively

understandable as the relative strength of the interactions, while

CellNOptR combines linear and Hill’s equations in a way that does

not encourage direct interpretation. This relative complex formula-

tion, together with the multiple concurrent formalisms proposed

and the increased computational cost suggest reserving this tool for

more complex tasks, while FALCON is better adapted for explora-

tory studies of larger networks and datasets.

Future development of the FALCON toolbox will include full

compatibility with established model representation formats

(SBML-Qual, Bio-PAX), and the conversion of the toolbox to other

languages, like R, Python and Cþþ. One particular aspect that we

regard as highly interesting is the use of FALCON to explore model

topologies in a large-scale, systematic way to uncover previously un-

known mechanisms in regulatory networks.

In terms of applications, we demonstrated that FALCON is ap-

plicable to model signal transduction networks and could easily be

extended to study other biological regulatory systems. We envision

that FALCON has the potential to be widely adopted by the compu-

tational biology community, including biologists with limited pro-

gramming experience.
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Table 2. Accuracy and computation times for the different

examples

Example Nodes Edges/Parameters Datapoints Cost Speed

Toy (artificial) 6 3/3 10 0 < 1 s

PDGF 30 19/19 36 0.004 1.3 s

Apoptosis 138 160/41 18 0.017 76 s

MAPK [FALCON] 22 32/32 175 0.036 1.1 s

MAPK [CNORfuzzy] 22 32/92 175 0.032 47.4 s

Note: The cost is expressed as MSE (mean squared error) and the speed is

expressed in seconds (s).
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